CN110032787B - 各向同性多层涂层体系二维温度场的求解方法 - Google Patents

各向同性多层涂层体系二维温度场的求解方法 Download PDF

Info

Publication number
CN110032787B
CN110032787B CN201910271397.0A CN201910271397A CN110032787B CN 110032787 B CN110032787 B CN 110032787B CN 201910271397 A CN201910271397 A CN 201910271397A CN 110032787 B CN110032787 B CN 110032787B
Authority
CN
China
Prior art keywords
dimensional
frequency domain
temperature field
heat source
coating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910271397.0A
Other languages
English (en)
Other versions
CN110032787A (zh
Inventor
王廷剑
张传伟
赵阳
尹龙承
张永钊
王燕霜
古乐
王黎钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority to CN201910271397.0A priority Critical patent/CN110032787B/zh
Publication of CN110032787A publication Critical patent/CN110032787A/zh
Application granted granted Critical
Publication of CN110032787B publication Critical patent/CN110032787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法,包括以下步骤:1)通过引入一维傅里叶积分变换在频域推导各向同性多层涂层体系在表面线分布移动热源作用下二维温度场的频域解析解;2)采用基于一维快速傅里叶积分变换的转换算法由步骤1)的频域解析解转换获得多层涂层体系在表面线分布移动热源作用下二维温度场分布。该方法避免了求解线性方程组造成的大量耗时,并应用了快速傅里叶逆变换算法,求解速度快、精度高;该方法适用于具有任意涂层层数的涂层体系半平面在表面线分布移动摩擦热源作用下的温度场的求解,适用范围广。

Description

各向同性多层涂层体系二维温度场的求解方法
技术领域
本发明涉及表面移动摩擦热源作用下温度场模拟仿真领域,尤其涉及一种各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下其热源作用微区二维温度场的模拟计算方法。
背景技术
随着航空发动机等机械动力传动系统转速和传动功率的不断提升,滚动轴承与齿轮等关键基础零部件摩擦副接触微区在表面移动摩擦热源作用下温度急剧升高,接触微区材料在高温状态下服役将出现热软化、材料微观组织恶化以及机械力学性能退化等一系列问题。此外在摩擦热源作用下,如果接触微区温度升高超过材料的耐温极限,摩擦副将发生热胶合,导致机械传动系统丧失工作能力。因此,求解摩擦副接触微区在表面移动摩擦热源作用下的微区温度场是评估摩擦副的服役状态的重要依据和避免出现热胶合恶性失效的关键。
但在表面热源作用下二维稳态温度场的现有求解方法主要是针对无涂层、单层涂层或双层涂层的涂层体系。随着材料科学和表面工程技术的发展,涂层技术已由单层涂层发展为多层复合涂层、纳米超晶格多层涂层体系,并被应用于提高航空发动机的机械传动系统摩擦副的抗磨损、抗疲劳和热胶合性能,但对于各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下的二维温度场的求解尚无现成的求解方法。
发明内容
为解决现有技术中存在的问题,本发明提供一种各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法。
为此,本发明的技术方案如下:
一种各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法,包括以下步骤:
1)通过引入一维傅里叶积分变换在频域推导各向同性多层涂层体系在表面线分布移动热源作用下二维温度场的频域解析解;
2)选择一个区域作为计算域,采用基于一维快速傅里叶积分逆变换的转换算法,由步骤1)的频域解析解转换获得多层涂层体系在表面线分布移动热源作用下二维温度场分布。
上述方法中,步骤1)中的频域解析解的推导步骤如下:
步骤一、对第k层各向同性层状材料二维温度场的微分控制方程:
Figure GDA0004134869230000021
实施一维傅里叶积分变换
Figure GDA0004134869230000022
获得二维温度场微分控制方程的频域形式:/>
Figure GDA0004134869230000023
其中:
x为平行于移动热源方向的坐标,单位为m;
zk为第k层横观各向同性层状材料垂直于同性平面的坐标,m;
ωx为一维傅里叶积分变换与变量x对应的频域变量;
T(k)为温度,K;
κk为第k层材料的热传导系数,W/(m·K);
ck为第k层材料体积比热容,J/(m3·K);
V为热源移动速度,m/s;
i为虚数单位符号,
步骤二、求解第k层各向同性层状材料二维温度场微分控制方程的通解:
Figure GDA0004134869230000024
其中:
Figure GDA0004134869230000025
为与ωx相关的待定参数,/>
Figure GDA0004134869230000026
步骤三、确定各层材料二维温度场微分控制方程频域通解的待定参数
Figure GDA0004134869230000027
对于基体,由于zN+1→∞时,
Figure GDA0004134869230000028
所以/>
Figure GDA0004134869230000029
对于其它待定参数,由表面边界条件和各界面连续条件建立关于各层材料二维温度场微分控制方程频域通解待定参数的线性方程组:
A(2N+1)×(2N+1)M(2N+1)×1=R(2N+1)×1 (4)
其中:
Figure GDA0004134869230000031
Figure GDA0004134869230000032
Figure GDA0004134869230000033
线性方程组的系数矩阵A(2N+1)×(2N+1)的子矩阵分别为:
Figure GDA0004134869230000034
Figure GDA0004134869230000035
Figure GDA0004134869230000036
/>
其中:
Figure GDA0004134869230000037
hl为第l层涂层的厚度;N为涂层体系的涂层层数;
线性方程组的待求变量矩阵M(2N+1)×1的子矩阵分别为:
Figure GDA0004134869230000038
线性方程组的右边矩阵R(2N+1)×1的子矩阵分别为:
Figure GDA0004134869230000039
其中:
Figure GDA00041348692300000310
为作用在多层涂层体系半平面表面的线分布移动热源QH(x)的傅里叶积分变换;通过分析方程的系数矩阵的特殊形式推导获得关于各个待定参数的解的递推公式:
Figure GDA00041348692300000311
Figure GDA00041348692300000312
Figure GDA00041348692300000313
Figure GDA00041348692300000314
Figure GDA0004134869230000041
其中:
Figure GDA0004134869230000042
Figure GDA0004134869230000043
上述方法中,步骤2)的具体步骤如下:
步骤一、在任意深度z处选择一个区域Ωc={x|xb≤x≤xe}作为计算域,通常xb=-2bH,xe=2bH,然后把计算域Ωc={x|xb≤x≤xe}划分为Nx-1个均匀网格单元,bH为赫兹线接触的接触半宽,单位为m,Nx为2的正整数次幂,单元尺寸为Δx=(xe-xb)/(Nx-1),第i个单元几何中心处的温度记为T[i];
步骤二、把对应频域的计算域ΩF={ωx|-π/2Δx≤ωx<π/2Δx}划分为
Figure GDA0004134869230000044
个均匀网格单元,/>
Figure GDA0004134869230000045
Ep为频域网格细化倍数,为2的非负整数次幂,那么频域网格单元的尺寸为/>
Figure GDA0004134869230000046
步骤三、由深度z处的温度频域解
Figure GDA0004134869230000047
计算在频域网格[i]节点处的值:
Figure GDA0004134869230000048
从而构造一个具有
Figure GDA0004134869230000049
个元素的一维数组/>
Figure GDA00041348692300000410
步骤四、通过对一维数组
Figure GDA00041348692300000411
的元素位置进行翻转操作得到一维矩阵/>
Figure GDA00041348692300000412
/>
Figure GDA00041348692300000413
步骤五、对一维数组
Figure GDA00041348692300000414
进行一维快速傅里叶积分逆变换(IFFT)得到新的一维数组T′:
Figure GDA00041348692300000415
步骤六、深度z处各节点的温度值T[i]为:
Figure GDA00041348692300000416
本发明中,涂层层数N理论上可以是任意的正整数。
本发明具有以下有益效果:
1、推导出了多层涂层体系半平面表面在线分布移动摩擦热源作用下确定各层涂层频域通解待定参数的解的递推公式,获得了二维温度场分布频域解的封闭解析解,避免了求解线性方程组造成的大量耗时,并应用了快速傅里叶逆变换算法,求解速度快、精度高。
2、涂层的层数N可以为任意正整数,适用于具有任意涂层层数的涂层体系半平面在表面线分布移动摩擦热源作用下的温度场的求解,适用范围广。
附图说明
图1是本发明中各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下的示意图;
图2是本发明的求解方法的流程图;
图3是本发明中空间计算域的网格单元划分示意图;
图4是本发明中频域的网格单元加密划分示意图;
图5是本发明中一维数组
Figure GDA0004134869230000051
进行翻转操作示意图;
图6是本发明中由一维数组T′提取空间计算域各节点温度值的示意图。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明。
如图1所示,本发明为一种各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法,图中N为各向同性涂层层数,hk为第k层涂层的厚度,κk为第k层涂层材料的热传递系数,ck为第k层涂层材料的热扩散系数,V为表面热源的移动速度,QH(x)为热源分布。参见图2,本发明求解方法的具体实施步骤如下:
本发明的技术方案的具体实施步骤如下:
步骤一、对第k层各向同性层状材料二维温度场的微分控制方程
Figure GDA0004134869230000052
实施一维傅里叶积分变换
Figure GDA0004134869230000053
获得温度场微分控制方程的频域形式为:
Figure GDA0004134869230000054
其中:
x为平行于移动热源方向的坐标,m;
zk为第k层横观各向同性层状材料垂直于同性平面的坐标,m;
ωx为一维傅里叶积分变换与变量x对应的频域变量;
T(k)为温度,K;
κk为第k层材料的热传导系数,W/(m·K);
ck为第k层材料体积比热容,J/(m3·K);
V为热源移动速度,m/s;
i为虚数单位符号。
步骤二、求解第k层各向同性层状材料二维温度场微分控制方程的通解可得:
Figure GDA0004134869230000061
其中:
Figure GDA0004134869230000062
为与ωx相关的待定参数,/>
Figure GDA0004134869230000063
步骤三、确定各层材料二维温度场微分控制方程通解的待定参数
Figure GDA0004134869230000064
对于基体,由于zN+1→∞时,
Figure GDA0004134869230000065
所以/>
Figure GDA0004134869230000066
对于其它待定参数,由表面边界条件和各界面连续条件可建立关于各层材料二维温度控制方程频域通解待求参数的线性方程组:
A(2N+1)×(2N+1)M(2N+1)×1=R(2N+1)×1 (4)
其中:
Figure GDA0004134869230000067
Figure GDA0004134869230000068
Figure GDA0004134869230000069
线性方程组的系数矩阵A(2N+1)×(2N+1)的子矩阵分别为:
Figure GDA00041348692300000610
Figure GDA0004134869230000071
Figure GDA0004134869230000072
/>
其中:
Figure GDA0004134869230000073
hl为第l层涂层的厚度;N为涂层体系的涂层层数。
线性方程组的待求变量矩阵M(2N+1)×1的子矩阵分别为:
Figure GDA0004134869230000074
线性方程组的右边矩阵R(2N+1)×1的子矩阵分别为:
Figure GDA0004134869230000075
其中:
Figure GDA0004134869230000076
为作用在多层涂层体系半平面表面的移动热源QH(x)的傅里叶积分变换。通常摩擦热源分布可以假设为:
Figure GDA0004134869230000077
其一维傅里叶积分变换为:
Figure GDA0004134869230000078
其中:J1为贝塞尔函数。
通过分析方程的系数矩阵的特殊形式可以推导获得关于各个未知待定参数的解的递推公式,具体结果如下:
Figure GDA0004134869230000079
Figure GDA00041348692300000710
Figure GDA00041348692300000711
Figure GDA00041348692300000712
Figure GDA00041348692300000713
其中:
Figure GDA0004134869230000081
Figure GDA0004134869230000082
步骤四、选择一个区域Ωc={x|xb≤x≤xe}作为计算域,通常xb=-2bH,xe=2bH,其中bH为赫兹线接触的接触半宽度,单位为m。采用基于一维快速傅里叶积分逆变换的转换算法可以由任意深度z处的温度场的频域解转换获得其空间计算域各网格单元的温度值,其具体实过程如下:
(1)如图3所示,把深度z处的计算域Ωc={x|xb≤x≤xe}划分为Nx-1个均匀网格单元,Nx为2的正整数次幂,单元尺寸为Δx=(xe-xb)/(Nx-1),第i个单元几何中心处的温度记为T[i]。
(2)把对应频域的计算域ΩF={ωx|-π/2Δx≤ωx<π/2Δx}划分为
Figure GDA0004134869230000083
个均匀网格单元,/>
Figure GDA0004134869230000084
其中,Ep为频域网格细化倍数,为2的非负整数次幂,那么频域网格单元的尺寸为/>
Figure GDA0004134869230000085
(3)如图4所示,由深度z处的温度频域解
Figure GDA0004134869230000086
计算在频域网格[i]节点处的频域值:
Figure GDA0004134869230000087
从而构造一个具有
Figure GDA0004134869230000088
个元素的一维数组/>
Figure GDA0004134869230000089
①如图5所示,通过对一维数组
Figure GDA00041348692300000810
的元素位置进行翻转操作得到一维矩阵/>
Figure GDA00041348692300000811
即:
Figure GDA00041348692300000812
②对一维数组
Figure GDA00041348692300000813
进行一维快速傅里叶逆变换(IFFT)得到新的一维数组T′,即:
Figure GDA00041348692300000814
③如图6所示,由矩阵T′提取获得深度z处各节点的温度值T[i]:
Figure GDA00041348692300000815
/>

Claims (2)

1.一种各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法,其特征在于包括以下步骤:
1)通过引入一维傅里叶积分变换在频域推导各向同性多层涂层体系在表面线分布移动热源作用下二维温度场的频域解析解;
2)选择一个区域作为计算域,采用基于一维快速傅里叶积分逆变换的转换算法,由步骤1)的频域解析解转换获得多层涂层体系在表面线分布移动热源作用下二维温度场分布;
其中,步骤1)中的频域解析解的推导步骤如下:
步骤一、对第k层各向同性层状材料二维温度场的微分控制方程:
Figure FDA0004134869220000011
实施一维傅里叶积分变换
Figure FDA0004134869220000012
获得二维温度场微分控制方程的频域形式:
Figure FDA0004134869220000013
其中:
x为平行于移动热源方向的坐标,单位为m;
zk为第k层横观各向同性层状材料垂直于同性平面的坐标,m;
ωx为一维傅里叶积分变换与变量x对应的频域变量;
T(k)为温度,K;
κk为第k层材料的热传导系数,W/(m·K);
ck为第k层材料体积比热容,J/(m3·K);
V为热源移动速度,m/s;
i为虚数单位符号,
步骤二、求解第k层各向同性层状材料二维温度场微分控制方程的通解:
Figure FDA0004134869220000014
其中:
Figure FDA0004134869220000015
为与ωx相关的待定参数,/>
Figure FDA0004134869220000016
步骤三、确定各层材料二维温度场微分控制方程频域通解的待定参数
Figure FDA0004134869220000017
对于基体,由于zN+1→∞时,
Figure FDA0004134869220000021
所以/>
Figure FDA0004134869220000022
对于其它待定参数,由表面边界条件和各界面连续条件建立关于各层材料二维温度场微分控制方程频域通解待定参数的线性方程组:
A(2N+1)×(2N+1)M(2N+1)×1=R(2N+1)×1 (4)
其中:
Figure FDA0004134869220000023
Figure FDA0004134869220000024
Figure FDA0004134869220000025
线性方程组的系数矩阵A(2N+1)×(2N+1)的子矩阵分别为:
Figure FDA0004134869220000026
Figure FDA0004134869220000027
Figure FDA0004134869220000028
其中:
Figure FDA0004134869220000029
hl为第l层涂层的厚度;N为涂层体系的涂层层数,
线性方程组的待求变量矩阵M(2N+1)×1的子矩阵分别为:
Figure FDA00041348692200000210
线性方程组的右边矩阵R(2N+1)×1的子矩阵分别为:
Figure FDA00041348692200000211
其中:
Figure FDA00041348692200000212
为作用在多层涂层体系半平面表面的线分布移动热源QH(x)的傅里叶积分变换;
通过分析方程的系数矩阵的特殊形式推导获得关于各个待定参数的解的递推公式:
Figure FDA0004134869220000031
Figure FDA0004134869220000032
Figure FDA0004134869220000033
Figure FDA0004134869220000034
Figure FDA0004134869220000035
其中:
Figure FDA0004134869220000036
/>
Figure FDA0004134869220000037
2.如权利要求1所述各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法,其特征在于:步骤2)的具体步骤如下:
步骤一、在任意深度z处选择一个区域Ωc={x|xb≤x≤xe}作为计算域,xb=-2bH,xe=2bH,然后把计算域Ωc={x|xb≤x≤xe}划分为Nx-1个均匀网格单元,bH为赫兹线接触的接触半宽,单位为m,Nx为2的正整数次幂,单元尺寸为Δx=(xe-xb)/(Nx-1),第i个单元几何中心处的温度记为T[i];
步骤二、把对应频域的计算域ΩF={ωx|-π/2Δx≤ωx<π/2Δx}划分为
Figure FDA0004134869220000038
个均匀网格单元,/>
Figure FDA0004134869220000039
Ep为频域网格细化倍数,为2的非负整数次幂,那么频域网格单元的尺寸为
Figure FDA00041348692200000310
步骤三、由深度z处的温度频域解
Figure FDA00041348692200000311
计算在频域网格[i]节点处的值:
Figure FDA00041348692200000312
从而构造一个具有
Figure FDA00041348692200000313
个元素的一维数组/>
Figure FDA00041348692200000314
步骤四、通过对一维数组
Figure FDA00041348692200000315
的元素位置进行翻转操作得到一维矩阵/>
Figure FDA00041348692200000316
Figure FDA00041348692200000317
步骤五、对一维数组
Figure FDA0004134869220000041
进行一维快速傅里叶积分逆变换(IFFT)得到新的一维数组T′:
Figure FDA0004134869220000042
步骤六、深度z处各节点的温度值T[i]为:
Figure FDA0004134869220000043
/>
CN201910271397.0A 2019-04-04 2019-04-04 各向同性多层涂层体系二维温度场的求解方法 Active CN110032787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910271397.0A CN110032787B (zh) 2019-04-04 2019-04-04 各向同性多层涂层体系二维温度场的求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910271397.0A CN110032787B (zh) 2019-04-04 2019-04-04 各向同性多层涂层体系二维温度场的求解方法

Publications (2)

Publication Number Publication Date
CN110032787A CN110032787A (zh) 2019-07-19
CN110032787B true CN110032787B (zh) 2023-06-09

Family

ID=67237537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910271397.0A Active CN110032787B (zh) 2019-04-04 2019-04-04 各向同性多层涂层体系二维温度场的求解方法

Country Status (1)

Country Link
CN (1) CN110032787B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256244A (zh) * 2018-01-23 2018-07-06 武汉理工大学 一种考虑后刀面磨损的涂层刀具稳态温度场预测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521205B1 (de) * 1965-01-26 1969-12-04 Danfoss As Verfahren und Vorrichtung zum Aufdampfen von Stoffgemischen
DK146790D0 (da) * 1990-06-15 1990-06-15 Meadox Surgimed As Fremgangsmaade til fremstilling af en ved befrugtning friktionsnedsaettende belaegning samt medicinsk instrument med en friktionsnedsaettende belaegning
CN100456014C (zh) * 2006-03-23 2009-01-28 上海交通大学 热障涂层抗热震性能测试装置
CN105589980A (zh) * 2014-10-23 2016-05-18 天津职业技术师范大学 一种阻抗匹配层的截断边界
CN104451542A (zh) * 2014-12-05 2015-03-25 大连维钛克科技股份有限公司 一种耐高温高硬度低摩擦系数的多层涂层及其制备方法
CN106156475A (zh) * 2015-04-22 2016-11-23 南京理工大学 电大尺寸目标的瞬态电磁特性快速提取方法
CN105787179A (zh) * 2016-02-29 2016-07-20 上海交通大学 用于碳纤维增强单向层合板二维切削温度的建模方法
CN105911091B (zh) * 2016-05-31 2019-03-05 中国工程物理研究院总体工程研究所 用于温度-加速度环境下温度场分布特性研究的试验装置及方法
CN107463720A (zh) * 2017-03-17 2017-12-12 浙江工业大学 一种评估多层薄膜膜基结合强度的方法
CN107858647B (zh) * 2017-11-09 2019-10-25 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN108932392B (zh) * 2018-07-13 2023-05-26 湖南科技大学 基于改进三重互易边界元法的瞬态温度计算方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256244A (zh) * 2018-01-23 2018-07-06 武汉理工大学 一种考虑后刀面磨损的涂层刀具稳态温度场预测方法

Also Published As

Publication number Publication date
CN110032787A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
Dogonchi et al. Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation
de Monte Transient heat conduction in one-dimensional composite slab. A ‘natural’analytic approach
Huang et al. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate
Varol et al. Entropy generation due to conjugate natural convection in enclosures bounded by vertical solid walls with different thicknesses
Murashov et al. Numerical modelling of contact heat transfer problem with work hardened rough surfaces
Singh et al. Finite integral transform method to solve asymmetric heat conduction in a multilayer annulus with time-dependent boundary conditions
Wang et al. Fundamental-solution-based finite element model for plane orthotropic elastic bodies
Fu et al. Boundary knot method for heat conduction in nonlinear functionally graded material
Li et al. Transition to chaos in electro-thermo-convection of a dielectric liquid in a square cavity
Altabey Prediction of natural frequency of basalt fiber reinforced polymer (FRP) laminated variable thickness plates with intermediate elastic support using artificial neural networks (ANNs) method
Dai et al. Investigation on a rotating FGPM circular disk under a coupled hygrothermal field
Chikh et al. Optimal performance of an annular heat exchanger with a porous insert for a turbulent flow
Tao et al. Generalized interpolation material point method for coupled thermo-mechanical processes
Yun et al. Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
Zhang et al. An improved meshless method with almost interpolation property for isotropic heat conduction problems
Berkan et al. Analytical investigation of steady three-dimensional problem of condensation film on inclined rotating disk by Akbari-Ganji's methodAnalytical investigation of steady three-dimensional problem of condensation film on inclined rotating disk by Akbari-Ganji's methodretain--
Wierzcholski et al. Electro-magneto-hydrodynamic lubrication
Bai et al. Quick estimate of effective thermal conductivity for fluid-saturated metal frame and prismatic cellular structures
CN110032787B (zh) 各向同性多层涂层体系二维温度场的求解方法
Samian et al. Transient conduction simulation of a nano-scale hotspot using finite volume lattice Boltzmann method
Wu Cylindrical thermal cloak based on the path design of heat flux
Liao et al. New correlations for thermal resistances of vertical single U-Tube ground heat exchanger
CN110069837B (zh) 横观各向同性多层涂层体系三维温度场的求解方法
Peng et al. Numerical modeling and experimental verification of flow and heat transfer over serrated fins at low Reynolds number
Wang et al. Research on digital twin modeling method of transformer temperature field based on POD

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant