CN110069837B - 横观各向同性多层涂层体系三维温度场的求解方法 - Google Patents

横观各向同性多层涂层体系三维温度场的求解方法 Download PDF

Info

Publication number
CN110069837B
CN110069837B CN201910271395.1A CN201910271395A CN110069837B CN 110069837 B CN110069837 B CN 110069837B CN 201910271395 A CN201910271395 A CN 201910271395A CN 110069837 B CN110069837 B CN 110069837B
Authority
CN
China
Prior art keywords
dimensional
frequency domain
temperature field
heat source
coating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910271395.1A
Other languages
English (en)
Other versions
CN110069837A (zh
Inventor
王廷剑
张传伟
赵阳
吴继强
赵小力
郑德志
王燕霜
古乐
王黎钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority to CN201910271395.1A priority Critical patent/CN110069837B/zh
Publication of CN110069837A publication Critical patent/CN110069837A/zh
Application granted granted Critical
Publication of CN110069837B publication Critical patent/CN110069837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法,包括以下步骤:1)通过引入二维傅里叶积分变换在频域推导横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的频域解析解;2)采用基于二维快速傅里叶变换的转换算法由步骤1)的频域解析解转换获得横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场分布。该方法求解速度快、精度高,具有较优的鲁棒性,适用于具有任意涂层层数和涂层厚度的横观各向同性多层涂层体系半空间表面在面分布移动热源作用下的三维温度场的求解,适用范围广。

Description

横观各向同性多层涂层体系三维温度场的求解方法
技术领域
本发明涉及表面移动摩擦热源作用下温度场模拟仿真领域,尤其涉及一种横观各向同性多层涂层体系表面在面分布移动摩擦热源作用下其热源作用微区三维温度场的模拟计算方法。
背景技术
随着航空发动机等机械动力传动系统转速和传动功率的不断提升,滚动轴承与齿轮等关键基础零部件摩擦副接触微区在表面移动摩擦热源作用下温度急剧升高,接触微区材料在高温状态下服役将出现热软化、材料微观组织恶化以及机械力学性能退化等一系列问题,此外在摩擦热源作用下如果接触微区温度升高超过材料的耐温极限,摩擦副将发生热胶合,导致机械传动系统丧失工作能力。因此求解摩擦副接触微区在表面移动摩擦热源作用下的微区温度场是评估摩擦副的服役状态的重要依据和避免出现热胶合恶性失效的关键。
现有的方法针对主要是无涂层、单层涂层、双层涂层的涂层体系或者热特性为各向同性的多层涂层体系在表面热源作用下三维稳态温度场的求解。随着材料科学和表面工程技术的发展,涂层技术已由单层涂层发展为多层复合涂层、纳米超晶格多层涂层体系,并被应用于提高航空发动机的机械传动系统摩擦副的抗磨损、抗疲劳和热胶合性能,但对于横观各向同性多层涂层体系表面在面分布移动摩擦热源作用下的三维温度场的求解尚无现成的求解方法。
发明内容
为解决现有技术中存在的问题,本发明提供一种横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法。
为此,本发明的技术方案如下:
一种横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法,包括以下步骤:
1)通过引入二维傅里叶积分变换在频域推导横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的频域解析解;
2)选择一个区域作为计算域,采用基于二维快速傅里叶逆变换的转换算法,由步骤1)的频域解析解转换获得横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场分布。
上述方法中,步骤1)中的频域解析解的推导步骤如下:
步骤一、对第k层横观各向同性层状材料三维温度场的微分控制方程
Figure GDA0004134868960000021
/>
实施二维傅里叶积分变换
Figure GDA0004134868960000022
获得三维温度场微分控制方程的频域形式:
Figure GDA0004134868960000023
其中:
x为平行于移动热源方向的坐标,单位为m;
y为垂直于移动热源方向且平行于层状材料同性平面的坐标,m;
zk为第k层横观各向同性层状材料垂直于同性平面的坐标,m;
ωx为二维傅里叶积分变换与变量x对应的频域变量;
ωy为二维傅里叶积分变换与变量y对应的频域变量;
T(k)为温度,K;
Figure GDA0004134868960000024
为z方向的热传导系数,W/(m·K);
Figure GDA0004134868960000025
为x方向的热传导系数,W/(m·K);
ck为体积比热容,J/(m3·K);
V为热源移动速度,m/s;
i为虚数单位符号,
Figure GDA0004134868960000026
步骤二、求第k层层状材料三维温度场在频域的控制方程的通解:
Figure GDA0004134868960000027
其中:
Figure GDA0004134868960000028
是与ωx和ωy有关的待定参数,/>
Figure GDA0004134868960000029
步骤三、确定各层材料三维温度场微分控制方程通解的待定参数
Figure GDA00041348689600000210
对于基体,由于zN+1→∞时,
Figure GDA00041348689600000211
所以/>
Figure GDA00041348689600000212
对于其它待定参数,由边界条件和各界面的连续条件建立关于各层材料三维温度场频域控制方程通解的待定参数的线性方程组:
A(2N+1)×(2N+1)M(2N+1)×1=R(2N+1)×1 (4)
其中:
Figure GDA0004134868960000031
Figure GDA0004134868960000032
/>
Figure GDA0004134868960000033
线性方程组的系数矩阵A(2N+1)×(2N+1)的子矩阵分别为:
Figure GDA0004134868960000034
Figure GDA0004134868960000035
式中,hl-1为第l-1层涂层的厚度,N为涂层层数;
线性方程组的待求变量矩阵M(2N+1)×1的子矩阵分别为:
Figure GDA0004134868960000036
线性方程组的右边矩阵R(2N+1)×1的子矩阵分别为:
Figure GDA0004134868960000037
其中:
Figure GDA0004134868960000038
为作用在多层涂层体系半空间表面的面分布移动热源QH(x,y)的傅里叶积分变换;
通过分析方程的系数矩阵的特殊形式推导获得关于各个待定参数的解的递推公式:
Figure GDA0004134868960000039
Figure GDA00041348689600000310
Figure GDA0004134868960000041
Figure GDA0004134868960000042
Figure GDA0004134868960000043
其中:
Figure GDA0004134868960000044
上述方法中,步骤2)的具体步骤如下:
步骤一、在任意深度z处选择一个矩形区域Ωc={(x,y)|xb≤x≤xe,yb≤y≤ye}作为计算域,通常xb=-2aH,xe=2aH,yb=-2aH,ye=2aH,并把深度z处的计算域Ωc划分为(Nx-1)×(Ny-1)个均匀网格单元,aH为赫兹点接触的接触半径,单位为m,各单元的尺寸为Δx×Δy=[(xe-xb)/(Nx-1)]×[(ye-yb)/(Ny-1)],第[i,j]个单元几何中心处的温度记为T[i,j];
步骤二、把对应频域的计算域ΩF={(ωxy)|-π/2Δx≤ωx<π/2Δx,-π/2Δy≤ωy<π/2Δy}划分为
Figure GDA0004134868960000045
个均匀网格单元,/>
Figure GDA0004134868960000046
Ep为频域网格细化倍数,为2的非负整数次幂,频域网格单元的大小为/>
Figure GDA0004134868960000047
/>
步骤三、由深度z处的频域解
Figure GDA0004134868960000048
计算在频域网格单元各个节点处的值:
Figure GDA0004134868960000049
从而构造一个具有
Figure GDA00041348689600000410
个元素的二维矩阵/>
Figure GDA00041348689600000411
步骤四、通过对二维矩阵
Figure GDA00041348689600000412
的元素位置进行翻转操作得到二维矩阵/>
Figure GDA00041348689600000413
Figure GDA00041348689600000414
Figure GDA00041348689600000415
Figure GDA00041348689600000416
Figure GDA00041348689600000417
步骤五、对二维矩阵
Figure GDA00041348689600000418
进行二维快速傅里叶逆变换得到新的二维矩阵T′:
Figure GDA0004134868960000051
步骤六、深度z处各节点的温度值T[i,j]为:
Figure GDA0004134868960000052
T[i,j]=T′[i-Nx/2+1,j-Ny/2+1](Nx/2≤i≤Nx-1,Ny/2≤j≤Ny-1),
Figure GDA0004134868960000053
Figure GDA0004134868960000054
其中涂层层数N理论上可以是任意的正整数。
本发明专利的有益效果如下:
(1)推导了热特性为横观各向同性多层涂层体系半空间表面在面分布移动热源作用下确定各层涂层频域通解待定参数的解的递推公式,获得了三维温度场在频域的封闭解析解,同时应用了二维快速傅里叶逆变换算法进行加速求解,求解速度快、精度高。
(2)此外涂层的层数N可以为任意正整数,具有较优的鲁棒性,适用于具有任意涂层层数和涂层厚度的横观各向同性多层涂层体系半空间表面在面分布移动热源作用下的三维温度场的求解,适用范围广。
附图说明
图1:横观各向同性多层涂层体系半空间表面在面分布移动热源作用下示意图;
图2:温度场求解技术路线示意图;
图3:空间计算域的网格单元划分示意图;
图4:频域的网格单元加密划分示意图;
图5:二维矩阵
Figure GDA0004134868960000055
的元素进行翻转操作示意图;
图6:由二维矩阵T′提取空间计算域各节点温度值示意图。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细描述。
如图1所示,本发明是一种关于横观各向同性多层涂层体系半空间表面在面分布移动热源作用下稳态温度场的求解方法,图中N为涂层层数,hk为第k层涂层的厚度,κk为第k层涂层材料的热传导系数,γk为第k层涂层材料的热扩散系数,Vs为表面热源的移动速度,QH(x,y)为涂层体系表面的面分布移动热源。本发明的技术路线如图2所示,其具体实施步骤如下:
步骤一、对第k层横观各向同性层状材料三维温度场的微分控制方程
Figure GDA0004134868960000061
实施二维傅里叶积分变换
Figure GDA0004134868960000062
获得三维温度场微分控制方程的频域形式:
Figure GDA0004134868960000063
其中:
x为平行于移动热源方向的坐标,m;
y为垂直于移动热源方向且平行于层状材料同性平面的坐标,m;
zk为第k层横观各向同性层状材料垂直于同性平面的坐标,m;
T(k)为温度,K;
Figure GDA0004134868960000064
为z方向的热传导系数,W/(m·K);
Figure GDA0004134868960000065
为x方向的热传导系数,W/(m·K);
ck为体积比热容,J/(m3·K);
V为热源移动速度,m/s;
ωx为二维傅里叶积分变换与变量x对应的频域变量;
ωy为二维傅里叶积分变换与变量y对应的频域变量;
i为虚数单位符号,
Figure GDA0004134868960000066
步骤二、求第k层层状材料三维温度场微分控制方程在频域的通解可得:
Figure GDA0004134868960000067
其中:
Figure GDA0004134868960000068
是与ωx和ωy有关的待定参数,/>
Figure GDA0004134868960000069
步骤三、确定各层材料三维温度场微分控制方程通解的待定参数
Figure GDA00041348689600000610
对于基体,由于zN+1→∞时,
Figure GDA00041348689600000611
所以/>
Figure GDA00041348689600000612
对于其它待定参数,由表面边界条件和各界面连续条件建立关于各层材料温度控制方程频域通解的未知待定参数的线性方程组:
A(2N+1)×(2N+1)M(2N+1)×1=R(2N+1)×1 (4)
其中:
Figure GDA0004134868960000071
Figure GDA0004134868960000072
Figure GDA0004134868960000073
线性方程组的系数矩阵A(2N+1)×(2N+1)的子矩阵分别为:
Figure GDA0004134868960000074
Figure GDA0004134868960000075
式中,hl-1为第l-1层涂层的厚度,N为涂层层数;
线性方程组的待求变量矩阵M(2N+1)×1的子矩阵分别为:
Figure GDA0004134868960000076
线性方程组的右边矩阵R(2N+1)×1的子矩阵分别为:
Figure GDA0004134868960000077
其中:
Figure GDA0004134868960000078
为作用在多层涂层体系表面移动面分布热源QH(x,y)的傅里叶积分变换。通常摩擦热源分布可以假设为:
Figure GDA0004134868960000079
其二维傅里叶积分变换为:
Figure GDA00041348689600000710
通过分析方程的系数矩阵的特殊形式可以推导获得关于各个待定参数的解的递推公式,具体结果如下:
通过分析方程的系数矩阵的特殊形式可以推导获得关于各个待定参数的解的递推公式,具体结果如下:
Figure GDA0004134868960000081
Figure GDA0004134868960000082
/>
Figure GDA0004134868960000083
Figure GDA0004134868960000084
Figure GDA0004134868960000085
其中:
Figure GDA0004134868960000086
步骤四、选择一个矩形区域Ωc={(x,y)|xb≤x≤xe,yb≤y≤ye}作为计算域,通常xb=-2aH,xe=2aH,yb=-2aH,ye=2aH,其中aH为赫兹点接触的接触半径,单位为m。采用基于二维快速傅里叶逆变换的转换算法可以由任意深度z处的温度场的频域解转换获得其空间计算域各网格单元的温度值,其具体实过程如下:
①如图3所示,把深度z处的计算域Ωc={(x,y)|xb≤x≤xe,yb≤y≤ye}划分为(Nx-1)×(Ny-1)个均匀网格单元Nx和Ny取为2的正整数次幂,单元尺寸为Δx×Δy=[(xe-xb)/(Nx-1)]×[(ye-yb)/(Ny-1)],第[i,j]个单元节点的温度记为T[i,j]。
②如图4所示,把对应频域的计算域ΩF={(ωxy)|-π/2Δx≤ωx<π/2Δx,-π/2Δy≤ωy<π/2Δy}划分为
Figure GDA0004134868960000087
个均匀网格单元,/>
Figure GDA0004134868960000088
Ep为频域网格细化倍数,为2的非负整数次幂,频域网格单元的尺寸为/>
Figure GDA0004134868960000089
③由深度z处的频域解
Figure GDA00041348689600000810
计算在频域网格单元各个节点处的值:
Figure GDA00041348689600000811
从而构造一个具有
Figure GDA00041348689600000812
个元素的二维矩阵/>
Figure GDA00041348689600000813
④如图5所示,通过矩阵
Figure GDA00041348689600000814
的元素位置进行翻转操作得到矩阵/>
Figure GDA00041348689600000815
即:
Figure GDA0004134868960000091
Figure GDA0004134868960000092
Figure GDA0004134868960000093
Figure GDA0004134868960000094
⑤对二维矩阵
Figure GDA0004134868960000095
进行二维快速傅里叶逆变换得到新的二维矩阵T′,即:
Figure GDA0004134868960000096
⑥如图6所示,由二维矩阵T′提取深度z处空间计算域各网格单元的温度值T[i,j]为:
Figure GDA0004134868960000097
T[i,j]=T′[i-Nx/2+1,j-Ny/2+1](Nx/2≤i≤Nx-1,Ny/2≤j≤Ny-1),
Figure GDA0004134868960000098
/>
Figure GDA0004134868960000099
/>

Claims (2)

1.一种横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法,其特征在于包括以下步骤:
1)通过引入二维傅里叶积分变换在频域推导横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的频域解析解;
2)选择一个区域作为计算域,采用基于二维快速傅里叶逆变换的转换算法,由步骤1)的频域解析解转换获得横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场分布;
其中,步骤1)中的频域解析解的推导步骤如下:
步骤一、对第k层横观各向同性层状材料三维温度场的微分控制方程
Figure FDA0004134868950000011
实施二维傅里叶积分变换
Figure FDA0004134868950000012
获得三维温度场微分控制方程的频域形式:
Figure FDA0004134868950000013
其中:
x为平行于移动热源方向的坐标,单位为m;
y为垂直于移动热源方向且平行于层状材料同性平面的坐标,m;
zk为第k层横观各向同性层状材料垂直于同性平面的坐标,m;
ωx为二维傅里叶积分变换与变量x对应的频域变量;
ωy为二维傅里叶积分变换与变量y对应的频域变量;
T(k)为温度,K;
Figure FDA0004134868950000015
为z方向的热传导系数,W/(m·K);
Figure FDA0004134868950000016
为x方向的热传导系数,W/(m·K);
ck为体积比热容,J/(m3·K);
V为热源移动速度,m/s;
i为虚数单位符号,
Figure FDA0004134868950000014
步骤二、求第k层层状材料三维温度场在频域的控制方程的通解:
Figure FDA0004134868950000021
其中:
Figure FDA0004134868950000022
是与ωx和ωy有关的待定参数,/>
Figure FDA0004134868950000023
步骤三、确定各层材料三维温度场微分控制方程通解的待定参数
Figure FDA0004134868950000024
对于基体,由于zN+1→∞时,
Figure FDA0004134868950000025
所以/>
Figure FDA0004134868950000026
对于其它待定参数,由边界条件和各界面的连续条件建立关于各层材料三维温度场频域控制方程通解的待定参数的线性方程组:/>
A(2N+1)×(2N+1)M(2N+1)×1=R(2N+1)×1 (4)
其中:
Figure FDA0004134868950000027
Figure FDA0004134868950000028
Figure FDA0004134868950000029
线性方程组的系数矩阵A(2N+1)×(2N+1)的子矩阵分别为:
Figure FDA00041348689500000210
Figure FDA00041348689500000211
式中,hl-1为第l-1层涂层的厚度,N为涂层层数;
线性方程组的待求变量矩阵M(2N+1)×1的子矩阵分别为:
Figure FDA00041348689500000212
线性方程组的右边矩阵R(2N+1)×1的子矩阵分别为:
Figure FDA00041348689500000213
其中:
Figure FDA00041348689500000312
为作用在多层涂层体系半空间表面的面分布移动热源QH(x,y)的傅里叶积分变换;
通过分析方程的系数矩阵的特殊形式推导获得关于各个待定参数的解的递推公式:
Figure FDA0004134868950000031
Figure FDA0004134868950000032
Figure FDA0004134868950000033
Figure FDA0004134868950000034
Figure FDA0004134868950000035
其中:
Figure FDA0004134868950000036
/>
2.如权利要求1所述的横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法,其特征在于:步骤2)的具体步骤如下:
步骤一、在任意深度z处选择一个矩形区域Ωc={(x,y)|xb≤x≤xe,yb≤y≤ye}作为计算域,xb=-2aH,xe=2aH,yb=-2aH,ye=2aH,并把深度z处的计算域Ωc划分为(Nx-1)×(Ny-1)个均匀网格单元,aH为赫兹点接触的接触半径,单位为m,各单元的尺寸为Δx×Δy=[(xe-xb)/(Nx-1)]×[(ye-yb)/(Ny-1)],第[i,j]个单元几何中心处的温度记为T[i,j];
步骤二、把对应频域的计算域ΩF={(ωxy)|-π/2Δx≤ωx<π/2Δx,-π/2Δy≤ωy<π/2Δy}划分为
Figure FDA0004134868950000037
个均匀网格单元,/>
Figure FDA0004134868950000038
Ep为频域网格细化倍数,为2的非负整数次幂,频域网格单元的大小为/>
Figure FDA0004134868950000039
步骤三、由深度z处的频域解
Figure FDA00041348689500000310
计算在频域网格单元各个节点处的值:
Figure FDA00041348689500000311
从而构造一个具有
Figure FDA0004134868950000041
个元素的二维矩阵/>
Figure FDA0004134868950000042
步骤四、通过对二维矩阵
Figure FDA0004134868950000043
的元素位置进行翻转操作得到二维矩阵/>
Figure FDA0004134868950000044
Figure FDA0004134868950000045
Figure FDA0004134868950000046
Figure FDA0004134868950000047
Figure FDA0004134868950000048
步骤五、对二维矩阵
Figure FDA0004134868950000049
进行二维快速傅里叶逆变换得到新的二维矩阵T′:
Figure FDA00041348689500000410
步骤六、深度z处各节点的温度值T[i,j]为:
Figure FDA00041348689500000411
T[i,j]=T′[i-Nx/2+1,j-Ny/2+1](Nx/2≤i≤Nx-1,Ny/2≤j≤Ny-1),
Figure FDA00041348689500000412
Figure FDA00041348689500000413
/>
CN201910271395.1A 2019-04-04 2019-04-04 横观各向同性多层涂层体系三维温度场的求解方法 Active CN110069837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910271395.1A CN110069837B (zh) 2019-04-04 2019-04-04 横观各向同性多层涂层体系三维温度场的求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910271395.1A CN110069837B (zh) 2019-04-04 2019-04-04 横观各向同性多层涂层体系三维温度场的求解方法

Publications (2)

Publication Number Publication Date
CN110069837A CN110069837A (zh) 2019-07-30
CN110069837B true CN110069837B (zh) 2023-06-09

Family

ID=67367142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910271395.1A Active CN110069837B (zh) 2019-04-04 2019-04-04 横观各向同性多层涂层体系三维温度场的求解方法

Country Status (1)

Country Link
CN (1) CN110069837B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787179A (zh) * 2016-02-29 2016-07-20 上海交通大学 用于碳纤维增强单向层合板二维切削温度的建模方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521205B1 (de) * 1965-01-26 1969-12-04 Danfoss As Verfahren und Vorrichtung zum Aufdampfen von Stoffgemischen
DK146790D0 (da) * 1990-06-15 1990-06-15 Meadox Surgimed As Fremgangsmaade til fremstilling af en ved befrugtning friktionsnedsaettende belaegning samt medicinsk instrument med en friktionsnedsaettende belaegning
CN100456014C (zh) * 2006-03-23 2009-01-28 上海交通大学 热障涂层抗热震性能测试装置
CN105589980A (zh) * 2014-10-23 2016-05-18 天津职业技术师范大学 一种阻抗匹配层的截断边界
CN106156475A (zh) * 2015-04-22 2016-11-23 南京理工大学 电大尺寸目标的瞬态电磁特性快速提取方法
CN105911091B (zh) * 2016-05-31 2019-03-05 中国工程物理研究院总体工程研究所 用于温度-加速度环境下温度场分布特性研究的试验装置及方法
CN107463720A (zh) * 2017-03-17 2017-12-12 浙江工业大学 一种评估多层薄膜膜基结合强度的方法
CN107858647B (zh) * 2017-11-09 2019-10-25 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN108256244A (zh) * 2018-01-23 2018-07-06 武汉理工大学 一种考虑后刀面磨损的涂层刀具稳态温度场预测方法
CN108932392B (zh) * 2018-07-13 2023-05-26 湖南科技大学 基于改进三重互易边界元法的瞬态温度计算方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787179A (zh) * 2016-02-29 2016-07-20 上海交通大学 用于碳纤维增强单向层合板二维切削温度的建模方法

Also Published As

Publication number Publication date
CN110069837A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
de Monte Transient heat conduction in one-dimensional composite slab. A ‘natural’analytic approach
Varol et al. Entropy generation due to conjugate natural convection in enclosures bounded by vertical solid walls with different thicknesses
Murashov et al. Numerical modelling of contact heat transfer problem with work hardened rough surfaces
Li et al. Transition to chaos in electro-thermo-convection of a dielectric liquid in a square cavity
Alsabery et al. Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model
CN103886165B (zh) 一种电磁材料层状壳体电磁弹耦合仿真模拟方法
Gao et al. Computing multiple ABC index and multiple GA index of some grid graphs
Khan et al. Effect of magnetic field and heat source on upper-convected-maxwell fluid in a porous channel
Yun et al. Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions
CN111079337A (zh) 一种质子交换膜燃料电池多物理场耦合模拟方法
Hussain et al. Thermal conductivity of composite building materials: A pore scale modeling approach
Zhang et al. An improved meshless method with almost interpolation property for isotropic heat conduction problems
Wierzcholski et al. Electro-magneto-hydrodynamic lubrication
Berkan et al. Analytical investigation of steady three-dimensional problem of condensation film on inclined rotating disk by Akbari-Ganji's methodAnalytical investigation of steady three-dimensional problem of condensation film on inclined rotating disk by Akbari-Ganji's methodretain--
Bai et al. Quick estimate of effective thermal conductivity for fluid-saturated metal frame and prismatic cellular structures
Samian et al. Transient conduction simulation of a nano-scale hotspot using finite volume lattice Boltzmann method
CN110069837B (zh) 横观各向同性多层涂层体系三维温度场的求解方法
He et al. LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode
Ghiasi et al. Constructing analytic solutions on the Tricomi equation
CN110032787B (zh) 各向同性多层涂层体系二维温度场的求解方法
Xu et al. Forecast of thermal harvesting performance under multi-parameter interaction with response surface methodology
Malekzadeh et al. Three-dimensional thermoelastic analysis of finite length laminated cylindrical panels with functionally graded layers
Cinat et al. Identification of roughness with optimal contact response with respect to real contact area and normal stiffness
Oulaid et al. Accurate boundary treatments for lattice Boltzmann simulations of electric fields and electro-kinetic applications
Haghighi et al. Temperature control of functionally graded plates using a feedforward–feedback controller based on the inverse solution and proportional-derivative controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant