CN110013861A - 一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法 - Google Patents

一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法 Download PDF

Info

Publication number
CN110013861A
CN110013861A CN201910348983.0A CN201910348983A CN110013861A CN 110013861 A CN110013861 A CN 110013861A CN 201910348983 A CN201910348983 A CN 201910348983A CN 110013861 A CN110013861 A CN 110013861A
Authority
CN
China
Prior art keywords
alloy
preparation
lacoo
powder
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910348983.0A
Other languages
English (en)
Other versions
CN110013861B (zh
Inventor
张弛
梁一
梁萍
张忠华
孟顶顶
谢卓鸿
何鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201910348983.0A priority Critical patent/CN110013861B/zh
Publication of CN110013861A publication Critical patent/CN110013861A/zh
Application granted granted Critical
Publication of CN110013861B publication Critical patent/CN110013861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种Ag‑LaCoO3‑δ纳米复合电催化材料及其制备方法。首先,按照比例称取纯金属铝、银、镧和钴,加热到熔融态,获得合金锭;其次,通过快速凝固工艺制备出合金带;最后,在碱性溶液中进行脱合金处理,选择性去除铝元素,空气中煅烧得Ag‑LaCoO3‑δ纳米复合材料。该材料具有较好的氧还原催化性能,是一种极具实用价值的电催化纳米材料。本发明工艺简单,成本低,产品结构稳定,可以大规模生产应用。

Description

一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法
技术领域
本发明涉及电催化材料技术领域,特别涉及一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法。
背景技术
近年来,石油、煤炭等传统能源的过度开发和使用带来严重的环境污染,因此,开发和利用新型能源是国家可持续发展的必然需求。在目前出现的各种新能源器件中,锂-空、锌-空和燃料电池等逐渐成为研究的热点,有较大的商业化前景。而在燃料电池和金属-空气电池中涉及到的氧气还原反应(ORR)和析氧反应(OER)包含一系列的步骤和不同的中间物种,反应动力学缓慢,成为限制燃料电池和金属-空气电池发展的关键因素,因此研制出提升反应速率的ORR和OER电催化剂极其关键。
钙钛矿氧化物因为结构和性能易于调控等优点,已经逐渐成为当今电催化材料研究的热点,但是钙钛矿氧化物常温电子电导较低,极大地限制了其本征催化活性的释放。混合单质银能提升钙钛矿氧化物的导电性,释放钙钛矿氧化物的本征催化活性,近年来,大量的钙钛矿氧化物与金属银的制备方法被报道,主要涉及共沉淀法(Jayapandi S,PrakasiniV A,Anitha K,C.AIP Publishing,2018,1942(1):140048)、水热法(Jayapandi S,LakshmiD,Premkumar S,J.Materials Letters,2018,218:205-208)等,利用以上方法虽然可以制备出纳米尺度的钙钛矿氧化物/银材料,但制备工艺复杂,不易控制合金配比,不宜工业生产和推广应用。
发明内容
为了克服上述技术的不足,本发明采用合金-脱合金工艺,提供一种工艺简单、成本低和产品结构稳定的Ag-LaCoO3-δ纳米复合电催化材料的制备方法,其中LaCoO3-δ为钙钛矿,δ代表氧缺陷的比例(非人为控制因素),属于本领域常规表述。制备出的Ag-LaCoO3-δ纳米复合电催化材料可以通过调控原始合金成分来调控金属银与钙钛矿的比例,利用银提高复合材料的电导率,产生一种同时具有ORR和OER双催化功能的高性能电催化剂。
本发明采用以下技术方案:
具体地,制备铝-银-镧-钴合金带:
(1)将铝、银、镧、钴按比例进行混合,放入石英管中;
(2)将混合后的金属原料进行熔炼,冷却取出,打磨表面,切割,放入石英管中;
(3)将所述合金锭高频(10000-300000Hz)加热重熔,在惰性气体气氛中,将重熔的合金锭倒入甩带仪器(本领域常规仪器)中进行甩带,得到铝-银-镧-钴合金带。
进一步地,步骤(1)中称取铝、银、镧、钴的纯金属原材料,各金属按原子百分比计:纯铝45-80%、纯银15-50%、纯镧0.5-2.5%、纯钴0.5-2.5%。
进一步地,步骤(2)中熔炼是在真空电弧炉中进行,真空度范围为0.1~1Pa,可反复多次熔炼,例如待金属融化成熔融态后停止加热,稍等几秒钟后(例如3秒、5秒、8秒、10秒、15秒或20秒等等)再次加热融化,待多次重融后冷却取出,打磨合金锭表面后,将其切割成甩带用的样品;所述真空电弧炉加热温度为500-1200℃,例如750-1000℃,优选800-950℃;
进一步地,步骤(2)中石英管长度为200-600mm,优选400mm;所述石英管直径为5-30mm,优选10mm,所述石英管底部开有小孔,直径为0.1-1.5mm,例如0.8-1.2mm,具体地:0.1mm,0.8mm,1mm,1.2mm或1.5mm。
进一步地,步骤(3)中将小块锭料放入石英管中,采用高频加热重熔甩带样品;重熔合金锭的温度为500-1500℃,优选900℃;在重熔合金锭的过程中待熔体温度达到800-1000℃(例如900℃)时,保温1-10分钟,具体地保温1分钟,5分钟或10分钟;所述惰性气体为氦气、氖气、氩气中的一种或多种,优选氩气,可选氦气。
具体地,制备Ag-LaCoO3-δ纳米复合电催化材料:
(a)将铝-银-镧-钴合金带放入腐蚀液中,常温下进行脱合金,得到粉末A;
(b)将粉末A置入腐蚀液中,加热,进行脱合金,得到粉末B,优选地,其中铝被全部腐蚀掉,只剩下银、镧、钴;
(c)将粉末B用水洗涤(例如超纯水超声,清洗3次),干燥,研磨得到粉末C;
(d)将粉末C高温煅烧,研磨,得到Ag-LaCoO3-δ纳米复合材料;
(e)将Ag-LaCoO3-δ纳米复合材料与碳粉按照质量比例为1:0.2~5(例如1:1)称量混合,得到粉末D;
(f)在粉末D中加入Nafion溶液和异丙醇,超声(超声时间为50-80分钟),得到复合电催化材料。
进一步地,步骤(a)中常温下脱合金的时间为3-10小时;所述腐蚀液为1-5mol/L的NaOH溶液,所述铝-银-镧-钴合金带和腐蚀液的比例为1g:200-900ml,例如1g:400-600ml。
可选地,步骤(b)中所用的腐蚀液与步骤(a)相同,该腐蚀液为1-5mol/L的NaOH溶液,粉末A和腐蚀液的比例为1g:200-900ml,例如1g:400-600ml。
进一步地,步骤(b)加热下脱合金的时间为1.5-3小时,具体地:1.5小时,2小时或3小时;加热温度为50-150℃,例如75-100℃,优选80℃。
进一步地,步骤(c)研磨时间为20-30分钟;干燥温度为80-120℃,例如80-100℃,优选80℃。
进一步地,步骤(d)高温煅烧在马弗炉中空气气氛中进行,所述煅烧时间为2-5小时;煅烧温度为500-900℃,优选500-700℃;所述研磨时间为20-30分钟;所述Ag-LaCoO3-δ纳米复合材料的颗粒尺寸为100-350nm。
进一步地,步骤(f)中所述粉末D和Nafion溶液的比例为1g:0.05-0.2L,例如1g:0.12-0.15L,具体地:1g:0.05L、1g:0.15L或1g:0.2L;所述Nafion溶液的浓度为质量分数为0.1-1%的溶液,优选0.5%;所述粉末D和异丙醇的比例为1g:0.1-0.8L,例如1g:0.15-0.25L,具体地:1g:0.15L、1g:0.2L或1g:0.25L。
进一步地,步骤(f)是为了将Ag-LaCoO3-δ纳米复合电催化材料制成催化剂墨水,用作电催化测试。
具体地,本发明利用合金-脱合金的方法制备了Ag-LaCoO3-δ纳米复合电催化材料,银的复合为电子提供了良好的传输路径,提升了复合材料导电性,同时提升了ORR和OER双催化功能的性能。
进一步地,电化学性能测试的方式为三电极体系,其中工作电极为玻碳电极,参比电极为饱和Ag/AgCl电极,对电极为Pt片电极。使用电化学工作站(EnergyLab XM,Solartron)进行电化学测试,测试前首先通氧气30分钟,在氧气饱和的0.1mol/L KOH溶液中进行测试,进行ORR电化学性能测试时,首先扫描循环伏安曲线(CV),扫描区间为-0.8至0.2V vs.Ag/AgCl,扫描速率为50mV/s;再进行线性扫描伏安法测试,扫描区间为-0.8至0.2V vs.Ag/AgCl,扫描速率为5mV/s,旋转圆盘装置转速控制为1600rpm;进行OER测试时,选择线性扫描伏安法区间0.2-1.0V vs.Ag/AgCl,扫描速率为5mV/s,旋转圆盘装置转速控制为1600r/min。
本发明的有益效果:
1.本发明通过熔炼-甩带法制备铝-银-镧-钴前驱体合金,其制备工艺简单,成分比例易控制,可以用于工业大量生产;
2.本发明通过甩带技术得到的合金带厚度分布在100-500微米,利于实现低浓度碱性溶液的短时间完全腐蚀;
3.本发明制备的Ag-LaCoO3-δ纳米复合材料的纳米颗粒尺寸分布在100-350纳米,其中的银能够为镧、钴提供很好的导电性。
附图说明
图1为本发明Ag-LaCoO3-δ纳米复合材料的扫描电镜照片;
图2为本发明Ag-LaCoO3-δ纳米复合材料在500、600、700℃下热处理样品(分别为实施例1、2、4)和700℃热处理未添加Ag的LaCoO3-δ样品的ORR性能的对比线性扫描伏安法曲线。
具体实施方式
为了更好的解释本发明,现结合以下具体实施例做进一步说明,但是本发明不限于具体实施例。
实施例1
一种Ag-LaCoO3-δ纳米复合电催化材料的制备方法,包括以下步骤:
(1)按照铝45%,银50%,镧2.5%,钴2.5%的原子百分比称取纯金属原材料,分别称取纯铝2250mg、纯银2500mg、纯镧125mg、纯钴125mg,放入石英管中;
(2)真空电弧炉加热,待金属融化成熔融态后停止加热,5秒钟后再次加热融化,待3次重融后冷却取出,打磨合金锭表面后,将其切割成甩带用的样品;
(3)取一支长度为400mm,直径10mm,底部开有小孔的石英管,小孔直径为0.8-1.2mm,将小块锭料放入石英管中,采用高频加热重熔甩带样品;待熔体温度达到900℃,保温1分钟,然后惰性气体保护下进行甩带,得到铝-银-镧-钴合金带;
(4)称取2g的铝-银-镧-钴合金带放入1200mL的2mol/L的NaOH碱性溶液中,常温脱合金6小时得到粉末A;
(5)将粉末A置入1000mL的2mol/L的NaOH碱性溶液中,加热继续脱合金2小时得到粉末B;
(6)将粉末B用超纯水超声清洗3次,干燥后手工研磨25分钟得到合金粉末C;
(7)将得到的粉末C放入马弗炉中在空气中500℃高温煅烧2小时,然后手工研磨30分钟得到颗粒尺寸分布在100-180nm的Ag-LaCoO3-δ纳米复合材料;
(8)将Ag-LaCoO3-δ纳米复合材料与碳粉混合得到粉末D,加入Nafion溶液和异丙醇,超声60分钟,得到所述复合电催化材料,所述粉末D和Nafion溶液的比例为1g:0.05L;所述粉末D和异丙醇的比例为1g:0.15L。
实施例2
一种Ag-LaCoO3-δ纳米复合电催化材料的制备方法,包括以下步骤:
(1)按照铝60%,银37%,镧1%,钴2%的原子百分比称取纯金属原材料,分别称取纯铝3000mg、纯银1850mg、纯镧50mg、纯钴100mg,放入石英管中;
(2)真空电弧炉加热,待金属融化成熔融态后停止加热,5秒钟后再次加热融化,3次重融后冷却取出,打磨合金锭表面后,将其切割成甩带用的样品;
(3)取一支长度为400mm,直径10mm,底部开有小孔的石英管,小孔直径为0.8-1.2mm,将小块锭料放入石英管中,采用高频加热重熔甩带样品;待熔体温度达到900℃,保温1分钟,然后惰性气体保护下进行甩带,得到铝-银-镧-钴合金带;
(4)称取2g的铝-银-镧-钴合金带3g放入1600mL的5mol/L的NaOH碱性腐蚀液中,常温脱合金8小时得到粉末A;
(5)将粉末A置入1000mL的5mol/L的NaOH碱性溶液中,加热继续脱合金3小时得到粉末B;
(6)将粉末B用超纯水超声清洗3次,干燥后手工研磨30分钟得到合金粉末C;
(7)将得到的粉末C放入马弗炉中在空气中600℃高温煅烧3小时,然后手工研磨30分钟得到颗粒尺寸分布在150-210nm的Ag-LaCoO3-δ纳米复合材料;
(8)将Ag-LaCoO3-δ纳米复合材料与碳粉混合得到粉末D,加入Nafion溶液和异丙醇,超声60分钟,得到所述复合电催化材料,所述粉末D和Nafion溶液的比例为1g:0.1L;所述粉末D和异丙醇的比例为1g:0.15L。
实施例3
一种Ag-LaCoO3-δ纳米复合电催化材料的制备方法,包括以下步骤:
(1)按照铝80%,银17%,镧1.5%,钴1.5%的原子百分比称取纯金属原材料,分别称取纯铝4000mg、纯银850mg、纯镧75mg、纯钴75mg,放入石英管中;
(2)真空电弧炉加热,待金属融化成熔融态后停止加热,5秒钟后再次加热融化,待3次重融后冷却取出,打磨合金锭表面后,将其切割成甩带用的样品;
(3)取一支长度为400mm,直径10mm,底部开有小孔的石英管,小孔直径为0.8-1.2mm,将小块锭料放入石英管中,采用高频加热重熔甩带样品;待熔体温度达到900℃,保温1分钟,然后惰性气体氩气保护下进行甩带,得到铝-银-镧-钴合金带;
(4)称取2g的铝-银-镧-钴合金带放入800mL的3mol/L的NaOH碱性溶液中,常温脱合金9小时得到粉末A;
(5)将粉末A置入1000mL的3mol/L的NaOH碱性溶液中,加热继续脱合金3小时得到粉末B;
(6)将粉末B用超纯水超声清洗3次,干燥后手工研磨30分钟得到合金粉末C;
(7)将得到的粉末C放入马弗炉中在空气中600℃高温煅烧5小时,然后手工研磨30分钟得到颗粒尺寸分布在200-280nm的Ag-LaCoO3-δ纳米复合材料;
(8)将Ag-LaCoO3-δ纳米复合材料与碳粉混合得到粉末D,加入Nafion溶液和异丙醇,超声60分钟,得到所述复合电催化材料,所述粉末D和Nafion溶液的比例为1g:0.05L;所述粉末D和异丙醇的比例为1g:0.15L。
实施例4
一种Ag-LaCoO3-δ纳米复合电催化材料的制备方法,包括以下步骤:
(1)按照铝80%,银15%,镧2.5%,钴2.5%的原子百分比称取纯金属原材料,分别称取纯铝4000mg、纯银750mg、纯镧125mg、纯钴125mg,放入石英管中;
(2)真空电弧炉加热,待金属融化成熔融态后停止加热,5秒钟后再次加热融化,待3次重融后冷却取出,打磨合金锭表面后,将其切割成甩带用的样品;
(3)取一支长度为400mm,直径10mm,底部开有小孔的石英管,小孔直径为0.8-1.2mm,将小块锭料放入石英管中,采用高频加热重熔甩带样品;待熔体温度达到900℃,保温1分钟,然后惰性气体氩气保护下进行甩带,得到铝-银-镧-钴合金带;
(4)称取2g的铝-银-镧-钴合金带放入1200mL的4mol/L的NaOH碱性溶液腐蚀液中,常温脱合金10小时得到粉末A;
(5)将粉末A置入1000mL的4mol/L的NaOH碱性溶液中,加热继续脱合金2小时得到粉末B;
(6)将粉末B用超纯水超声清洗3次,干燥后手工研磨30分钟得到合金粉末C;
(7)将得到的粉末C放入马弗炉中在空气中700℃高温煅烧3小时,然后手工研磨30分钟得到颗粒尺寸分布在200-350nm的Ag-LaCoO3-δ纳米复合材料;
(8)将Ag-LaCoO3-δ纳米复合材料与碳粉混合得到粉末D,加入Nafion溶液和异丙醇,超声60分钟,得到所述复合电催化材料,所述粉末D和Nafion溶液的比例为1g:0.1L;所述粉末D和异丙醇的比例为1g:0.25L。
测试过程:采用三电极体系对上述实施例制备的产品的电化学性能进行测试,其中工作电极为玻碳电极,参比电极为饱和Ag/AgCl电极,对电极为Pt片电极。再用电化学工作站(EnergyLab XM电化学工作站)进行电化学测试,测试前首先通氧气,在氧气饱和的0.1mol/L KOH溶液中进行测试,进行ORR电化学性能测试时,首先扫描循环伏安曲线(CV),扫描区间为-0.8至0.2V vs.Ag/AgCl,扫描速率为50mV/s;再进行线性扫描伏安法测试,扫描区间为-0.8至0.2V vs.Ag/AgCl,扫描速率为5mV/s,旋转圆盘装置转速控制为1600rpm;进行OER测试时,选择线性扫描伏安法区间0.2至1.0V vs.Ag/AgCl,扫描速率为5mV/s,旋转圆盘装置转速控制为1600rpm。
测试结果:图2示出了Ag-LaCoO3-δ纳米复合材料在500、600、700℃下热处理样品(分别为实施例1、2、4)和700℃热处理未添加Ag的LaCoO3-δ样品的ORR性能的对比线性扫描伏安法曲线。在单位面积电流密度为-3mA/cm2时,Ag-LaCoO3-δ纳米复合材料在500、600、700℃下热处理样品对应的电压分别为-0.33、-0.335、-0.34V,而700℃热处理未添加Ag的LaCoO3-δ样品在单位面积电流密度为-3mA/cm2时对应的电压为-0.37V,表明通过合金-脱合金制备的Ag-LaCoO3-δ纳米复合材料再加入Ag后提高LaCoO3-δ的电导性,明显提高LaCoO3-δ材料的ORR催化性能。
以上所述仅为本发明的具体实施例,并非因此限制本发明的专利范围,凡是利用本发明作的等效变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之中。

Claims (10)

1.一种Ag-LaCoO3-δ纳米复合电催化材料的制备方法,其特征在于,包括以下步骤:
制备铝-银-镧-钴合金带:
(1)按原子百分比称取铝45-80%、银15-50%、镧0.5-2.5%、钴0.5-2.5%,混合;
(2)将混合后的金属原料进行熔炼,得到合金锭,放入石英管中;
(3)将所述合金锭加热重熔,在惰性气体气氛中甩带,得到铝-银-镧-钴合金带;
制备Ag-LaCoO3-δ纳米复合电催化材料:
(a)将铝-银-镧-钴合金带放入腐蚀液中,常温下进行脱合金,得到粉末A;
(b)将粉末A置入腐蚀液中,加热,进行脱合金,得到粉末B;
(c)将粉末B用水洗涤,干燥,研磨得到粉末C;
(d)将粉末C煅烧,研磨,得到Ag-LaCoO3-δ纳米复合材料;
(e)将Ag-LaCoO3-δ纳米复合材料与碳粉混合,得到粉末D;
(f)在粉末D中加入Nafion溶液和异丙醇,得到所述复合电催化材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中称取铝、银、镧、钴的纯金属原材料。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中在真空电弧炉中进行熔炼;所述真空电弧炉的加热温度为500-1200℃;步骤(2)中所用的石英管长度为200-600mm,直径为5-30mm,底部设置有小孔,该小孔的直径为0.1-1.5mm。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中重熔合金锭的温度为500-1500℃。
5.根据权利要求1所述的制备方法,其特征在于,步骤(a)中常温下脱合金的时间为3-10小时;所述腐蚀液为1-5mol/L的NaOH溶液,所述铝-银-镧-钴合金带和腐蚀液的比例为1g:200-900ml。
6.根据权利要求1所述的制备方法,其特征在于,步骤(b)中脱合金的时间为1.5-3小时,加热温度为50-150℃。
7.根据权利要求1所述的制备方法,其特征在于,步骤(c)研磨时间为20-30分钟,干燥温度为80-120℃。
8.根据权利要求1所述的制备方法,其特征在于,步骤(d)煅烧在马弗炉中空气气氛中进行,所述煅烧的时间为2-5小时,煅烧的温度为500-900℃;步骤(d)中的研磨时间为20-30分钟;所述Ag-LaCoO3-δ纳米复合材料的颗粒尺寸为100-350nm。
9.根据权利要求1所述的制备方法,其特征在于,步骤(f)中所述粉末D和Nafion溶液的比例为1g:0.05-0.2L;所述粉末D和异丙醇的比例为1g:0.1-0.8L。
10.一种Ag-LaCoO3-δ纳米复合电催化材料,其特征在于,由权利要求1-9中任一项所述的制备方法制备得到。
CN201910348983.0A 2019-04-28 2019-04-28 一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法 Active CN110013861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910348983.0A CN110013861B (zh) 2019-04-28 2019-04-28 一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910348983.0A CN110013861B (zh) 2019-04-28 2019-04-28 一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110013861A true CN110013861A (zh) 2019-07-16
CN110013861B CN110013861B (zh) 2022-04-08

Family

ID=67192720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910348983.0A Active CN110013861B (zh) 2019-04-28 2019-04-28 一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110013861B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086196A (zh) * 2021-11-04 2022-02-25 北京科技大学 一种低过电位高稳定性的析氧钙钛矿催化剂及其制备方法
CN115385392A (zh) * 2022-08-16 2022-11-25 齐鲁工业大学 一种纳米多孔钙钛矿型氧化物及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084420A (zh) * 2015-08-24 2015-11-25 济南大学 一种abo3钙钛矿结构纳米金属氧化物的制备方法
CN109012710A (zh) * 2018-08-24 2018-12-18 广东工业大学 一种磷掺杂LaCoO3双功能催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084420A (zh) * 2015-08-24 2015-11-25 济南大学 一种abo3钙钛矿结构纳米金属氧化物的制备方法
CN109012710A (zh) * 2018-08-24 2018-12-18 广东工业大学 一种磷掺杂LaCoO3双功能催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONGHUI SI ETAL.: "Transforming bulk alloys into nanoporous lanthanum-based perovskite oxides with high specific surface areas and enhanced electrocatalytic activities", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
ROKAS SAˇZINAS ETAL.: "Silver Modified Cathodes for Solid Oxide Fuel Cells", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086196A (zh) * 2021-11-04 2022-02-25 北京科技大学 一种低过电位高稳定性的析氧钙钛矿催化剂及其制备方法
CN115385392A (zh) * 2022-08-16 2022-11-25 齐鲁工业大学 一种纳米多孔钙钛矿型氧化物及其制备方法与应用

Also Published As

Publication number Publication date
CN110013861B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Zhu et al. Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery
Rong et al. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery
Zhang et al. In-situ electrochemical tuning of (CoNiMnZnFe) 3O3. 2 high-entropy oxide for efficient oxygen evolution reactions
Yan et al. MoC–graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction
Xia et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries
Su et al. In situ TEM observation of the electrochemical process of individual CeO2/graphene anode for lithium ion battery
Cho et al. Synthesis of NiO nanofibers composed of hollow nanospheres with controlled sizes by the nanoscale kirkendall diffusion process and their electrochemical properties
Sun et al. Template-free synthesis of well-defined truncated edge polyhedral Cu2O architectures
CN105648478A (zh) 一种具有电氧化催化性能的磁性纳米多孔Fe-Pt合金的制备方法
CN107338372B (zh) 一种放电等离子烧结的铝基复合制氢材料的制备及其应用
CN108465476A (zh) 用于非均相体系还原二氧化碳的电催化剂及其制备和应用
CN108654659B (zh) 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN106384801A (zh) 一种氧化物固体电解质隔膜制备方法
CN106410199B (zh) 一种锂离子电池用石墨烯/铁锡合金复合负极材料的制备方法
Bai et al. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction
Jiang et al. Plasmon Ag decorated 3D urchinlike N-TiO2− x for enhanced visible-light-driven photocatalytic performance
Xin et al. In situ doped CoCO3/ZIF-67 derived Co-NC/CoOx catalysts for oxygen reduction reaction
CN107552044A (zh) 一种有效素化贵金属并提升其电催化性能的制备方法
CN103296292B (zh) 一种碱性燃料电池阴极碳基催化剂及其制备方法
Kang et al. Synthesis of hierarchically flower-like FeWO4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process
CN110013861A (zh) 一种Ag-LaCoO3-δ纳米复合电催化材料及其制备方法
Wen et al. Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis
CN106711419A (zh) 核‑壳状的NiO/C多孔复合锂离子电池负极材料
Qu et al. High stability and high activity Pd/ITO-CNTs electrocatalyst for direct formic acid fuel cell
Cui et al. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant