CN110029347A - 一种高热稳定性太阳能光热转换薄膜及其制备方法 - Google Patents

一种高热稳定性太阳能光热转换薄膜及其制备方法 Download PDF

Info

Publication number
CN110029347A
CN110029347A CN201910270076.9A CN201910270076A CN110029347A CN 110029347 A CN110029347 A CN 110029347A CN 201910270076 A CN201910270076 A CN 201910270076A CN 110029347 A CN110029347 A CN 110029347A
Authority
CN
China
Prior art keywords
film
layer
metal
solar energy
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910270076.9A
Other languages
English (en)
Inventor
胡二涛
吴莹
韦玮
蔡清元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910270076.9A priority Critical patent/CN110029347A/zh
Publication of CN110029347A publication Critical patent/CN110029347A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

本发明公开了一种高热稳定性太阳能光热转换薄膜及其制备方法,该薄膜包括自下而上依序设置的金属红外高反射层、扩散阻挡层与光吸收层,所述金属红外高反层为Cu薄膜;所述扩散阻挡层为Al2O3薄膜;所述光吸收层为金属/介质多层膜或金属陶瓷多层膜。该薄膜在具有良好的光谱选择性的同时,还具有在500℃下光谱特性与结构特性基本保持不变的优点,可广泛应用于太阳能中/高温光热利用领域。此外,该制备方法易于实现与推广。

Description

一种高热稳定性太阳能光热转换薄膜及其制备方法
技术领域
本发明涉及一种太阳能光热转换薄膜,具体的说是一种高热稳定性太阳能光热转换薄膜及其制备方法,属于太阳能光热利用技术领域。
背景技术
能源危机与环境恶化是21世纪人类面临的两大严峻的问题,依照目前人类对能源的需求,化石燃料资源将在2050年至2100年间严重枯竭。在能源危机日益严重的大背景下,世界各国研究者对太阳能光热利用进行了广泛而又深入的研究。在太阳能光热利用领域,平板型太阳能集热器因其具有结构简单、运行可靠、承载能力强、吸热面积大、安全性好、成本低廉等优点,成为太阳能光热利用技术中重要的一部分。近年来,随着太阳能光热利用技术应用的日益推进,平板型太阳能集热器的优势更加凸显,相关产业的发展速度也随之大幅提高。
太阳能光热转换薄膜是平板型太阳能集热器中必不可少的部件,同时也是太阳光热利用的核心技术。其特点是在太阳光谱范围内具有较高的吸收率、在红外区域具有很低的热辐射率,即尽可能多地吸收太阳辐射,同时能够很好地抑制红外辐射。因此,太阳能光热转换薄膜能够将低能量密度的太阳能转换成高能量密度的热能,将太阳能富集起来,提高太阳能的光热转换效率。值得一提的是,平板型太阳能集热器的工作环境决定了太阳能光热转换薄膜需要具备光学和结构性能长期稳定的性质。
从低温区域向中/高温区域迈进是太阳能光热转换薄膜应用的发展方向,然而,受限于太阳能光热转换薄膜的热稳定性较差这一技术瓶颈,实际应用中太阳能光热利用仍然集中在中/低温区域。例如,Al-N/Al渐变薄膜与SS-AlN干涉吸收薄膜在高温环境下的稳定性不佳,不能满足太阳能光热利用技术朝中/高温区域发展的需求。因此,目前对于太阳能光热转换薄膜的研究主要集中在提高薄膜的耐受温度与长期处于高温环境下的稳定性这两方面。
目前,太阳能光热转换薄膜的制备工艺主要有溅射、涂料涂敷、电镀、热蒸发、化学气相沉积等。其中,溅射方法是较为广泛使用的制备方法。但通过溅射法制备的薄膜,其微观结构通常为柱状颗粒结构,因而薄膜致密性较差。在高温情况下,柱状颗粒间容易出现裂隙,从而引起太阳能光热转换薄膜结构中底层活泼的反射层金属原子向外扩散,形成金属氧化物,从而破坏薄膜的光学性能和结构性能。
发明内容
为克服上述现有技术的不足,本发明提供了一种高热稳定性太阳能光热转换薄膜及其制备方法,目的在于解决太阳能光热薄膜难以长期工作在中/高温区的问题。该薄膜在具有良好的光谱选择性的同时,还具有在500℃下光谱特性与结构特性基本保持不变的优点,可广泛应用于太阳能中/高温光热利用领域。此外,该制备方法易于实现与推广。
为实现上述目的,本发明所采用的技术方案如下:
一种高热稳定性太阳能光热转换薄膜,包括自下而上依序设置的金属红外高反射层、扩散阻挡层与光吸收层,所述金属红外高反层为Cu薄膜;所述扩散阻挡层为Al2O3薄膜;所述光吸收层为金属/介质多层膜或金属陶瓷多层膜。
作为本发明的进一步技术方案,所述阻挡层薄膜厚度为50nm-80nm。
进一步的,所述金属红外高反层厚度大于100nm。
进一步的,当所述光吸收层为金属/介质多层膜时,所述光吸收层包括交替堆叠设置的金属层和介质层,所述金属层的金属为Cr、Ti、W、Mo中的一种,所述介质层的介质为SiO2、Al2O3、MgF2、Cr2O3中的一种。
进一步的,当所述光吸收层为金属陶瓷多层膜时,所述金属陶瓷多层膜中的金属为Cr、Ti、W、Mo中的一种,介质为SiO2、Al2O3、MgF2、Cr2O3中的一种。
进一步的,所述光吸收层的厚度为80nm-400nm。
本发明还公开了所述的高热稳定性太阳能光热转换薄膜的制备方法,包括以下制备步骤:
步骤一、采用直流磁控溅射法在衬底上沉积Cu薄膜,作为金属红外高反层;
步骤二、采用原子层沉积法在Cu薄膜上沉积Al2O3薄膜,作为扩散阻挡层;
步骤三、在Al2O3薄膜上,采用直流磁控溅射法沉积金属层,采用射频溅射方法制备介质层,采用直流和射频共溅射方法或采用反应溅射方法制备金属陶瓷膜,作为光吸收层。
进一步的,所述步骤一中,沉积Cu薄膜采用纯度≥99.5%的金属Cu靶材;真空腔内工作气体为高纯Ar气,气体流量和生长真空固定。
进一步的,所述步骤二中,使用三甲基铝和水作为生长前驱源,使用纯度≥99.9%的N2作为载气,通过至少两个周期循环沉积Al2O3薄膜。
进一步的,所述步骤三中,对于金属/介质多层膜,沉积金属薄膜采用纯度≥99.5%的金属靶材,沉积介质薄膜采用纯度≥99.5%的介质靶材,真空腔内工作气体均为高纯Ar气,气体流量和生长真空固定;对于金属陶瓷多层膜,采用纯度为≥99.5%的金属靶材与介质靶材共溅射,或采用纯度≥99.5%的金属靶材,与纯度≥99.9%的氧气或氮气及二者组合反应溅射。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:薄膜在0.3-2.5 μm波段的光吸收率≥95%,在100 ℃温度下热辐射率≤0.05,即具有较高的光吸收率与较低的热辐射率。此外,薄膜能够在500 ℃的温度环境下,长期保持良好的薄膜结构与光谱选择性,即具有热稳定性高的突出优点,可广泛应用于太阳能中/高温光热利用领域。
附图说明
图1为本发明的一种高热稳定性太阳能光热转换薄膜的结构示意图。
图2为实施例1在制备态下0.3-25.0 μm波段的反射光谱。
图3为实施例1中的薄膜在500℃、真空度为4 Pa的环境下热处理72 小时后,0.3-25.0 μm波段的反射光谱。
图4为实施例1置于500 ℃不同时间后,在0.3-3.0 μm波段的反射光谱。具体实施方式
以下便结合实施例附图,对发明的具体实施方式作进一步的详述,以使本发明技术方案更易于理解、掌握。
如图1所示,本发明公开了一种高热稳定性太阳能光热转换薄膜,包括自下而上依序设置的金属红外高反射层、扩散阻挡层与光吸收层,所述金属红外高反层为Cu薄膜;所述扩散阻挡层为Al2O3薄膜;所述光吸收层为金属/介质多层膜或金属陶瓷多层膜。所述阻挡层薄膜厚度为50nm-80nm。所述金属红外高反层材料厚度大于100nm。所述光吸收层为金属/介质多层膜时,金属为Cr、Ti、W、Mo中的一种,介质为SiO2、Al2O3、MgF2、Cr2O3中的一种或多种的组合。光吸收层的厚度为80nm-400nm。所述光吸收层为金属陶瓷多层膜时,所述金属陶瓷层中的金属为Cr、Ti、W、Mo中的一种,介质为SiO2、Al2O3、MgF2、Cr2O3中的一种。
其中,过渡金属Cr、Ti、W、Mo具有较高的热稳定性与良好的光谱性能;SiO2具有性质稳定、透明性好、折射率低、成本低廉的特点。
Cu具有较高的热导率与良好的红外反射特性,因此将其选择作为金属红外高反层材料。然而,Cu原子在高温下较为活泼、流动性强,在光热薄膜结构中容易发生向外扩散,形成氧化铜并破坏薄膜的结构与性能。
在本发明技术方案中,引入使用原子层沉积法制备的Al2O3薄膜作为阻挡层,防止红外反射层Cu原子在高温下向上层扩散。与此同时,Al2O3薄膜起到通过振幅、相位匹配,滤除从吸收层中出射的中远红外光的作用。该Al2O3阻挡层薄膜厚度为50-80 nm。
实施例1:
高热稳定性太阳能光热转换薄膜,其薄膜具体结构自下而上分别是:Cu(300nm)/Al2O3(62nm)/Cr(18nm)/SiO2(68nm)/Cr(4nm)/SiO2(85nm),其中,光吸收层由Cr与SiO2薄膜交替堆叠构成。
实施例2:
高热稳定性太阳能光热转换薄膜,其薄膜具体结构自下而上分别是:Cu(300nm)/Al2O3(50nm)/Cr(8nm)/SiO2(94nm)/Cr(4nm)/SiO2(68nm),其中,光吸收层由Cr与SiO2薄膜交替堆叠构成。
实施例3:
高热稳定性太阳能光热转换薄膜,其薄膜具体结构自下而上分别是:Cu(300nm)/Al2O3(80nm)/Cr(7nm)/SiO2(78nm)/Cr(4nm)/SiO2(71nm),其中,光吸收层由Cr与SiO2薄膜交替堆叠构成。
各层薄膜厚度的选择依据是:各膜层的光学常数及厚度组合使整个薄膜结构在0.3-2.5 μm波长区,太阳光吸收率≥95%,在0.3-25.0 μm波长区和100 ℃条件下,热辐射率<0.05。
本发明还公开了所述的高热稳定性太阳能光热转换薄膜的制备方法,其特征在于包括以下制备步骤:
步骤一、采用直流磁控溅射法在衬底上沉积金属Cu膜,作为金属红外高反层;
步骤二、采用原子层沉积法在Cu薄膜上沉积Al2O3薄膜,作为扩散阻挡层;
步骤三、在Al2O3薄膜上,采用直流磁控溅射法沉积金属层,采用射频溅射方法制备介质层,采用直流和射频共溅射方法或采用反应溅射方法制备金属陶瓷膜,作为光吸收层。
所述步骤一中,沉积Cu薄膜采用纯度≥99.5%的金属Cu靶材;真空腔内工作气体均为高纯Ar气,气体流量和生长真空固定。
所述步骤二中,Al2O3薄膜采用原子层沉积方法,使用三甲基铝TMA+H2O作为生长前驱源,使用纯度≥99.9%的N2作为载气,通过多个周期循环沉积Al2O3薄膜。所制备的Al2O3薄膜能够有效防止红外反射层金属原子在高温下向外扩散、在薄膜表面形成金属氧化物。
所述步骤三中,对于金属/介质多层膜,沉积金属薄膜采用纯度≥99.5%的金属靶材,沉积介质薄膜采用纯度≥99.5%的介质靶材,真空腔内工作气体均为高纯Ar气,气体流量和生长真空固定。对于金属陶瓷多层膜,采用纯度为≥99.5%的金属靶材与介质靶材共溅射,或采用纯度≥99.5%的金属靶材,与纯度≥99.9%的氧气或氮气及二者组合反应溅射。
实施例1中的薄膜具体制备步骤如下:
(1)将干燥洁净的衬底放入反应室,将真空度抽至1 mtorr,设置衬底温度为100 ℃,以10 sccm的流速通入高纯Ar气,采用纯度为99.99%的金属Cu靶,以100 W功率直流磁控溅射沉积300 nm Cu薄膜,作为金属红外高反层。
(2)采用原子层沉积法,使用三甲基铝和水作为生长前驱源,使用纯度为99.999%的N2作为载气,在150 ℃、0.9 mbar下通过600个周期循环在Cu薄膜上沉积62nmAl2O3薄膜,作为扩散阻挡层。
(3)在流速为10 sccm高纯Ar气氛中,在衬底加热温度为100 ℃条件下,采用纯度为99.99%的金属Cr靶,以30 W功率直流磁控溅射,在Al2O3薄膜上沉积18 nm Cr薄膜;在相同的沉积室条件下,采用纯度为99.99%的SiO2靶,以150 W功率射频磁控溅射,在Cr薄膜上沉积68 nm SiO2薄膜;在相同的沉积室条件下,采用纯度为99.99%的金属Cr靶,以30 W功率直流磁控溅射,在SiO2薄膜上沉积4 nm金属Cr薄膜;在相同的沉积室条件下,采用纯度为99.99%SiO2靶,以150 W功率射频磁控溅射,在Cr薄膜上沉积85nmSiO2薄膜,由此制备出金属/介质多层光吸收层。
通过上述制备方法获得的太阳能光热转换薄膜,实验样品在室温下表观呈深黑色。图2为制备态样品在0.3-25.0 μm波长区的反射光谱。薄膜在0.3-2.5 μm波段的太阳光吸收率高达95.4%,在100 ℃温度下热辐射率为0.03,即具有较高的光吸收率与较低的热辐射率。薄膜在温度为500℃、真空度为4 Pa的环境下处理72h后,实验样品表面无明显变化。
图3为实施例1中的薄膜在500℃、真空度为4 Pa的环境下,热处理72 h后,0.3-25.0 μm波段的反射光谱,图3表明该薄膜能够在500 ℃的温度环境下保持良好光谱选择性。图4为实施例1中的薄膜品置于500℃不同时间后,在0.3-3.0 μm波段的反射光谱。图4表明实施例1中的薄膜在500℃环境下,在开始的2个小时内,样品的光谱性质略微改变,但此后光谱性能保持稳定。
实施例2中的薄膜具体制备步骤如下:
(1)将干燥洁净的衬底放入反应室,将真空度抽至1 mtorr,设置衬底温度为100 ℃,以10 sccm的流速通入高纯Ar气,采用纯度为99.99%的金属Cu靶,以100 W功率直流磁控溅射沉积300 nm Cu薄膜,作为金属红外高反层。
(2)采用原子层沉积法,使用三甲基铝和水作为生长前驱源,使用纯度为99.999%的N2作为载气,在150 ℃、0.9 mbar下通过500个周期循环在Cu薄膜上沉积50nmAl2O3薄膜,作为扩散阻挡层。
(3)在流速为10 sccm高纯Ar气氛中,在衬底加热温度为100 ℃条件下,采用纯度为99.99%的金属Cr靶,以30 W功率直流磁控溅射,在Al2O3薄膜上沉积8 nm Cr薄膜;在相同的沉积室条件下,采用纯度为99.99%的SiO2靶,以150 W功率射频磁控溅射,在Cr薄膜上沉积94 nm SiO2薄膜;在相同的沉积室条件下,采用纯度为99.99%的金属Cr靶,以30 W功率直流磁控溅射,在SiO2薄膜上沉积4 nm金属Cr薄膜;在相同的沉积室条件下,采用纯度为99.99%SiO2靶,以150 W功率射频磁控溅射,在Cr薄膜上沉积68nmSiO2薄膜,由此制备出金属/介质多层光吸收层。
通过上述制备方法获得的太阳能光热转换薄膜,实验样品在室温下表观呈深黑色。薄膜在0.3-2.5 μm波段的太阳光吸收率高达95.0%,在100 ℃温度下热辐射率为0.019,即具有较高的光吸收率与较低的热辐射率。
实施例3中的薄膜具体制备步骤如下:
(1)将干燥洁净的衬底放入反应室,将真空度抽至1 mtorr,设置衬底温度为100 ℃,以10 sccm的流速通入高纯Ar气,采用纯度为99.99%的金属Cu靶,以100 W功率直流磁控溅射沉积300 nm Cu薄膜,作为金属红外高反层。
(2)采用原子层沉积法,使用三甲基铝和水作为生长前驱源,使用纯度为99.999%的N2作为载气,在150 ℃、0.9 mbar下通过800个周期循环在Cu薄膜上沉积80nmAl2O3薄膜,作为扩散阻挡层。
(3)在流速为10 sccm高纯Ar气氛中,在衬底加热温度为100 ℃条件下,采用纯度为99.99%的金属Cr靶,以30 W功率直流磁控溅射,在Al2O3薄膜上沉积7 nm Cr薄膜;在相同的沉积室条件下,采用纯度为99.99%的SiO2靶,以150 W功率射频磁控溅射,在Cr薄膜上沉积77 nm SiO2薄膜;在相同的沉积室条件下,采用纯度为99.99%的金属Cr靶,以30 W功率直流磁控溅射,在SiO2薄膜上沉积4 nm金属Cr薄膜;在相同的沉积室条件下,采用纯度为99.99%SiO2靶,以150 W功率射频磁控溅射,在Cr薄膜上沉积71nmSiO2薄膜,由此制备出金属/介质多层光吸收层。
通过上述制备方法获得的太阳能光热转换薄膜,实验样品在室温下表观呈深黑色。薄膜在0.3-2.5 μm波段的太阳光吸收率高达95.0%,在100 ℃温度下热辐射率为0.019,即具有较高的光吸收率与较低的热辐射率。
综合实验结果来看,本发明具有良好的热学稳定性,具备在500℃环境下长期工作的能力。
综上所述,本发明公开的一种高热稳定性太阳能光热转换薄膜在0.3-2.5 μm波段的光吸收率≥95%,在100 ℃温度下热辐射率≤0.05,即具有较高的光吸收率与较低的热辐射率。此外,该薄膜能够在500 ℃的温度环境下,长期保持良好的薄膜结构与光谱选择性,即具有热稳定性高的突出优点,可广泛应用于太阳能中/高温光热利用领域。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

1.一种高热稳定性太阳能光热转换薄膜,其特征在于:包括自下而上依序设置的金属红外高反射层、扩散阻挡层与光吸收层,所述金属红外高反层为Cu薄膜;所述扩散阻挡层为Al2O3薄膜;所述光吸收层为金属/介质多层膜或金属陶瓷多层膜。
2.根据权利要求1所述的一种高热稳定性太阳能光热转换薄膜,其特征在于:所述阻挡层薄膜厚度为50nm-80nm。
3.根据权利要求1所述的一种高热稳定性太阳能光热转换薄膜,其特征在于:所述金属红外高反层厚度大于100nm。
4.根据权利要求1所述的一种高热稳定性太阳能光热转换薄膜,其特征在于:当所述光吸收层为金属/介质多层膜时,所述光吸收层包括交替堆叠设置的金属层和介质层,所述金属层的金属为Cr、Ti、W、Mo中的一种,所述介质层的介质为SiO2、Al2O3、MgF2、Cr2O3中的一种。
5.根据权利要求1所述的一种高热稳定性太阳能光热转换薄膜,其特征在于:当所述光吸收层为金属陶瓷多层膜时,所述金属陶瓷多层膜中的金属为Cr、Ti、W、Mo中的一种,介质为SiO2、Al2O3、MgF2、Cr2O3中的一种。
6.根据权利要求1所述的一种高热稳定性太阳能光热转换薄膜,其特征在于:所述光吸收层的厚度为80nm-400nm。
7.一种权利要求1-6中任一所述的一种高热稳定性太阳能光热转换薄膜的制备方法,其特征在于包括以下制备步骤:
步骤一、采用直流磁控溅射法在衬底上沉积Cu薄膜,作为金属红外高反射层;
步骤二、采用原子层沉积法在Cu薄膜上沉积Al2O3薄膜,作为扩散阻挡层;
步骤三、在Al2O3薄膜上,采用直流磁控溅射法沉积金属层,采用射频溅射方法制备介质层,形成金属/介质多层膜;采用直流和射频共溅射方法或采用反应溅射方法制备金属陶瓷膜,作为光吸收层。
8.根据权利要求7所述的高热稳定性太阳能光热转换薄膜的制备方法,其特征在于:所述步骤一中,沉积Cu薄膜采用纯度≥99.5%的金属Cu靶材;真空腔内工作气体为高纯Ar气,气体流量和生长真空固定。
9.根据权利要求7所述的高热稳定性太阳能光热转换薄膜的制备方法,其特征在于:所述步骤二中,使用三甲基铝和水作为生长前驱源,使用纯度≥99.9%的N2作为载气,通过至少两个周期循环沉积Al2O3薄膜。
10.根据权利要求7所述的高热稳定性太阳能光热转换薄膜的制备方法,其特征在于:所述步骤三中,对于金属/介质多层膜,沉积金属薄膜采用纯度≥99.5%的金属靶材,沉积介质薄膜采用纯度≥99.5%的介质靶材,真空腔内工作气体均为高纯Ar气,气体流量和生长真空固定;对于金属陶瓷多层膜,采用纯度为≥99.5%的金属靶材与介质靶材共溅射,或采用纯度≥99.5%的金属靶材,与纯度≥99.9%的氧气或氮气及二者组合反应溅射。
CN201910270076.9A 2019-04-04 2019-04-04 一种高热稳定性太阳能光热转换薄膜及其制备方法 Pending CN110029347A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910270076.9A CN110029347A (zh) 2019-04-04 2019-04-04 一种高热稳定性太阳能光热转换薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910270076.9A CN110029347A (zh) 2019-04-04 2019-04-04 一种高热稳定性太阳能光热转换薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN110029347A true CN110029347A (zh) 2019-07-19

Family

ID=67237530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910270076.9A Pending CN110029347A (zh) 2019-04-04 2019-04-04 一种高热稳定性太阳能光热转换薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110029347A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092327A2 (de) * 2010-02-01 2011-08-04 Robert Bosch Gmbh Iii-v-halbleiter-solarzelle
US20110186103A1 (en) * 2010-02-01 2011-08-04 Fujifilm Corporation Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
CN102620456A (zh) * 2012-04-06 2012-08-01 中国科学院宁波材料技术与工程研究所 一种中低温太阳能选择吸收薄膜及其制备方法
CN103029374A (zh) * 2011-09-30 2013-04-10 中国科学院大连化学物理研究所 一种中高温太阳能光热选择性吸收涂层
CN103317788A (zh) * 2012-11-30 2013-09-25 北京天瑞星光热技术有限公司 一种光谱选择性吸收涂层及其制备方法
CN103625032A (zh) * 2012-08-27 2014-03-12 中国科学院大连化学物理研究所 一种中高温太阳能光热选择性吸收涂层
CN107314559A (zh) * 2017-06-14 2017-11-03 常州大成绿色镀膜科技有限公司 光热转换涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092327A2 (de) * 2010-02-01 2011-08-04 Robert Bosch Gmbh Iii-v-halbleiter-solarzelle
US20110186103A1 (en) * 2010-02-01 2011-08-04 Fujifilm Corporation Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
CN103029374A (zh) * 2011-09-30 2013-04-10 中国科学院大连化学物理研究所 一种中高温太阳能光热选择性吸收涂层
CN102620456A (zh) * 2012-04-06 2012-08-01 中国科学院宁波材料技术与工程研究所 一种中低温太阳能选择吸收薄膜及其制备方法
CN103625032A (zh) * 2012-08-27 2014-03-12 中国科学院大连化学物理研究所 一种中高温太阳能光热选择性吸收涂层
CN103317788A (zh) * 2012-11-30 2013-09-25 北京天瑞星光热技术有限公司 一种光谱选择性吸收涂层及其制备方法
CN107314559A (zh) * 2017-06-14 2017-11-03 常州大成绿色镀膜科技有限公司 光热转换涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN101408354B (zh) 太阳能选择性吸收涂层及其制备方法
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN103032978B (zh) 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN103625032A (zh) 一种中高温太阳能光热选择性吸收涂层
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN100532997C (zh) 一种太阳能选择性吸收涂层及其制备方法
CN107270564B (zh) 一种太阳光热吸收涂层
Ning et al. NiCrAlO/Al2O3 solar selective coating prepared by direct current magnetron sputtering and water boiling
CN100343413C (zh) 一种太阳能选择性吸收涂层及其制备方法
CN204535163U (zh) 一种太阳光谱选择性吸收涂层和集热器
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN109338297B (zh) 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法
CN111172506A (zh) 一种Ti掺杂氧化钛复合太阳能选择性吸收涂层及其制备方法
CN201539995U (zh) 钽金属掺杂的氮化钛金属陶瓷薄膜
CN102305484A (zh) 具有陷光结构的太阳能集热管
CN102615878A (zh) 一种中高温太阳能选择性吸收涂层及其制备方法
CN110634966B (zh) 一种超薄太阳光黑硅吸波器及其制备方法
CN102615879B (zh) NiCr系平板太阳能光谱选择性吸收涂层及其制备方法
CN109338295B (zh) 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
CN110029347A (zh) 一种高热稳定性太阳能光热转换薄膜及其制备方法
CN106568207B (zh) 高温太阳光谱选择性吸收涂层及其制备方法
Melamed et al. Survey of selective absorber coatings for solar energy technology
CN109883073B (zh) 准光学微腔结构太阳光谱选择性吸收涂层及其制备方法
CN112011777B (zh) 一种具有尖晶石结构的高温太阳能吸收涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190719

RJ01 Rejection of invention patent application after publication