CN110021615B - 阵列基板、包括其的数字x射线检测器及其制造方法 - Google Patents

阵列基板、包括其的数字x射线检测器及其制造方法 Download PDF

Info

Publication number
CN110021615B
CN110021615B CN201811444296.0A CN201811444296A CN110021615B CN 110021615 B CN110021615 B CN 110021615B CN 201811444296 A CN201811444296 A CN 201811444296A CN 110021615 B CN110021615 B CN 110021615B
Authority
CN
China
Prior art keywords
region
active layer
electrode
layer
pin diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811444296.0A
Other languages
English (en)
Other versions
CN110021615A (zh
Inventor
罗炯壹
金廷俊
李汉锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Publication of CN110021615A publication Critical patent/CN110021615A/zh
Application granted granted Critical
Publication of CN110021615B publication Critical patent/CN110021615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Medical Informatics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

公开了一种用于数字X射线检测器的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。阵列基板减小PIN二极管的台阶差,从下部去除弯曲部分以减少PIN二极管的特性劣化,并增加PIN二极管的形成区域的尺寸以增加填充因子。为此,阵列基板使得包括在薄膜晶体管中的有源层的源极区与PIN二极管的下电极表面接触,并将下电极设置在平坦化的源极区或基底基板上方,使得可以减小PIN二极管的台阶差并且提高填充因子。

Description

阵列基板、包括其的数字X射线检测器及其制造方法
本申请要求于2017年12月5日提交的韩国专利申请第10-2017-0165780号的权益,其如同在本文中完全阐述一样通过引用并入本文。技术领域
本公开内容涉及用于数字X射线检测器的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。
背景技术
数字X射线检测器(DXD)是指能够检测穿过对象的X射线的透射量(例如,透射率)并且在显示器上显示该对象的内部图像的设备。随着数字技术的快速发展,最近已经开发了基于薄膜晶体管(TFT)的数字X射线检测器,并且该数字X射线检测器迅速投入医疗应用。
通常,数字X射线检测器被设计成根据其尺寸或分辨率具有数千或数万个像素或者更多像素。参照图1,数字X射线检测器1的阵列基板10的每个单元可以包括被设置在基底基板11上方的薄膜晶体管20、连接至薄膜晶体管20的PIN二极管30以及被设置在阵列基板10上方的闪烁体50。
当X射线被发射至数字X射线检测器1时,闪烁体50将入射的X射线转换成可见光,以使得可见光被透射至PIN二极管30,PIN二极管30包括下电极31、PIN层33和上电极35。
被施加至PIN二极管30的可见光在PIN层33中被重新转换成电子信号。电子信号在穿过连接至PIN二极管30的下电极31的薄膜晶体管20之后被转换成图像信号,使得得到的图像信号被显示在显示器上。
同时,为了驱动PIN二极管30,用于向PIN二极管30施加电压的偏置电极40可以连接至PIN二极管30,并且偏置电极40可以设置在PIN二极管30上方,使得偏置电极40连接至PIN二极管30的上电极35。
然而,传统的数字X射线检测器的阵列基板具有以下缺点。
首先,PIN二极管30的大的台阶差可能使堆叠覆盖特性劣化,导致在保护层中形成裂纹。
参照图1,传统的数字X射线检测器的阵列基板可以在薄膜晶体管20上方形成第一保护层28,并且在第一保护层28上方可以形成PIN二极管30。在PIN二极管30上方可以形成有第二保护层37,形成在第二保护层37上方的偏置电极40可以连接至PIN二极管30,并且在偏置电极40上方可以形成有第三保护层43。
在这种情况下,第二保护层37和第三保护层43可以形成为覆盖PIN二极管30。在形成在PIN二极管30上方的区域的保护层中的每个保护层与其中没有形成PIN二极管30的其他区域的保护层中的每个保护层之间会出现对应于PIN二极管30的厚度的大的台阶差(t1)。
PIN二极管的这种大的台阶差使堆叠覆盖特性劣化并且在保护层之间引起台阶差,使得在图1的区域A中出现保护层的裂纹,导致特性劣化,例如增加的截止电流。
保护层之间的大的台阶差会影响设置在数字X射线检测器的上部的闪烁体50的沉积,并且还会增加X射线散射,导致调制传递函数(MTF)特性的劣化。
另外,PIN二极管30的下电极31通过第一保护层28的第二接触孔27连接至薄膜晶体管20的源电极22。在这种情况下,下电极31可以通过接触孔接触源电极22,使得下电极31形成为在其中具有弯曲部分(或弯折部分)。
以这种方式,如果PIN层33沉积在具有弯曲部分的下电极31上方,如图1的区域(B)所示,则PIN二极管30的下部区域也可能弯曲或弯折,使得可能出现诸如PIN二极管的截止电流增加的特性劣化。
在这种情况下,如果PIN二极管30仅形成在除了下电极31的弯曲部分之外的其余区域中以解决特性劣化问题,则PIN二极管的填充因子(即,孔径比)减小。换句话说,第一保护层的接触孔27(在区域B中示出)和层间绝缘层的接触孔25(在区域C中示出)被排除,并且在除了区域B和C之外的其余区域中形成PIN二极管,使得PIN二极管的填充因子可能减小与PIN二极管的减小区域一样多。
发明内容
因此,鉴于上述问题做出了本公开内容,并且本公开内容的目的是提供一种用于数字X射线检测器的、通过减小PIN二极管的台阶差来改善堆叠覆盖的阵列基板、包括该阵列基板的数字X射线检测器及制造该阵列基板的方法。
本公开内容的另一目的是提供一种用于数字X射线检测器的、使在闪烁体形成期间由PIN二极管的台阶差引起的特性劣化最小的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。
本公开内容的另一目的是提供一种用于数字X射线检测器的、通过去除PIN二极管的下部区域的弯曲部分来减少诸如PIN二极管的增加的截止电流的特性劣化的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。
本公开内容的另一目的是提供一种用于数字X射线检测器的、通过增加形成PIN二极管的区域的尺寸来增加填充因子的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。
本公开内容的另一目的是提供一种用于数字X射线检测器的、通过减少整体制造所需的掩模数目来提高制造效率的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。
本公开内容的目的不限于上述目的,并且本领域技术人员可以从以下描述中领会其他目的和优点。此外,将容易理解,本公开内容的目的和优点可以通过所附权利要求中记载的手段及其组合来实践。
本公开内容的各种实施方式涉及提供一种基本消除了由于现有技术的限制和缺点引起的一个或更多个问题的、用于数字X射线检测器的阵列基板、包括该阵列基板的数字X射线检测器以及用于制造该阵列基板的方法。
根据本公开内容的一个方面,用于数字X射线检测器的阵列基板包括:基底基板;形成在基底基板上方的有源层,所述有源层被配置成包括沟道区、源极区和漏极区,其中,源极区和漏极区分别形成在沟道区的一侧和另一侧;形成在有源层上方的与沟道区对应的栅极绝缘层;设置在栅极绝缘层上方的栅电极;形成在栅电极和漏极区上方的层间绝缘层,所述层间绝缘层被配置成包括与漏极区对应的接触孔;设置在层间绝缘层上方的漏电极,并且漏电极通过接触孔连接至有源层;以及PIN二极管,其中堆叠有下电极、PIN层和上电极,所述PIN二极管被配置成与有源层的源极区表面接触。
有源层的源极区可以与下电极的整个区域表面接触。下电极可以设置在有源层的源极区上方。结果,PIN二极管的台阶差减小,导致PIN二极管的特性劣化最小。
有源层的源极区可以与下电极的一些区域表面接触。下电极的不与有源层的源极区表面接触的剩余区域可以与有源层设置在同一层上方。结果,PIN二极管的台阶差减小,导致PIN二极管的特性劣化最小。
对应于PIN层的下电极可以被平坦化,使得PIN二极管的下部区域的弯曲部分被去除,导致PIN二极管的特性劣化最小。
有源层的源极区在尺寸上可以大于漏极区。如果PIN二极管形成在源极区上方,则PIN二极管的形成区域在尺寸上最大,导致填充因子增加。
根据本公开内容的另一方面,一种用于制造用于X射线检测器的阵列基板的方法包括以下步骤(i)至(v)。在第一步骤(i)中,用于制造阵列基板的方法包括:在基底基板上方形成有源层,该有源层具有沟道区以及分别形成在沟道区的一侧和另一侧的源极区和漏极区;以及在有源层上方形成与沟道区对应的绝缘层和栅电极。在第二步骤(ii)中,用于制造阵列基板的方法还包括形成覆盖栅电极和漏极区并具有与漏极区对应的第一接触孔的层间绝缘层。在第三步骤(iii)中,用于制造阵列基板的方法还包括:在层间绝缘层上方形成漏电极,所述漏电极通过第一接触孔连接至漏极区;以及在源极区上方形成下电极,以与有源层的源极区表面接触。在第四步骤(iv)中,用于制造阵列基板的方法还包括形成PIN二极管240,PIN二极管240具有在下电极上方的PIN层和上电极。在第五步骤(v)中,用于制造阵列基板的方法还包括在PIN二极管上方形成具有第二接触孔的保护层;以及在保护层上方形成通过第二接触孔连接至上电极245的偏置电极。
附图说明
图1是示出与传统数字X射线检测器中使用的单个像素区域对应的阵列基板的截面图。
图2是示出根据本公开内容的实施方式的数字X射线检测器的示意性框图。
图3是示出根据本公开内容的第一实施方式的与数字X射线检测器中使用的单个像素区域对应的阵列基板的俯视图。
图4是示出根据本公开内容的第一实施方式的用在数字X射线检测器中的阵列基板的沿着图3的线I-I'截取的截面图。
图5是示出根据本公开内容的第二实施方式的与数字X射线检测器中使用的单个像素区域对应的阵列基板的俯视图。
图6是示出根据本公开内容的第二实施方式的用在数字X射线检测器中的阵列基板的沿着图5的线II-II'截取的截面图。
图7A至图7I示出了根据本公开内容的第一实施方式的用于制造用于数字X射线检测器的阵列基板的方法。
图8A至图8I示出了根据本公开内容的第二实施方式的用于制造用于数字X射线检测器的阵列基板的方法。
具体实施方式
通过参照附图的详细描述,上述目的、特征和优点将变得明显。实施方式被充分详细地描述以使得本领域技术人员能够容易地实践本公开内容的技术思想。可以省略对公知功能或配置的详细描述以免不必要地模糊本公开内容的要点。在下文中,将参照附图详细描述本公开内容的实施方式。贯穿附图,相似的附图标记表示相似的元件。
在下文中,将参照附图描述本公开内容的实施方式。
在以下描述中,假设在特定构成元件的上方(之上)或下方(之下)形成另一构成元件,这意味着这两个构成元件彼此直接接触或者在这两个构成元件之间设置和形成一个或更多个其他的构成元件。另外,假设在特定构成元件之上或下方形成另一构成元件,这意味着也可以基于另一构成元件的位置在向上或向下的方向上布置该特定构成元件。
将理解的是,当一个元件被称为被“连接至”另一元件、“耦接至”另一元件或由另一元件“接入”时,尽管一个元件可以直接连接至另一元件或由另一元件直接接入,但是一个元件也可以经由其他元件“连接至”另一元件、“耦接至”另一元件或由另一元件“接入”。
图2是示出根据本公开的实施方式的数字X射线检测器的示意性平面图。参照图2,数字X射线检测器可以包括薄膜晶体管(TFT)阵列110、栅极驱动器130、偏置供应器140、电源电压供应器150、读出电路160和定时控制器170。
TFT阵列110可以感测从能量源发射的X射线,可以执行对感测信号的光电转换,因而可以输出电检测信号。在TFT阵列110中,每个单元区域不仅可以由沿水平方向布置的多条栅极线(GL)限定,而且还可以由沿垂直于水平方向的竖直方向布置的多条数据线(DL)限定。TFT阵列110的每个单元区域可以包括布置成矩阵的多个光敏像素(P)。
每个光敏像素(P)可以包括被配置成感测从X射线转换的光并且将感测到的光作为信号输出的PIN二极管以及被配置成传输响应于栅极信号从PIN二极管输出的检测信号的薄膜晶体管(TFT)。PIN二极管的一侧可以连接至薄膜晶体管(TFT),并且其另一侧可以连接至偏置线(BL)。
薄膜晶体管(TFT)的栅电极可以连接至栅极线(GL),扫描信号通过该栅极线(GL)传输,源电极可以连接至PIN二极管,并且漏电极可以连接至数据线(DL),检测信号通过该数据线(DL)传输。偏置线BL可以与数据线(DL)平行布置。
栅极驱动器130可以通过栅极线(GL)依次施加多个栅极信号,所述多个栅极信号中的每一个具有栅极导通电压电平。栅极驱动器130还可以通过多条复位线(RL)施加多个复位信号,所述多个复位信号中的每一个具有栅极导通电压电平。此处,栅极导通电压电平可以指光敏像素的薄膜晶体管可以被导通的电压电平。光敏像素的薄膜晶体管可以响应于栅极信号或复位信号而导通。
栅极驱动器130可以是集成电路(IC),使得栅极驱动器130可以组装于连接至TFT阵列110的外部基板上或者可以通过板内栅极(GIP)工艺形成在TFT阵列110上方。
偏置供应器140可以通过偏置线(BL)施加驱动电压。偏置供应器140可以将预定电压施加至PIN二极管。在这种情况下,偏置供应器140可以选择性地将反向偏置或正向偏置施加至PIN二极管。
电源电压供应器150可以通过电源电压线(VL)将电源电压供应至光敏像素。
读出电路160可以读出从薄膜晶体管(TFT)产生的检测信号,该薄膜晶体管(TFT)响应于栅极信号而导通。因此,从PIN二极管产生的检测信号可以通过数据线(DL)被输入至读出电路160。
读出电路160可以包括信号检测器、多路复用器等。信号检测器可以包括与数据线(DL)一一对应的多个放大电路,并且每个放大电路可以包括放大器、电容器、复位元件等。
为了控制栅极驱动器130,定时控制器170可以生成启动信号(STV)、时钟信号(CPV)等,并且可以将启动信号(STV)、时钟信号(CPV)等传输至栅极驱动器130。为了控制读出电路160,定时控制器170可以生成读出控制信号(ROC)、读出时钟信号(CLK)等,并且可以将读出控制信号(ROC)、读出时钟信号(CLK)等传输至读出电路160。
图3是示出根据本公开内容的第一实施方式的与数字X射线检测器中使用的单个像素区域对应的阵列基板的俯视图。图4是示出根据本公开内容的第一实施方式的用在数字X射线检测器中的阵列基板的沿着图3的线I-I'截取的截面图。下面将参照图3和图4对本公开内容的第一实施方式进行描述。
像素区域可以由沿一个方向布置的栅极线213与沿垂直于栅极线213的另一方向布置的数据线215的交叉区域来限定,并且像素区域中的每一个可以包括薄膜晶体管和PIN二极管240。
在基底基板211上方可以设置有有源层221。在这种情况下,在基底基板211与有源层221之间可以设置有缓冲层212。缓冲层212可以是由硅氧化物(SiOx)膜或硅氮化物(SiNx)膜形成的单层或多层结构。
尽管为了便于描述,实施方式已经示例性地公开了有源层221由氧化物半导体材料形成,但是本公开内容的范围或精神不限于此,并且在不脱离本公开内容的范围和精神的情况下,有源层221也可以由低温多晶硅(LTPS)或非晶硅(a-Si)形成。在这种情况下,氧化物半导体材料可以由基于铟镓锌氧化物(IGZO)的材料形成。
有源层221可以包括电子通过其移动的沟道区221a、以及分别形成在沟道区221a的两端处的源极区221b和漏极区221c。有源层221的源极区221b和漏极区221c可以用作导电区。在这种情况下,有源层221的源极区221b可以形成为具有比漏极区221c更大的区域,并且可以使整个有源层221平坦化。
在有源层221上方可以设置有栅极绝缘层222。栅极绝缘层222可以在有源层221与栅电极223之间执行绝缘,并且可以形成为由硅氧化物(SiOx)膜或硅氮化物(SiNx)膜形成的单层或多层结构。栅极绝缘层222可以设置成对应于有源层221的沟道区221a。
在栅极绝缘层222上方可以设置有从栅极线213延伸以与有源层221的沟道区221a对应的栅电极223。栅电极223可以形成为由导电材料形成的单层或多层结构。
在栅电极223上方可以形成有层间绝缘层225。层间绝缘层225可以由与栅极绝缘层222相同的材料形成。层间绝缘层225可以形成为覆盖栅电极223和有源层221的漏电极221c,并且可以暴露有源层221的源极区221b。然而,形成在有源层221的沟道区221a和源极区221b之间的边界区域附近的层间绝缘层225也可以形成为根据需要覆盖源极区221b的一些部分。在层间绝缘层225上方可以形成有与有源层221的漏极区221c对应的第一接触孔231。
由导电材料形成的漏电极233可以形成在层间绝缘层225上方,使得漏电极233可以通过借助于第一接触孔231接触有源层221的漏极区221c而电连接至有源层221的漏极区221c。
其中依次堆叠有下电极237、PIN层243和上电极245的PIN二极管240可以设置在有源层221的源极区221b上方,并且有源层221的源极区221b和PIN二极管240的下电极237可以彼此表面接触。也就是说,在漏极区221c中,漏电极233可以通过接触孔接触有源层221。相比之下,在源极区221b中,有源层221可以与PIN二极管240的下电极237表面接触而不通过接触孔接触PIN二极管240的下电极237。
根据PIN二极管240的特性,下电极237可以由诸如钼(Mo)的非透明金属或诸如铟锡氧化物(ITO)、铟锌氧化物(IZO)或锌氧化物(ZnO)的透明氧化物材料形成。
更详细地,PIN二极管240的下电极237可以设置在有源层221的源极区221b上方,使得下电极237的整个区域可以与有源层221的源极区221b表面接触。因此,有源层221的源极区221b必须具有与PIN二极管240的区域对应的足够大小的区域,并且有源层221的源极区221b在长度和宽度上可以大于漏极区221c。优选地,如图3所示,有源层221的源极区221b的平面区域可以等于或大于PIN二极管240的平面区域。
在平坦化的有源层221上方可以形成与PIN二极管240的PIN层243对应的下电极237,使得PIN二极管240的整个下部区域可以被平坦化而其中没有弯曲区域。
PIN二极管240的下电极237可以用作连接至有源层221的源极区221b的源电极,使得源电极和PIN二极管240的下电极237可以形成为单个电极。因此,有源层221、栅电极223、漏电极233和PIN二极管240的下电极237(用作源电极)可以用作单个薄膜晶体管。
如上所述,假设PIN二极管的下电极与平坦化的有源区的源极区表面接触,可以获得以下效果。
PIN二极管240的下电极237与平坦化有源层221的源极区221b表面接触,而不通过接触孔连接至源极区221b,使得下电极237也可以被平坦化。因此,可以使由于PIN二极管240的下部区域的弯曲部分而引起的PIN二极管的截止电流增加的特性劣化最小。
根据相关技术,由于在源电极通过源极区内的接触孔接触有源层时PIN二极管的特性劣化,因此PIN二极管不形成在弯曲的接触孔区域中,使得填充因子由于没有PIN二极管的区域的尺寸而减小。
相比之下,根据本公开内容,有源层221与源电极所对应的PIN二极管240的下电极237表面接触,使得尽管PIN二极管240形成在常规接触孔区域中,但不会发生特性劣化。因此,本公开内容可以增加其中形成PIN二极管240的区域的尺寸,使得整体填充因子增加。
其中依次堆叠有具有N型杂质的N型(负)半导体层、不具有杂质的本征(I型)半导体层和包括P型杂质的P型(正)半导体层的PIN层243可以设置在下电极237上方。
与N型半导体层和P型半导体相比,本征(I型)半导体层可以形成为具有更大的厚度。PIN层243可以包括能够将从能量源发射的X射线转换成电信号的材料。例如,PIN层243可以包括非晶硒(a-Se)、碘化汞(HgI2)、碲化镉(CdTe)、氧化铅(PbO)、碘化铅(PbI2)、三碘化铋(BiI3)、砷化镓(GaAs)、锗(Ge)等。
上电极245可以设置在PIN层243上方,使得PIN二极管240与下电极237和PIN层243一起构造。上电极245可以由诸如铟锡氧化物(ITO)、铟锌氧化物(IZO)或锌氧化物(ZnO)的透明导电材料形成以提高闪烁体290的光透射效率,闪烁体290接收X射线并且执行X射线的波长的转换。
在PIN二极管240上方可以形成有形成为覆盖PIN二极管240和漏电极233的第一保护层250。第一保护层250可以形成为跨基底基板211的整个表面,并且可以是由硅氧化物(SiOx)膜或硅氮化物(SiNx)膜形成的单层或多层结构。
在PIN二极管240的第一保护层250中可以形成有第二接触孔251。在第一保护层250上方可以形成有偏置电极260,使得偏置电极260可以通过第二接触孔251连接至PIN二极管240的上电极245。
在这种情况下,偏置电极260可以设置为不与有源层221的沟道区221a交叠。根据本公开内容的薄膜晶体管具有顶栅共面结构,使得栅电极223可以保护有源层221的沟道区221a。
具体地,根据本公开内容的用于数字X射线检测器的阵列基板201暴露于X射线,使得需要能够防止沟道区221a暴露于X射线的保护层。
也就是说,栅电极223用作防止有源层221的沟道区221a暴露于X射线的保护层,使得偏置电极260不需要另外覆盖有源层221的沟道区221a。因此,偏置电极260必须占据PIN二极管240的一些区域,使得可以提高PIN二极管240的填充因子。
相比之下,例如,根据底栅的BCE结构,其中栅电极设置在有源层下方,有源层的沟道区暴露于X射线,使得需要能够保护沟道区的另外的保护层。
在这种情况下,连接至PIN二极管的偏置电极用作保护层,使得偏置电极从PIN二极管延伸到有源层的沟道区,使得所得的偏置电极形成为覆盖沟道区的上部部分。因此,形成为与偏置电极交叠的PIN二极管的上部区域的尺寸增大,导致PIN二极管的填充因子减小。
在偏置电极260上方形成有第二保护层270。第二保护层270可以形成为跨基底基板211的整个表面以覆盖第一保护层250。在这种情况下,如图4所示,可以确认用于阵列基板201的第二保护层270的台阶差(t2)比相关技术小得多。
也就是说,如图4所示,根据本公开内容的薄膜晶体管和PIN二极管240形成在相同区域中,使得PIN二极管240的台阶差减小,并且第二保护层270的台阶差也可以减小。由于台阶差的减小,堆叠覆盖得到改善,使得第二保护层270中的裂纹的数目最小并且PIN二极管240的截止电流减小,导致使PIN二极管240的特性劣化最小。
当在第二保护层270上方形成有闪烁体290时,根据PIN二极管240的台阶差的减小,第二保护层270的台阶差减小可以使得立即形成闪烁体290而不形成另外的平坦化层280。
也就是说,PIN二极管240的台阶差减小可以在形成闪烁体290之前不使用分立的平坦化工艺的情况下保证闪烁体290的特性。另外,减少了由根据相关技术的大的台阶差引起的X射线散射,使得可以改善MTF(调制传递函数)特性。
然而,根据需要,也可以在第二保护层270与闪烁体290之间另外形成平坦化层280。
图5是示出根据本公开内容的第二实施方式的与数字X射线检测器中使用的单个像素区域对应的阵列基板的俯视图。图6是示出根据本公开内容的第二实施方式的用在数字X射线检测器中的阵列基板的沿着图5的线II-II'截取的截面图。
下面将以与第一实施方式的特征不同的特征为中心描述第二实施方式。在省略的内容中,第二实施方式的共同应用于第一实施方式的内容在下文中将不加改变地应用于第二实施方式。
在根据第二实施方式的阵列基板201中,在基底基板211上可以形成有有源层221,并且有源层221可以包括沟道区221a、源极区221b和漏极区221c。源极区221b和漏极区221c可以分别形成在沟道区221a的一侧和另一侧。
有源层221的源极区221b可以与PIN二极管240的下电极237的一些区域表面接触。更详细地,与有源层221的漏极区221c通过接触孔接触漏电极233不同,源极区221b与PIN二极管240的下电极237表面接触并且与下电极237的一些区域表面接触。
因此,下电极237的与有源层221的源极区221b表面接触的区域237a形成在源极区221b上方,除了区域237a之外的与源极区221b不表面接触的剩余区域237b可以与有源层221设置在同一层处。
在这种情况下,PIN二极管240的PIN层243和上电极245可以形成在除了与有源层221的源极区221b表面接触的区域237a之外的剩余区域237b上。
也就是说,从下电极237排除与有源层221的源极区221b表面接触的下电极区237a,在设置在基底基板211上方的与有源层221在同一层对应的平坦化的下电极区237b上方可以形成有PIN层243和上电极245,使得可以去除PIN二极管240的下部区域的弯曲部分。
另外,即使在使用第二实施方式的情况下,PIN二极管240也与薄膜晶体管形成在同一区域中,使得PIN二极管240的台阶差可以大大减小。结果,如图6所示,也可以减小第二保护层270的台阶差(t3)。
因此,即使在使用第二实施方式的情况下,也可以使受PIN二极管240的下部区域的弯曲部分影响的诸如PIN二极管的截止电流减小的特性劣化最小,使得可以通过改善堆叠覆盖使第二保护层270中产生的裂纹的数目最小。可以保证闪烁体290的特性,而无需在形成闪烁体290之前执行分立的平坦化处理。也可以减少由相关技术中遇到的大的台阶差引起的X射线散射,从而也可以改善MTF特性。
由于有源层221的源极区221b与另一层表面接触,所以源极区221b可以形成为具有比通过接触孔与另一层接触的漏极区221c更小的区域。结果,PIN二极管240可以形成为具有与源极区221b的减小区域一样大的更大的区域,从而导致PIN二极管的填充因子的提高。
上述X射线检测器200可以如下进行操作。
被发射至X射线检测器200的X射线可以通过闪烁体290被转换成可见光。可见光可以通过PIN二极管240的PIN层243被转换成电子信号。
更详细地,当可见光被发射至PIN层243时,本征半导体层被P型半导体层和N型半导体层耗尽,并且因此在本征半导体层中产生电场。由光产生的电子和空穴可以通过电场进行漂移,并且然后分别被收集在P型半导体层和N型半导体层中。
PIN二极管240可以将可见光转换为电子信号,并且可以将电子信号递送至薄膜晶体管。递送的电子信号可以在通过连接至薄膜晶体管的数据线215之后显示为图像信号。
根据本公开内容的实施方式的用于制造用于X射线检测器的阵列基板的方法包括以下步骤(i)至(v)。
在第一步骤(i)中,用于制造阵列基板的方法包括:在基底基板211a上方形成有源层221,,有源层221具有沟道区221a以及分别形成在沟道区221a的一侧和另一侧的源极区221b和漏极区221c;以及在有源层221上方形成与沟道区221a对应的绝缘层222和栅电极223。
在第二步骤(ii)中,用于制造阵列基板的方法还包括形成覆盖栅电极223和漏极区221c并具有与漏极区221c对应的第一接触孔231的层间绝缘层225。
在第三步骤(iii)中,用于制造阵列基板的方法还包括在层间绝缘层225上方形成漏电极233,漏电极233通过第一接触孔231连接至漏极区221c,以及在源极区221b上方形成下电极237以与有源层221的源极区221b表面接触。
在第四步骤(iv)中,用于制造阵列基板的方法还包括形成PIN二极管240,PIN二极管240具有在下电极237上方的PIN层和上电极245。
在第五步骤(v)中,用于制造阵列基板的方法还包括在PIN二极管240上方形成具有第二接触孔251的保护层,以及在保护层上方形成通过第二接触孔251连接至上电极245的偏置电极260。
关于根据本公开内容的实施方式的用于X射线检测器的阵列基板的制造方法,首先将描述图7所示的第一实施方式的制造方法,然后描述将集中于图7的第一实施方式与图8的第二实施方式之间的不同特性。
用于在各层上形成图案的以下方法将使用本领域技术人员公知的光刻工艺来实现。在此,光刻工艺可以包括沉积、光致抗蚀剂(PR)涂覆、曝光、显影、蚀刻和光致抗蚀剂(PR)剥离,并且为了便于描述,本文将省略其详细描述。例如,如果在沉积工艺中使用金属材料,则可以使用金属材料的溅射。如果使用半导体或绝缘层,则可以使用等离子体增强化学气相沉积(PECVD)方法。即使在蚀刻工艺的情况下,也可以根据材料类型选择性地使用干法蚀刻或湿法蚀刻,并且可以根据需要适当地使用本领域技术人员公知的任何技术。
可以在基底基板211上方形成缓冲层212。可以选择性地形成缓冲层212。可以根据需要不形成缓冲层212。可以使用第一掩模工艺在缓冲层212上方形成有源层221(参见图7A)。
在这种情况下,有源层221可以形成为具有大的区域,使得有源层221不仅可以覆盖在其中将形成薄膜晶体管的区域,而且可以覆盖在其中将形成PIN二极管240的其他区域。其中将形成PIN二极管240的区域的有源层可以形成为具有与PIN二极管240的形状和区域对应的特定形状和区域。
随后,可以形成栅极绝缘层(未示出)和栅电极膜(未示出)以覆盖有源层221和整个基底基板211。在栅极绝缘层和栅电极膜处执行第二掩模工艺(参见图7B),使得在将形成薄膜晶体管的区域中栅电极223和栅极绝缘层222可以被图案化并形成为与有源层221的沟道区221a对应。
有源层221可以改变为导体,使得源极区221b和漏极区221c可以分别形成在有源层221的沟道区221a的一侧和另一侧。对于根据本公开内容的用于将有源层221的源极区221b和漏极区221c改变为导电材料的工艺,尽管本公开内容可以以将源极区221b和漏极区221c变为导电材料的方式使用用于允许源极区221b和漏极区221c在蚀刻层间绝缘层期间暴露于蚀刻剂的方法,但是本公开内容的范围或精神不限于此。
有源层221的源极区221b可以形成在其中将要形成PIN二极管240的区域中,并且漏极区221c可以形成在其中将要形成薄膜晶体管的区域的另一侧。在这种情况下,有源层221的源极区221b可以以PIN二极管240可以形成在源极区221b的上部的方式形成为具有足够的尺寸和区域,并且源极区221b可以形成为具有比漏极区221c更大的面积。
随后,可以使用第三掩模工艺形成层间绝缘层(未示出)以覆盖基底基板211(参见图7C)。层间绝缘层225可以以有源层221的源极区221b被暴露的方式形成为覆盖栅电极223和有源层221的漏极区221c。另外,在层间绝缘层225中可以形成第一接触孔231,使得层间绝缘层225可以在形成层间绝缘层225期间对应于有源层221的漏极区221c。
随后,可以使用第四掩模工艺在层间绝缘层225上方形成与有源层221的漏极区221c对应的漏电极233(参见图7D),并且PIN二极管240的下电极237可以与有源层221的源极区221b表面接触。在这种情况下,在形成相同的金属膜之后,可以通过相同的图案化工艺同时形成漏电极233和下电极237。
更详细地,漏电极233可以通过包括在层间绝缘层225中的第一接触孔231连接至有源层221的漏极区221c。
形成在源极区221b上方的PIN二极管240的下电极237可以用作薄膜晶体管的源电极。根据本公开内容的薄膜晶体管的源电极和PIN二极管240的下电极237不需要形成为不同的电极,从而实现简化的结构。
PIN二极管240的下电极237的整个区域可以与有源层221的源极区221b表面接触,并且源极区221b可以实现为平坦化层,使得PIN二极管240下电极237也可以形成为平坦化层,并且PIN二极管240的下部区域可以形成为没有弯曲。
随后,可以使用第五掩模工艺形成PIN膜242以覆盖基底基板211的整个区域(参见图7E),并且可以在PIN膜242上方形成与PIN二极管240的下电极237对应的上电极245。可以使用第六掩模工艺将PIN膜242图案化以形成PIN层243(参见图7F),并且可以形成包括下电极237、PIN层243和上电极245的PIN二极管240。
此后,可以使用第七掩模工艺在PIN二极管240的上电极245上方形成具有第二接触孔251的第一保护层250(参见图7G)。可以使用第八掩模工艺形成通过第一保护层250的第二接触孔251连接至PIN二极管240的上电极245的偏置电极260(参见图7H)。可以使用第九掩模工艺形成第二保护层270以覆盖具有偏置电极的第一保护层250(参见图7I)。
如上所述,根据第一实施方式的用于制造阵列基板的方法可以使用总共9个掩模工艺直到形成覆盖偏置电极的保护层的工艺来执行,使得整体制造所需的掩模总数减少,从而提高了制造效率。
以这种方式,减少了制造工艺所需的掩模总数,使得整体制造所需的生产成本降低并且实现了简化的制造,从而使制造效率最大。
图8A至图8I示出了根据本公开内容的第二实施方式的用于制造用于数字X射线检测器的阵列基板的方法。在下面的描述中,为了便于描述,本文将省略与第一实施方式相同的内容,并且在下文中将以与第一实施方式的特征不同的独特特征为中心描述第二实施方式。
可以使用第一掩模工艺在基底基板211上形成有源层221(参见图8A)。在这种情况下,与第一实施方式不同,有源层221可以形成在其中将形成薄膜晶体管的区域中,并且可以形成为使其中要形成PIN二极管240的区域暴露。
可以使用第二掩模工艺形成与有源层221的沟道区221a对应的栅极绝缘层222和栅电极223(参见图8B)。源极区221b和漏极区221c可以形成在沟道区221a的一侧和另一侧。随后,可以使用第三掩模工艺覆盖栅电极223和有源层221的漏极区221c(参见图8C),并且可以形成包括与漏极区221c对应的第一接触孔231的层间绝缘层225。
随后,可以使用第四掩模工艺在层间绝缘层225上方形成与有源层221的漏极区221c对应的漏电极233(参见图8D)。PIN二极管240的下电极237的一些区域可以与有源层221的源极区221b表面接触。在这种情况下,在形成相同的金属膜之后,可以通过相同的图案化工艺同时形成漏电极233和下电极237。
更详细地,漏电极233可以通过包括在层间绝缘层225中的第一接触孔231连接至有源层221的漏极区221c。
在这种情况下,PIN二极管240的下电极的区域237a可以与有源层221的源极区221b表面接触,并且除了区域237a之外的不与源极区221b表面接触的剩余区域237b可以与有源层221形成在同一层上。
也就是说,如果在基底基板211上方形成缓冲层212并且然后形成有源层221,则可以在源极区221b上方形成下电极的区域237a,并且可以在缓冲层212上方形成剩余区域237b。
在这种情况下,由于有源层221的整个缓冲层212被平坦化,所以形成在缓冲层212上方的PIN二极管240的下电极237可以被平坦化,使得PIN二极管240的除了与有源层221的源极区221b表面接触的区域之外的下部区域可以形成为不弯曲。
随后,可以使用第五掩模工艺形成PIN膜242以覆盖基底基板211的整个区域(参见图8E)。在PIN二极管240的下电极237中,可以在PIN膜242上方形成与剩余下电极区237b对应而与有源层221的源极区221b不对应的上电极245。
可以使用第六掩模工艺图案化PIN膜242(参见图8F),导致形成PIN层243。结果,可以形成包括下电极237、PIN层243和上电极245的PIN二极管240。
随后,可以使用第七掩模工艺在PIN二极管240的上电极245上方形成覆盖整个基底基板211并具有第二接触孔251的第一保护层250(参见图8G)。可以使用第八掩模工艺形成通过第一保护层250的第二接触孔251连接至PIN二极管240的上电极245的偏置电极260(参见图8H)。可以使用第九掩模工艺形成第二保护层270以覆盖具有偏置电极的第一保护层250(参见图8I)。
如上所述,根据第二实施方式的用于制造阵列基板的方法也可以使用总共9个掩模工艺直到以与第一实施方式中的方式相同的方式形成覆盖偏置电极的保护层的工艺来执行,使得整体制造所需的掩模总数减少,从而提高了制造效率。以这种方式,减少了整体制造所需的掩模总数,整体制造所需的生产成本降低并且实现了简化的制造,从而使制造效率最大。
从以上描述明显的是,本公开内容的实施方式可以通过减小PIN二极管的台阶差来改善堆叠覆盖,并且可以通过使在保护层中形成的裂纹的数目最小来减小PIN二极管的截止电流,使得PIN二极管的特性劣化可以最小。
本公开内容的实施方式可以减小PIN二极管的台阶差,可以在形成闪烁体之前不使用分立的平坦化工艺来获取闪烁体特性,并且可以通过减少X射线散射来改善调制传递函数(MTF)特性。
本公开内容的实施方式可以允许PIN二极管的下电极与平坦化的有源层表面接触,并且可以去除PIN二极管的下部区域的弯曲部分,使得可以改善PIN二极管的特性。
即使在与有源层表面接触的区域中,本公开内容的实施方式也可以形成PIN二极管,使得可以改善PIN二极管的填充因子。
本公开内容的实施方式通过减少制造工艺所需的掩模总数来降低生产成本并实现简化的制造,从而产生最大的制造效率。
在不偏离本公开内容的范围和精神的情况下,本公开所属领域的技术人员可以对上述本公开内容进行各种替换、改变和修改。因此,本公开内容不限于上述示例性实施方式和附图。

Claims (11)

1.一种用于数字X射线检测器的阵列基板,所述阵列基板包括:
基底基板;
设置在所述基底基板上方的有源层,所述有源层被配置成包括沟道区、源极区和漏极区,其中,所述源极区和所述漏极区分别形成在所述沟道区的一侧和另一侧;
设置在所述有源层上方的与所述沟道区对应的栅极绝缘层;
设置在所述栅极绝缘层上方的栅电极;
设置在所述栅电极和漏极区上方的层间绝缘层,所述层间绝缘层被配置成包括与所述漏极区对应的接触孔;
设置在所述层间绝缘层上方的漏电极,并且所述漏电极通过所述接触孔连接至所述有源层;以及
PIN二极管,其中堆叠有下电极、PIN层和上电极,所述PIN二极管被配置成与所述有源层的所述源极区表面接触,
其中,所述有源层的所述源极区与所述下电极的整个区域表面接触。
2.根据权利要求1所述的阵列基板,其中,所述下电极设置在所述有源层的所述源极区上方。
3.根据权利要求1所述的阵列基板,其中,对应于所述PIN层的所述下电极被平坦化。
4.根据权利要求1所述的阵列基板,其中,所述有源层的所述源极区在尺寸上大于所述漏极区。
5.根据权利要求1所述的阵列基板,还包括:
设置在所述上电极上方的偏置电极,使得所述偏置电极连接至所述上电极,
其中,所述偏置电极被设置成不与所述沟道区交叠。
6.一种用于数字X射线检测器的阵列基板,所述阵列基板包括:
基底基板;
设置在所述基底基板上方的有源层,所述有源层被配置成包括沟道区、源极区和漏极区,其中,所述源极区和所述漏极区分别形成在所述沟道区的一侧和另一侧;
设置在所述有源层上方的与所述沟道区对应的栅极绝缘层;
设置在所述栅极绝缘层上方的栅电极;
设置在所述栅电极和漏极区上方的层间绝缘层,所述层间绝缘层被配置成包括与所述漏极区对应的接触孔;
设置在所述层间绝缘层上方的漏电极,并且所述漏电极通过所述接触孔连接至所述有源层;以及
PIN二极管,其中堆叠有下电极、PIN层和上电极,所述PIN二极管被配置成与所述有源层的所述源极区表面接触
其中,所述有源层的所述源极区与所述下电极的一些区域表面接触,以及
其中,所述下电极的不与所述有源层的所述源极区表面接触的剩余区域与所述有源层设置在同一层上。
7.一种数字X射线检测器,包括:
根据权利要求1至6中任一项所述的用于所述数字X射线检测器的阵列基板;以及
被设置在所述阵列基板上方的闪烁体。
8.一种用于制造用于数字X射线检测器的阵列基板的方法,所述方法包括:
在基底基板上方形成有源层,所述有源层不仅包括沟道区,而且包括分别形成在所述沟道区的一侧和另一侧的源极区和漏极区,以及在所述有源层上方形成与所述沟道区对应的栅极绝缘层和栅电极;
形成层间绝缘层,所述层间绝缘层覆盖所述栅电极和所述漏极区并且包括与所述漏极区对应的第一接触孔;
在所述层间绝缘层上方形成漏电极,以及在所述源极区上方形成下电极,使得所述下电极与所述有源层的源极区表面接触,所述漏电极通过所述第一接触孔连接至所述漏极区;
形成包括在所述下电极上方的PIN层和上电极的PIN二极管;以及
在所述PIN二极管上方形成具有第二接触孔的保护层,以及在所述保护层上方形成通过所述第二接触孔连接至所述上电极的偏置电极,
其中,在所述有源层的所述源极区上方形成所述下电极的整个区域。
9.根据权利要求8所述的方法,其中,通过相同的图案化工艺形成所述漏电极和所述下电极。
10.根据权利要求8所述的方法,其中,所述有源层的所述源极区在尺寸上大于所述漏极区。
11.一种用于制造用于数字X射线检测器的阵列基板的方法,所述方法包括:
在基底基板上方形成有源层,所述有源层不仅包括沟道区,而且包括分别形成在所述沟道区的一侧和另一侧的源极区和漏极区,以及在所述有源层上方形成与所述沟道区对应的栅极绝缘层和栅电极;
形成层间绝缘层,所述层间绝缘层覆盖所述栅电极和所述漏极区并且包括与所述漏极区对应的第一接触孔;
在所述层间绝缘层上方形成漏电极,以及在所述源极区上方形成下电极,使得所述下电极与所述有源层的源极区表面接触,所述漏电极通过所述第一接触孔连接至所述漏极区;
形成包括在所述下电极上方的PIN层和上电极的PIN二极管;以及
在所述PIN二极管上方形成具有第二接触孔的保护层,以及在所述保护层上方形成通过所述第二接触孔连接至所述上电极的偏置电极,
其中,在所述有源层的所述源极区上方形成所述下电极的一些区域;以及
所述下电极的剩余区域与所述有源层形成在同一层上。
CN201811444296.0A 2017-12-05 2018-11-29 阵列基板、包括其的数字x射线检测器及其制造方法 Active CN110021615B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170165780A KR102517726B1 (ko) 2017-12-05 2017-12-05 디지털 엑스레이 검출기용 어레이 기판과 이를 포함하는 디지털 엑스레이 검출기 및 그 제조 방법
KR10-2017-0165780 2017-12-05

Publications (2)

Publication Number Publication Date
CN110021615A CN110021615A (zh) 2019-07-16
CN110021615B true CN110021615B (zh) 2023-06-20

Family

ID=66657956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811444296.0A Active CN110021615B (zh) 2017-12-05 2018-11-29 阵列基板、包括其的数字x射线检测器及其制造方法

Country Status (4)

Country Link
US (2) US10705229B2 (zh)
KR (1) KR102517726B1 (zh)
CN (1) CN110021615B (zh)
TW (1) TWI734051B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240151B2 (ja) * 2018-11-22 2023-03-15 株式会社ジャパンディスプレイ 検出装置及び表示装置
CN111106140A (zh) * 2019-12-24 2020-05-05 厦门天马微电子有限公司 传感器及其制造方法
CN112002720A (zh) * 2020-10-28 2020-11-27 南京迪钛飞光电科技有限公司 一种光电探测器及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305907A (zh) * 2016-04-19 2017-10-31 三星显示有限公司 有机发光显示装置和制造有机发光显示装置的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515849A3 (en) * 1991-04-27 1993-05-19 Kanegafuchi Chemical Industry Co., Ltd. Image sensor
US7514762B2 (en) * 2003-12-15 2009-04-07 Koninklijke Philips Electronics N.V. Active matrix pixel device with photo sensor
GB0329002D0 (en) * 2003-12-15 2004-01-14 Koninkl Philips Electronics Nv Photo sensor
KR101094288B1 (ko) * 2010-01-27 2011-12-19 삼성모바일디스플레이주식회사 엑스레이 검출 장치
JP5874201B2 (ja) * 2011-05-30 2016-03-02 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
US8716708B2 (en) * 2011-09-29 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5789223B2 (ja) * 2012-06-19 2015-10-07 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
CN103296012B (zh) * 2012-06-29 2016-02-10 上海天马微电子有限公司 Esd保护系统及x射线平板探测器
JP6099035B2 (ja) * 2012-10-12 2017-03-22 Nltテクノロジー株式会社 光電変換装置及びその製造方法並びにx線画像検出装置
KR20140067559A (ko) * 2012-11-27 2014-06-05 엘지디스플레이 주식회사 디지털 엑스레이 검출기용 박막트랜지스터 어레이 기판
TW201438204A (zh) 2013-03-19 2014-10-01 Univ Nat Chiao Tung 平板型x光偵測器的tft-pin陣列基板及組裝結構
JP6282671B2 (ja) * 2014-01-15 2018-02-21 シャープ株式会社 エネルギー線検出装置
KR20160114767A (ko) * 2015-03-24 2016-10-06 주식회사 레이언스 이미지센서 및 이의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305907A (zh) * 2016-04-19 2017-10-31 三星显示有限公司 有机发光显示装置和制造有机发光显示装置的方法

Also Published As

Publication number Publication date
US20200301029A1 (en) 2020-09-24
KR102517726B1 (ko) 2023-04-03
CN110021615A (zh) 2019-07-16
US11209557B2 (en) 2021-12-28
TW201926658A (zh) 2019-07-01
TWI734051B (zh) 2021-07-21
US10705229B2 (en) 2020-07-07
KR20190066240A (ko) 2019-06-13
US20190170883A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
CN102142447B (zh) 共面高填充系数的像素架构
CN109427837B (zh) 用于数字x射线检测器的阵列基板及其制造方法
CN109427836B (zh) 阵列基板、x射线检测器、及用于制造该阵列基板的方法
US11011665B2 (en) Thin film transistor array substrate for high-resolution digital X-ray detector and high-resolution digital X-ray detector including the same
WO2012082276A2 (en) High charge capacity pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
US11209557B2 (en) Array substrate for digital X-ray detector, digital X-ray detector including the same, and method for manufacturing the same
CN110034134B (zh) 用于x射线探测器的阵列基板以及包括其的x射线探测器
CN110010630B (zh) 数字x射线检测器面板及包括其的x射线系统
CN109979948B (zh) 数字x射线检测器用阵列基板及包括其的x射线检测器
US10707251B2 (en) Array substrate for digital X-ray detector, and digital X-ray detector including the same
US11335706B2 (en) Thin film transistor array substrate for high-resolution digital X-ray detector and high-resolution digital X-ray detector including the same
KR102520982B1 (ko) 디지털 엑스레이 검출기용 어레이 기판과 이를 포함하는 디지털 엑스레이 검출기 및 그 제조 방법
KR20190073203A (ko) 디지털 엑스레이 검출기용 어레이 기판과 이를 포함하는 디지털 엑스레이 검출기 및 그 제조 방법
KR20190075728A (ko) 디지털 엑스레이 검출기 패널 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant