CN110002393A - 选择性刻蚀方法及纳米针尖结构的制备方法 - Google Patents

选择性刻蚀方法及纳米针尖结构的制备方法 Download PDF

Info

Publication number
CN110002393A
CN110002393A CN201910273149.XA CN201910273149A CN110002393A CN 110002393 A CN110002393 A CN 110002393A CN 201910273149 A CN201910273149 A CN 201910273149A CN 110002393 A CN110002393 A CN 110002393A
Authority
CN
China
Prior art keywords
material layer
etching
selective
doped chemical
nanometer pinpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910273149.XA
Other languages
English (en)
Inventor
李俊杰
王桂磊
李永亮
周娜
杨涛
傅剑宇
李俊峰
吴振华
殷华湘
朱慧珑
王文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201910273149.XA priority Critical patent/CN110002393A/zh
Publication of CN110002393A publication Critical patent/CN110002393A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/006Microdevices formed as a single homogeneous piece, i.e. wherein the mechanical function is obtained by the use of the device, e.g. cutters
    • B81B1/008Microtips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00404Mask characterised by its size, orientation or shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

本发明提供了一种选择性刻蚀方法及纳米针尖结构的制备方法。该选择性刻蚀方法包括以下步骤:在衬底上顺序形成第一材料层和第二材料层,其中第一材料层对第二材料层的各向同性刻蚀选择比大于10,第一材料层含有掺杂元素,沿第一材料层的厚度方向掺杂元素的浓度呈线性递增;对第一材料层进行选择性各向同性刻蚀,选择性各向同性刻蚀的刻蚀速率与掺杂元素的浓度具有正线性关系,以完成对第一材料层的外壁的刻蚀。本申请利用刻蚀工艺中刻蚀速率与待刻蚀材料中掺杂元素浓度之间的正线性关系,得到与浓度递增的方向相反的倾斜侧壁,从而采用上述选择性刻蚀方法,能够得到锐利度较高的纳米针尖结构,还能够灵活调节针尖结构的尺寸、形貌以及角度。

Description

选择性刻蚀方法及纳米针尖结构的制备方法
技术领域
本发明涉及半导体技术领域,具体而言,涉及一种选择性刻蚀方法及纳米针尖结构的制备方法。
背景技术
纳米尺度针尖应用非常广泛,例如扫描隧道显微镜中的隧道扫描电镜的STM探针、医学中的细胞微操作、特种制造业中的微加工等领域,另外纳米针尖阵列可以增加某些光学探测器的比表面积,增加敏感度。纳米针尖的制备常采用电化学刻蚀、机械剪切、场致蒸发、聚焦离子铣削等方法,方法复杂,制作成本高,很难批量生产。
发明内容
本发明的主要目的在于提供一种选择性刻蚀方法及纳米针尖结构的制备方法,以解决现有技术中制备纳米针尖结构的方法工艺复杂的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种选择性刻蚀方法,包括以下步骤:S1,在衬底上顺序形成第一材料层和第二材料层,其中第一材料层对第二材料层的各向同性刻蚀选择比大于10,第一材料层含有掺杂元素,沿第一材料层的厚度方向掺杂元素的浓度呈线性递增;S2,对第一材料层进行选择性各向同性刻蚀,选择性各向同性刻蚀的刻蚀速率与掺杂元素的浓度具有正线性关系,以完成对第一材料层的外壁的刻蚀。
进一步地,第一材料层由两种IV族元素组成,掺杂元素为其中一种IV族元素;或形成第一材料层的材料为III-V族化合物,掺杂元素为III族或V族元素。
进一步地,掺杂元素为Ge,形成第一材料层的材料为SiGe或SnGe,优选形成第二材料层的材料为Si,优选衬底为Si衬底。
进一步地,在步骤S2中,采用电感耦合等离子体刻蚀工艺对第一材料层进行选择性各向同性刻蚀,优选气压控制在3~80mT,优选反应温度为0~90℃,优选上射频功率为100~2000W,下射频功率为0~30W。
进一步地,电感耦合等离子体刻蚀工艺的刻蚀气体包括CF4、O2和He,优选刻蚀气体的总流量为100~1000sccm,优选刻蚀气体中CF4体积比为50~90%,O2的体积比为5~90%,He的体积比为10~50%。
根据本发明的另一方面,提供了一种纳米针尖结构的制备方法,包括以下步骤:采用上述的选择性刻蚀方法,将第一材料层形成纳米针尖结构;去除第二材料层,以将纳米针尖结构的顶部裸露。
进一步地,在选择性刻蚀方法的步骤S1中,沿第一材料层的厚度方向掺杂元素的浓度的递增范围为5~50%,第一材料层的厚度方向为远离衬底的方向。
进一步地,在选择性刻蚀方法的步骤S1与步骤S2之间,选择性刻蚀方法还包括以下步骤:刻蚀第一材料层和第二材料层,以在衬底表面形成圆形凸台。
进一步地,选择性刻蚀方法的步骤S2包括:采用电感耦合等离子体刻蚀工艺对第一材料层进行选择性各向同性刻蚀,以形成纳米针尖结构。
进一步地,在步骤S2之后,制备方法还包括以下步骤:在纳米针尖结构表面覆盖导电薄膜,以形成导电针尖结构,优选导电薄膜为Au层或Pt层;或在纳米针尖结构表面覆盖超硬材料,以形成扫面显像针尖结构,优选超硬材料为Si3N4或多晶金刚石;或在纳米针尖结构表面覆盖红外吸收薄膜,并将纳米针尖结构设置于红外探测器的吸收面,优选红外吸收薄膜为SiN或TiO2
应用本发明的技术方案,提供了一种选择性刻蚀方法,该方法先在衬底上顺序形成第一材料层和第二材料层,第一材料层与第二材料层的刻蚀选择比大于10,第一材料层含有掺杂元素,且沿第一材料层的厚度方向掺杂元素的浓度呈线性递增,然后对第一材料层进行选择性各向同性刻蚀,选择性各向同性刻蚀的刻蚀速率与掺杂元素的浓度具有正线性关系,以使第一材料层形成倾斜侧壁。本申请利用刻蚀工艺中刻蚀速率与待刻蚀材料中掺杂元素的浓度之间的正线性关系,得到与浓度递增的方向相反的倾斜侧壁,从而采用上述选择性刻蚀方法,能够得到锐利度较高的纳米针尖结构,工艺简单、稳定性高;并且,上述选择性刻蚀方法还能够通过对待刻蚀材料中掺杂元素的浓度梯度进行合理选取,以灵活调节针尖结构的尺寸、形貌以及角度,可以通过增大第一材料层中掺杂元素的浓度梯度,以增大对第一材料层的刻蚀速率梯度,从而获得倾斜角度更大的针尖结构。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了在本申请实施方式所提供的纳米针尖结构的制备方法中,在衬底上顺序形成第一材料层和第二材料层后的基体剖面结构示意图;
图2示出了刻蚀图1所示的第一材料层和第二材料层以在衬底表面形成凸台后的基体剖面结构示意图;
图3示出了图2所示的基体的俯视结构示意图;
图4示出了对图2所示的第一材料层进行选择性各向同性刻蚀后的基体剖面结构示意图;
图5示出了图4所示的第二材料层被刻蚀形成纳米针尖结构后,采用湿法腐蚀工艺去除第二材料层后的基体剖面结构示意图;
图6示出了图5所示的基体的俯视结构示意图;
图7示出了在本申请实施方式所提供的锗纳米针尖结构的制备方法中,第一材料层中掺杂元素的浓度从10%逐步升高到25%时,形成的纳米针尖结构的剖面结构示意图;
图8示出了在本申请实施方式所提供的锗纳米针尖结构的制备方法中,第一材料层中掺杂元素的浓度从5%逐步提高到50%时,形成的纳米针尖结构的剖面结构示意图;
图9示出了在本申请实施方式所提供的一种锗纳米针尖结构的制备方法的流程示意图。
其中,上述附图包括以下附图标记:
10、衬底;20、第一材料层;210、针尖预备层;220、纳米针尖结构;30、第二材料层;40、掩膜层。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如背景技术中所介绍的,现有技术中纳米针尖的制备常采用电化学刻蚀、机械剪切、场致蒸发、聚焦离子铣削等方法,方法复杂,制作成本高,很难批量生产。本发明的发明人针对上述问题进行研究,提出了一种选择性刻蚀方法,包括以下步骤:S1,在衬底上顺序形成第一材料层和第二材料层,其中第一材料层对第二材料层的各向同性刻蚀选择比大于10,第一材料层含有掺杂元素,且沿第一材料层的厚度方向掺杂元素的浓度呈线性递增;S2,对第一材料层进行选择性各向同性刻蚀,选择性各向同性刻蚀的刻蚀速率与掺杂元素的浓度具有正线性关系,以完成对第一材料层的外壁的刻蚀。
本申请利用刻蚀工艺中刻蚀速率随待刻蚀材料中掺杂元素的浓度之间的正线性关系,得到与浓度递增的方向相反的倾斜侧壁,从而采用上述选择性刻蚀方法,能够得到锐利度较高的纳米针尖结构,工艺简单、稳定性高;并且,上述选择性刻蚀方法还能够通过对待刻蚀材料中掺杂元素的浓度梯度进行合理选取,以灵活调节的针尖结构的尺寸、形貌以及角度,可以通过增大第一材料层中掺杂元素的浓度梯度,以增大对第一材料层的刻蚀速率梯度,从而获得倾斜角度更大的针尖结构。
下面将更详细地描述根据本发明提供的选择性刻蚀方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。
首先,执行步骤S1:在衬底上顺序形成第一材料层和第二材料层,其中第一材料层对第二材料层的各向同性刻蚀选择比大于10;第一材料层的材料为含有掺杂元素的材料,且沿第一材料层的厚度方向掺杂元素的浓度呈线性递增。
在上述步骤S1中,为了保证在同一选择性各向同性刻蚀工艺中,第一材料层相比于第二材料层能够具有更高的刻蚀速率,使第二材料层未被刻蚀,优选地,第一材料层与第二材料层的各向同性刻蚀选择比大于50。本领域技术人员可以根据刻蚀选择比并结合现有技术对上述第一材料层和第二材料层进行合理选取。
在一种优选的实施方式中,上述第一材料层由两种IV族元素组成,第一材料层中的掺杂元素为其中一种IV族元素;可选地,上述掺杂元素为Ge,此时形成第一材料层的材料为SiGe或SnGe。
当形成上述第一材料层的材料为SiGe时,为了获得第一材料层对第二材料层,很高的各向同性刻蚀选择比,更为优选地,形成上述第二材料层的材料为Si;并且,更为优选地,上述衬底为Si衬底。由于Si对SiGe的晶格匹配度高,从而不仅易于第一材料层在衬底上的生长,也易于第二材料层在第一材料层上的生长。
需要注意的是,上述第一材料层并不局限于上述优选的种类,在另一种优选的实施方式中,形成第一材料层的材料为III-V族化合物,掺杂元素为III族或V族元素。例如,形成第一材料层的材料可以为InP,此时形成第二材料层的材料可以为SiC,衬底可以为SiC衬底。此时,上述第一材料层的腐蚀溶液可以为H3PO4和H2O2,腐蚀速率与P的含量成正相关,且H3PO4和H2O2不会腐蚀SiC。
在上述步骤S1中,可以通过在外延工艺中逐渐增大生长气体的流量,以保证第一材料层从衬底往上生长时浓度能够从厚度方向线性递增,以外延生长SiGe形成第一材料层为例,生长气体为SiH4和GeH4,GeH4气体比例会直接决定了最终生长出来材料的Ge浓度,所以生长过程中,GeH4气体流量不固定,随着生长时间的进行GeH4气体流量逐渐增大,最终SiGe材料薄膜中Ge浓度将逐渐提高。
在上述步骤S2中,可以采用电感耦合等离子体(ICP)刻蚀工艺对第一材料层进行选择性各向同性刻蚀,为了保证在选择性各向同性刻蚀工艺中,刻蚀速率能够随第一材料层中掺杂元素的浓度呈线性递增,优选地,上述ICP刻蚀的工艺条件包括:气压控制在3~80mT,反应温度为0~90℃,上射频功率为100~2000W,下射频功率为0~30W。
上述ICP刻蚀工艺中的刻蚀气体可以包括CF4、O2和He,为了提高刻蚀效率及刻蚀效果,优选地,刻蚀气体的总流量为100~1000sccm,优选刻蚀气体中CF4体积比为50~90%,O2的体积比为5~90%,He的体积比为10~50%。
根据本发明的另一方面,还提供了一种纳米针尖结构的制备方法,如图1至图6所示,包括以下步骤:采用上述的选择性刻蚀方法,将第一材料层20形成纳米针尖结构220;去除第二材料层30,以将纳米针尖结构220的顶部裸露。
上述选择性刻蚀方法包括:S1,在衬底10上顺序形成第一材料层20和第二材料层30,如图1所示,其中第一材料层20对第二材料层30的各向同性刻蚀选择比大于1,第一材料层20的材料为含有掺杂元素的材料,含有掺杂元素的材料包括掺杂元素,且沿第一材料层20的厚度方向掺杂元素的浓度呈线性递增;S2,对第一材料层20进行选择性各向同性刻蚀,选择性各向同性刻蚀的刻蚀速率与掺杂元素的浓度具有正线性关系,以完成对第一材料层20的外壁的刻蚀,得到上述纳米针尖结构220,如图2至图6所示。
由于第一材料层20中掺杂元素的浓度梯度会影响后续纳米针尖的锐利度,为了保证能够得到尖锐度较高的纳米针尖结构220,在上述选择性刻蚀方法的步骤S1中,优选地,沿第一材料层20的厚度方向掺杂元素的浓度的递增范围为5~50%,上述厚度方向是指远离衬底10的方向。
下面举例说明掺杂元素的浓度梯度对针尖结构的尺寸、形貌以及角度的影响,当第一材料层20中掺杂元素的浓度沿远离衬底10的方向从10%逐步升高到25%,横向选择性刻蚀的速率也在同一方向从低到高变化,从而使得第一材料层20在刻蚀后具有倾斜侧壁,如图7所示;当将第一材料层20中掺杂元素的浓度从5%逐步提高到50%,由于掺杂元素具有更大的浓度梯度,导致刻蚀速率的梯度增大,从而使第一材料层20在刻蚀后侧壁的倾斜角度增大,如图8所示,比较图7和图8可以看出,通过调整掺杂浓度能够使纳米针尖结构220具有更为尖锐的针尖结构。
在上述选择性刻蚀方法的步骤S1与步骤S2之间,优选地,该选择性刻蚀方法还包括以下步骤:刻蚀第一材料层20和第二材料层30,以在衬底10表面形成圆形凸台,如图2和图3所示。该圆形凸台的直径可以为32~500nm,但并不局限于上述范围,本领域技术人员可以根据现有技术实际的光刻能力和需求进行合理设定。
形成上述圆形凸台的步骤可以包括:在第二材料层30表面形成掩膜材料层,并对掩膜材料层进行其进行图形化处理以形成掩膜层40,使掩膜层40具有与欲形成的纳米针尖结构220底部相同的尺寸,然后利用该掩膜层40刻蚀下面的第一材料层20和第二材料层30,以将剩余的掩膜层40、第一材料层20和第二材料层30形成上述圆形凸台。
在一种优选的实施方式中,上述选择性刻蚀方法的步骤S2包括:采用电感耦合等离子体刻蚀工艺对第一材料层20进行选择性各向同性刻蚀,以形成纳米针尖结构220。然后,采用选择性湿法腐蚀工艺去除上述第二材料层30,以使最终形成的纳米针尖结构220的顶部裸露,如图4至图6所示。
去除上述第二材料层30的选择性湿法腐蚀工艺可以为现有技术中的常规刻蚀工艺,如第一材料层20的材料为SiGe,第二材料层30的材料为SiO2时,可以采用HF溶液将第二材料层30去除,当第二材料层30的材料为硅时,则可以采用TMAH溶液将第二材料层30去除,以将针尖结构的SiGe裸露,本领域技术人员可以根据第二材料层30的实际材料对刻蚀的工艺种类及工艺条件进行合理选取。
在另一种优选的实施方式中,上述选择性刻蚀方法的步骤S2包括以下步骤:S21,对第一材料层20和第二材料层30进行湿法刻蚀,以将第一材料层20形成针尖预备层210,如图4所示;S22,采用电感耦合等离子体刻蚀工艺对针尖预备层210进行选择性的干法刻蚀,以形成纳米针尖结构220。然后,采用湿法腐蚀工艺去除上述第二材料层30,以使最终形成的纳米针尖结构220的顶部裸露,如图5和图6所示。
在上述优选的实施方式中,步骤S21中是先采用湿法腐蚀去除部分的第一材料层20,由于湿法腐蚀适用于批量生产,从而能够用于制备针尖阵列结构,以提高其制备效率;本领域技术人员可以根据具体的待刻蚀材料并结合现有技术对上述湿法腐蚀的腐蚀液和工艺条件进行合理选取,在此不再赘述。
在利用上述湿法腐蚀去除第一材料层20中的部分后,形成针尖预备层210,然后执行上述步骤S22,采用电感耦合等离子体刻蚀工艺对针尖预备层210进行干法刻蚀,利用ICP刻蚀工艺中刻蚀速率与掺杂元素的浓度具有的正线性关系,并结合第一材料层20对第二材料层30较高的各向同性刻蚀选择比,使第一材料层20形成所需的纳米针尖结构220,而第二材料层30未被刻蚀。
在上述选择性刻蚀方法的步骤S2中,可以通过在衬底10上形成多个上述圆形凸台,并通过对各圆形凸台进行选择性各向同性刻蚀,以将多个圆形凸台中的第一材料层20形成针尖阵列结构。
在本发明的上述纳米针尖结构的制备方法中,制备得到的纳米针尖结构220能够应用于多种不同的技术领域中,下面将结合实施例,对本发明提供的纳米针尖结构220的制备方法以及制备得到的纳米针尖结构220的应用领域进行进一步说明。
实施例1
本实施例所提供的纳米针尖结构的制备方法如图1至图6所示,其工艺流程如图9所示,包括以下步骤:
在单晶硅的衬底10上顺序沉积SiGe和Si,以形成第一材料层20和第二材料层30,沿第一材料层20的厚度方向Ge的浓度呈线性递增,如图1所示;
在第二材料层30上沉积SiO2以形成掩膜材料层,采用光刻工艺及刻蚀工艺将掩膜材料层形成掩膜层40,掩膜层40具有与欲形成的纳米针尖结构的底部相同的尺寸,通过该掩膜层40刻蚀第一材料层20和第二材料层30,以在衬底表面形成凸台,如图2和图3所示;
采用电感耦合等离子体刻蚀工艺对第一材料层20进行选择性各向同性刻蚀,第二材料层30未被刻蚀,如图4所示,其中,气压控制在50mT,反应温度为50℃,上射频功率为1000W,下射频功率为20W,刻蚀气体包括CF4、O2和He,刻蚀气体的总流量为500sccm,刻蚀气体中CF4体积比为60%,O2的体积比为20%,He的体积比为20%;
第二材料层30被刻蚀形成纳米针尖结构220后,采用湿法腐蚀工艺去除第二材料层30,以使纳米针尖结构220的顶部裸露,如图5和图6所示。
实施例2
本实施例中提供的制备方法与实施例1的区别在于,在形成纳米针尖结构之后,该制备方法还包括以下步骤:
采用蒸发或溅射工艺在纳米针尖结构表面覆盖导电薄膜,以形成导电针尖结构,导电薄膜可以为Au层或Pt层。
上述导电针尖结构能够应用于导电探针或生物电极中。
实施例3
本实施例中提供的制备方法与实施例1的区别在于,在形成纳米针尖结构之后,该制备方法还包括以下步骤:
采用CVD工艺在纳米针尖结构表面外延生长超硬材料,以形成扫面显像针尖结构,上述超硬材料可以为Si3N4或多晶金刚石。
上述扫面显像针尖结构能够应用于耐磨的台阶仪、原子力显微镜(AFM)和隧道扫描电镜(STM)中。
实施例4
本实施例中提供的制备方法与实施例1的区别在于,衬底10为红外探测器的吸收面,且形成的纳米针尖结构呈阵列排布,在形成纳米针尖阵列结构之后,该制备方法还包括以下步骤:
采用CVD工艺或ALD工艺在纳米针尖阵列结构表面外延生长红外吸收薄膜,形成上述红外吸收薄膜的材料为SiN或TiO2
上述表面具有红外吸收薄膜的纳米针尖阵列结构应用于红外探测器的吸收面上,能够提高探测器的红外相应敏感性,提高器件的噪声等效温差性能。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1、本申请利用刻蚀工艺中刻蚀速率随待刻蚀材料中掺杂元素的浓度之间的正线性关系,得到与浓度递增的方向相反的倾斜侧壁,从而采用上述选择性刻蚀方法,能够得到锐利度较高的纳米针尖结构,工艺简单、稳定性高;
2、上述选择性刻蚀方法还能够通过对待刻蚀材料中掺杂元素的浓度梯度进行合理选取,以灵活调节的针尖结构的尺寸、形貌以及角度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种选择性刻蚀方法,其特征在于,包括以下步骤:
S1,在衬底上顺序形成第一材料层和第二材料层,其中所述第一材料层对所述第二材料层的各向同性刻蚀选择比大于10,所述第一材料层含有掺杂元素,沿所述第一材料层的厚度方向所述掺杂元素的浓度呈线性递增;
S2,对所述第一材料层进行选择性各向同性刻蚀,所述选择性各向同性刻蚀的刻蚀速率与所述掺杂元素的浓度具有正线性关系,以完成对所述第一材料层的外壁的刻蚀。
2.根据权利要求1所述的选择性刻蚀方法,其特征在于,
所述第一材料层由两种IV族元素组成,所述掺杂元素为其中一种IV族元素;或
形成所述第一材料层的材料为III-V族化合物,所述掺杂元素为III族或V族元素。
3.根据权利要求1所述的选择性刻蚀方法,其特征在于,所述掺杂元素为Ge,形成所述第一材料层的材料为SiGe或SnGe,优选形成所述第二材料层的材料为Si,优选所述衬底为Si衬底。
4.根据权利要求1至3中任一项所述的选择性刻蚀方法,其特征在于,在所述步骤S2中,采用电感耦合等离子体刻蚀工艺对所述第一材料层进行选择性各向同性刻蚀,优选气压控制在3~80mT,优选反应温度为0~90℃,优选上射频功率为100~2000W,下射频功率为0~30W。
5.根据权利要求4所述的选择性刻蚀方法,其特征在于,所述电感耦合等离子体刻蚀工艺的刻蚀气体包括CF4、O2和He,优选所述刻蚀气体的总流量为100~1000sccm,优选所述刻蚀气体中CF4体积比为50~90%,O2的体积比为5~90%,He的体积比为10~50%。
6.一种纳米针尖结构的制备方法,其特征在于,包括以下步骤:
采用权利要求1至5中任一项所述的选择性刻蚀方法,将第一材料层形成所述纳米针尖结构;
去除所述第二材料层,以将所述纳米针尖结构的顶部裸露。
7.根据权利要求6所述的制备方法,其特征在于,在所述选择性刻蚀方法的步骤S1中,沿所述第一材料层的厚度方向所述掺杂元素的浓度的递增范围为5~50%,所述第一材料层的厚度方向为远离所述衬底的方向。
8.根据权利要求6或7所述的制备方法,其特征在于,在所述选择性刻蚀方法的步骤S1与步骤S2之间,所述选择性刻蚀方法还包括以下步骤:
刻蚀所述第一材料层和所述第二材料层,以在所述衬底表面形成圆形凸台。
9.根据权利要求6或7所述的制备方法,其特征在于,所述选择性刻蚀方法的步骤S2包括:
采用电感耦合等离子体刻蚀工艺对所述第一材料层进行选择性各向同性刻蚀,以形成所述纳米针尖结构。
10.根据权利要求6或7所述的制备方法,其特征在于,在所述步骤S2之后,所述制备方法还包括以下步骤:
在所述纳米针尖结构表面覆盖导电薄膜,以形成导电针尖结构,优选所述导电薄膜为Au层或Pt层;或
在所述纳米针尖结构表面覆盖超硬材料,以形成扫面显像针尖结构,优选所述超硬材料为Si3N4或多晶金刚石;或
在所述纳米针尖结构表面覆盖红外吸收薄膜,并将所述纳米针尖结构设置于红外探测器的吸收面,优选所述红外吸收薄膜为SiN或TiO2
CN201910273149.XA 2019-04-04 2019-04-04 选择性刻蚀方法及纳米针尖结构的制备方法 Pending CN110002393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910273149.XA CN110002393A (zh) 2019-04-04 2019-04-04 选择性刻蚀方法及纳米针尖结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910273149.XA CN110002393A (zh) 2019-04-04 2019-04-04 选择性刻蚀方法及纳米针尖结构的制备方法

Publications (1)

Publication Number Publication Date
CN110002393A true CN110002393A (zh) 2019-07-12

Family

ID=67170093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910273149.XA Pending CN110002393A (zh) 2019-04-04 2019-04-04 选择性刻蚀方法及纳米针尖结构的制备方法

Country Status (1)

Country Link
CN (1) CN110002393A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607977A (zh) * 2021-08-30 2021-11-05 中国科学院重庆绿色智能技术研究院 一种太赫兹纳米近场扫描探针及其制作方法
CN114813808A (zh) * 2022-04-24 2022-07-29 胜科纳米(苏州)股份有限公司 一种半导体芯片截面结构的检测方法
CN115043375A (zh) * 2022-06-28 2022-09-13 上海积塔半导体有限公司 金属微结构及半导体器件的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509578B1 (en) * 1996-11-14 2003-01-21 Micron Technology, Inc. Method and structure for limiting emission current in field emission devices
TW200404735A (en) * 2002-09-30 2004-04-01 Chung-Lin Wang Nanoneedle chips and the production thereof
CN101398614A (zh) * 2008-09-12 2009-04-01 北京大学 一种基于Parylene的三维针尖电极阵列的制作方法
CN102007066A (zh) * 2008-02-07 2011-04-06 昆士兰大学 贴片制造
CN102765695A (zh) * 2012-08-06 2012-11-07 中北大学 基于静电场奇点自聚焦的圆片级低维纳米结构的制备方法
CN103681330A (zh) * 2012-09-10 2014-03-26 中芯国际集成电路制造(上海)有限公司 鳍部及其形成方法
CN103772721A (zh) * 2012-10-19 2014-05-07 金陵科技学院 一种新型的锥状阵列结构制备方法
CN105217565A (zh) * 2014-06-09 2016-01-06 中国科学院苏州纳米技术与纳米仿生研究所 一种单晶硅空心微针结构的制作方法
CN109173039A (zh) * 2018-08-17 2019-01-11 安徽中鼎玉铉新材料科技有限公司 倒漏斗形硅基实心微针阵列的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509578B1 (en) * 1996-11-14 2003-01-21 Micron Technology, Inc. Method and structure for limiting emission current in field emission devices
TW200404735A (en) * 2002-09-30 2004-04-01 Chung-Lin Wang Nanoneedle chips and the production thereof
CN102007066A (zh) * 2008-02-07 2011-04-06 昆士兰大学 贴片制造
CN101398614A (zh) * 2008-09-12 2009-04-01 北京大学 一种基于Parylene的三维针尖电极阵列的制作方法
CN102765695A (zh) * 2012-08-06 2012-11-07 中北大学 基于静电场奇点自聚焦的圆片级低维纳米结构的制备方法
CN103681330A (zh) * 2012-09-10 2014-03-26 中芯国际集成电路制造(上海)有限公司 鳍部及其形成方法
CN103772721A (zh) * 2012-10-19 2014-05-07 金陵科技学院 一种新型的锥状阵列结构制备方法
CN105217565A (zh) * 2014-06-09 2016-01-06 中国科学院苏州纳米技术与纳米仿生研究所 一种单晶硅空心微针结构的制作方法
CN109173039A (zh) * 2018-08-17 2019-01-11 安徽中鼎玉铉新材料科技有限公司 倒漏斗形硅基实心微针阵列的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607977A (zh) * 2021-08-30 2021-11-05 中国科学院重庆绿色智能技术研究院 一种太赫兹纳米近场扫描探针及其制作方法
CN113607977B (zh) * 2021-08-30 2024-05-28 中国科学院重庆绿色智能技术研究院 一种太赫兹纳米近场扫描探针及其制作方法
CN114813808A (zh) * 2022-04-24 2022-07-29 胜科纳米(苏州)股份有限公司 一种半导体芯片截面结构的检测方法
CN115043375A (zh) * 2022-06-28 2022-09-13 上海积塔半导体有限公司 金属微结构及半导体器件的制备方法

Similar Documents

Publication Publication Date Title
US20200118818A1 (en) Stretchable crystalline semiconductor nanowire and preparation method thereof
CN110002393A (zh) 选择性刻蚀方法及纳米针尖结构的制备方法
US9330910B2 (en) Method of forming an array of nanostructures
CN104569064B (zh) 一种石墨烯气体传感器及其制备方法
CN204138341U (zh) 硅衬底上的硅柱阵列
US8683611B2 (en) High resolution AFM tips containing an aluminum-doped semiconductor nanowire
WO2004010075A1 (en) Method for the production of nanometer scale step height reference specimens
KR20210052515A (ko) 유도형 나노와이어 어레이 기반의 광발전 장치
Walavalkar et al. Three-dimensional etching of silicon for the fabrication of low-dimensional and suspended devices
EP2250124B1 (en) Fabrication of atomic scale devices
Zhang et al. Free-standing Si/SiGe micro-and nano-objects
CN110010449B (zh) 一种高效制备一维碳纳米管/二维过渡金属硫族化合物异质结的方法
CN106645357B (zh) 一种晶体纳米线生物探针器件的制备方法
US10782313B2 (en) Method of fabricating nano-scale structures on the edge and nano-scale structures fabricated on the edge using the method
US9761669B1 (en) Seed-mediated growth of patterned graphene nanoribbon arrays
US7022621B1 (en) Iridium oxide nanostructure patterning
Wilbers et al. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures
CN106610439B (zh) 倾斜式硅针尖及其制作方法
CN104787754B (zh) 一种悬空石墨烯的制备方法
US9329203B1 (en) Ultra-sharp nanoprobes and methods
CN110203879A (zh) 一种硅纳米线的制备方法
US11651958B2 (en) Two-dimensional material device and method for manufacturing same
Zhu et al. Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes
KR101336100B1 (ko) 튜브형 단결정 실리콘 나노 구조물 및 그 제조방법
EP4297095A1 (en) Multifaceted semicondcutor device for a gate-all-around integrated device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190712

RJ01 Rejection of invention patent application after publication