CN109996930A - 处理井底地层带的方法 - Google Patents

处理井底地层带的方法 Download PDF

Info

Publication number
CN109996930A
CN109996930A CN201780054047.8A CN201780054047A CN109996930A CN 109996930 A CN109996930 A CN 109996930A CN 201780054047 A CN201780054047 A CN 201780054047A CN 109996930 A CN109996930 A CN 109996930A
Authority
CN
China
Prior art keywords
lotion
oil
water
phase
emulsifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780054047.8A
Other languages
English (en)
Other versions
CN109996930B (zh
Inventor
V·V·谢尔盖耶夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Co., Ltd
VI-Energy Co.,Ltd.
Original Assignee
Vi-Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vi-Energy Co Ltd filed Critical Vi-Energy Co Ltd
Publication of CN109996930A publication Critical patent/CN109996930A/zh
Application granted granted Critical
Publication of CN109996930B publication Critical patent/CN109996930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/502Oil-based compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/57Compositions based on water or polar solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/82Oil-based compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/845Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/14Double emulsions, i.e. oil-in-water-in-oil emulsions or water-in-oil-in-water emulsions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • C09K8/76Eroding chemicals, e.g. acids combined with additives added for specific purposes for preventing or reducing fluid loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/927Well cleaning fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/935Enhanced oil recovery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Colloid Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Cosmetics (AREA)

Abstract

本发明涉及石油工业,特别涉及石油生产集约化技术,旨在提高石油采收率。本发明的技术效果是提高乳液的稳定性,增加产油量,由于选择性阻断水饱和层段而提高具有高流速的油井的效率。本发明方法用于处理井底地层带区域,使用乳液,油封行程单缓冲区以及酸性组合物处理所述区域。在这种情况下,初步确定在BHZ中储层岩石的润湿性,并且在储层岩石为亲水性的情况下,使用具有以下组成的直接型乳液(质量%):烃相20‑25,乳化剂3‑5,胶体二氧化硅纳米粒子0.5‑3,水相为余量。在使用的储层岩石为疏水性的情况下,使用具有以下组成的反相型乳液(质量%):烃相40‑45,乳化剂3‑5,胶体二氧化硅纳米粒子1‑3,水相为余量。

Description

处理井底地层带的方法
技术领域
本发明涉及石油工业,特别涉及石油生产的集约化方法,旨在提高石油采收率。
背景技术
石油生产集约化方法提高效率的途径之一是使用复合技术处理井底地层带(BHZ)。这种类型的技术之一由俄罗斯联邦发明专利No.2583104(专利权人Sergeev VV,IPCE21B 43/27,E21B 33/138,出版于2016年5月10日)的研发者提出,适用于该原型。该技术包括两种类型的BHZ处理的结合。结合产生协同效应。作用分阶段进行:第一阶段是用反相乳化液(IES)处理高渗透性BHZ层段,第二阶段是用酸性组合物处理低渗透性BHZ层段。在这种情况下,IES包含(体积%):乳化剂2,烃相(柴油燃料)20,其余部分为水相。
该技术的主要特征之一是作用的选择性。使用IES来限制水从储层的高渗透区域流入仅提供对水饱和的BHZ层段的阻隔。IES在与烃相相互作用时降低粘度的能力阻止了低渗透层段的堵塞。通过IES阻隔水饱和的层段提供了酸性组合物对BHZ的低渗透层段的有效作用。
根据石油生产集约化技术油田试验对经处理的油井作业为期6个月的监测结果,确定平均技术效果为4个月。图1的表格反映了处理后的油井性能指标(Pashninskoe油田)的平均值。平均而言,4个月后,含水率再次增加到处理前的水平。
该方法的缺点是在储层条件下IES稳定性不够高。
用于处理地下油藏的现有技术的组合物包含直径为4-300nm的二氧化硅纳米粒子的胶体溶液(专利WO 2007135617 A1,专利持有人SCHLUMBERGER CA LTD,SCHLUMBERGERSERVICES PETROL,SCHLUMBERGER HOLDINGS,SCHLUMBERGER TECHNOLOGY BV,PRAD RES&DEVNV,ODEH NADIR MM,CHAABOUNI HASSAN,CHAN KENG SENG,ENKABABIAN PHILIPPE,IPC C09K8/504,C09K 8/506,C09K 8/516,出版日期29.11.2007)。已知的组合物形成凝胶有延迟。凝胶化所必需的羟基供体存在于油藏中,其在升高的温度下释放羟基,从而有助于形成胶凝剂。因此,该组合物阻隔含水地层层段。
该组合物的缺点是必须使用引爆供体羟基,其应预先泵入BHZ中。在处理吸收性层段的情况下,组合物将不是有效的,因为引爆羟基供体的低粘度溶液将经过吸收性层段到达储层深处并且不会阻塞吸收性层段。另一个缺点是需要产生高温以触发形成凝胶的反应。
现有技术的一种从地下地层生产烃的方法包括用反相乳化液处理注入井的BHZ以将油推入生产井(专利US 2006040661 A1,专利持有人CHOI HYUNG-NAM,ECKERT MICHAEL,LUFT ACHIM,IPC H04L 12/28,H04L 29/06,H04W 48/16,H04W 88/06,H04W 84/04,H04W84/12,出版日期29.11.2007)。反相乳化液包含烃相,水相和固体颗粒,它们可用作粒径为10-20纳米的胶体二氧化硅纳米粒子。通过提高乳液的稳定性和烃置换效率来实现已知的发明。
该组合物的缺点是需要通过气体使乳液的烃相饱和。这使制备组合物的过程复杂化并且需要使用特殊设备。该已知方法不是用于处理生产井的BHZ,而仅用于注入。
发明内容
要求保护的发明的技术效果是用于复杂技术的乳化剂,其具有增加的稳定性,以增强石油产量,获得额外的石油产量,由于选择性阻断水饱和层段而提高具有高流速的油井的效率。本发明的实质在于用乳液顺序处理BHZ,通过人为地降低储层的高渗透性层段的渗透性来限制水的流入,油封(oil pack)是缓冲区并且防止乳液与后注入的酸性组合物的相互作用。在这种情况下,初步确定了在BHZ中储层岩石的润湿性,并且在储层岩石为亲水性的情况下,使用具有以下组成的直接类型的乳液(质量%):烃相20-25,乳化剂3-5,胶体二氧化硅纳米粒子0.5-3,其余部分为水相。在使用的储层岩石为疏水性的情况下,使用具有以下组成的反相型乳液(质量%):烃相了40-45,乳化剂3-5,胶体二氧化硅纳米粒子1-3,其余部分为水相。胶体二氧化硅纳米粒子含有(质量%):丙烯酸中胶体二氧化硅40,丙二醇单甲醚59.5,其余部分为水。使用Sinol EM或Sinol EMI品牌的乳化剂作为乳化剂。使用柴油燃料或来自采油站的制备油作为烃相。使用氯化钙或氯化钠的水溶液作为水相。
附图说明
本发明通过以下图形资料来说明。
图1的表格反映了在根据原型的技术处理后的油井的主要操作指标(Pashninskoe油田)的平均值。
图2显示了在30rpm的主轴转速下直接和反相基础乳液的粘度对矿化水溶液含量的依赖性。
图3显示了在30rpm的主轴转速下具有SiO2纳米粒子的直接乳液的粘度对矿化水溶液含量的依赖性。
图4显示了在30rpm的主轴转速下具有SiO2纳米粒子的反相乳液的粘度对矿化水溶液的含量的依赖性。
图5显示了当与30%wt储层水的模型混合时,直接和反相乳液的粘度对纳米粒子含量的依赖性(主轴转速30rpm)。
图6显示了在与烃相混合之前和之后具有二氧化硅纳米粒子的直接乳液的动态粘度。
图7显示了在与烃相混合之前和之后具有二氧化硅纳米粒子的反相乳液的动态粘度。
具体实施方式
为了开发高稳定性乳液方案,以提高石油生产集约化方法的效率,已经进行了实验以研究添加二氧化硅纳米粒子的两种乳液(直接和反相)的粘度特性,并确定所开发的系统的热稳定性。
在DV-E VISCOMETER“BROOKFIELD”仪器上进行研究乳液动态粘度性质的实验室实验。
在进行实验之前,通过使用装置“CAT R50D”将以下基础乳液组分混合15分钟来制备基础乳液样品:柴油燃料,乳化剂和储层水模型(密度为1100kg/m3的氯化钙(CaCl2)或氯化钠(NaCl)水溶液)。
为了确定基础乳液的动态粘度的变化,将样品与储层水模型(CaCl2的水溶液,密度为1100kg/m3)混合。将储层水模型在20℃下加入样品中,体积百分比为(体积%):5;10;15;20;25;30(图2)。
先进行实验测定基础乳液粘度性质,然后确定样品粘度对二氧化硅纳米粒子含量的依赖性;当样品与附加体积的储层水混合时不同类型乳液中纳米粒子的最佳浓度;以及所述样品的稳定性。
总共制备了12个直接和反向乳液样品用于研究。样品中胶体二氧化硅纳米粒子的含量如下(质量%):0.5,1.0,2.0,3.0,4.0,5.0。之后,按照以下体积在每个样品中加入储层水模型(体积%):5,10,15,20,25,30。将组合物在磁力搅拌器“CAT R50D”上混合30分钟,然后进行粘度特性的测量。实验在20℃的温度下进行。
根据储层岩石的润湿性特征选择乳液的类型(直接或反相)。
在岩石为亲水性的情况下,应用以下组成的直接乳液(质量%):
烃相(石油或柴油燃料):20-25,
乳化剂(例如,品牌Sinol EM或Sinol EMI):3-5,
胶体二氧化硅纳米粒子:0.5-3,
水相(CaCl2或NaCl的水溶液):其余部分
根据实验结果,建立了不同浓度的胶体二氧化硅纳米粒子和储层水模型与直接乳液动态粘度的图形(图3)。
在岩石为疏水性的情况下,应用以下组成的反相乳液(质量%):
烃相(石油或柴油):40-45,
乳化剂(例如,品牌Sinol EM或Sinol EMI):3-5,
胶体二氧化硅纳米粒子:1-3,
水相(CaCl2或NaCl的水溶液):其余部分。
根据实验结果,建立了不同浓度的胶体二氧化硅纳米粒子和储层水模型(CaCl2水溶液)与反相乳液动态粘度的图形(图4)。
揭示的依赖性使我们可得出结论:当与30%质量的储层水模型混合时,在直接或反相乳液中存在0.5-3%质量范围的胶体二氧化硅纳米粒子导致乳液的粘度性质从4080mPa·s增加到6800mPa·s(图5)。
实验结果的统计分析可以确定乳液中胶体二氧化硅纳米粒子的最佳浓度在0.5-3%的质量范围内。
样品的热稳定性研究在水浴“LOIP LB-161”中进行。通过对含有15%质量的储层水模型添加剂的乳液样品的热稳定性进行实验,确定具有0.5-3%质量范围的胶体二氧化硅纳米粒子含量的样品在80℃的温度下具有最高48小时的热稳定性。
为了确定二氧化硅纳米粒子在与烃相相互作用时对降低乳液粘度的能力的影响,进行了实验,该实验可以确定烃对所研发系统的粘度性质的影响。
烃是不与水混溶的疏水性化合物。
然而,烃扩散到胶束内芯中的能力影响它们的形状、尺寸,因此影响乳液的流变性质。
为了进行实验,选择具有1%质量的胶体二氧化硅纳米粒子的直接和反相乳液样品。在每个样品中分别加入以下各种体积的储层水模型(体积%):5,10,15,20,25,30。因此,获得了具有不同储层水模型含量的12个样品。研究烃对乳液流变性质影响的实验如下。
将具有不同含量的储层水模型的样品交替地与油(粘度22MPa·s,密度866kg/m3)在烧瓶中按50到20ml油的比例混合,并摇动20秒。将得到的样品在40℃的水浴中保持1小时。曝光后,观察到系统相分离为上部烃相和下部水相。之后,在旋转粘度计上以30rpm的主轴速度测量所得样品的粘度。实验结果图示在图6和7中。
根据实验结果,确定了所研发的乳液对烃的高灵敏度。与油混合会导致粘度显著降低:从最大值6430到90MPa·s,最小值2730到40MPa·s。
在实验的最后阶段,将每个样品通过筛(筛孔尺寸500μm)过滤。在筛网上未观察到高粘度沉积物和单个凝块。
因此,实验结果证实了所研发的乳液在与烃相相互作用时显著降低粘度的能力,这在石油生产集约化方法或提高石油采收率中使用该乳液时非常重要。
乳液选择性地阻隔石油储层的含水层段的能力是其主要特征和优点。
同时,对于直接乳液,最有效的是以下成分(质量%):
乳化剂(例如,品牌Sinol EM或Sinol EMI):3-5,
烃相(石油或柴油):20-25,
胶体二氧化硅纳米粒子:0.5-3,
水相(CaCl2或NaCl的水溶液):其余部分,
其中,
胶体二氧化硅纳米粒子包含(质量%):
丙烯酸中胶体二氧化硅:40,
丙二醇单甲醚:59.5,
水:其余部分。
对于反相乳液,最有效的是以下组成(质量%):
乳化剂(例如,品牌Sinol EM或Sinol EMI):3-5,
烃相(油或柴油):40-45,
胶体二氧化硅纳米粒子:1-3,
水相(CaCl2或NaCl的水溶液):其余部分,
其中,胶体二氧化硅纳米粒子包含(质量%):
丙烯酸中胶体二氧化硅:40,
丙二醇单甲醚:59.5,
水:其余部分。
二氧化硅粒子的优选尺寸为45nm。
实施该方法时,建议使用集油站制备的油或柴油作为烃相。
以下是该方法的示例。
已经进行了对储层目标层段的初始地质和物理信息的分析。通过分析,确定了主要的地质和物理参数,包括储层岩石的润湿性。
确定石油储层岩石润湿性的最常用方法是通过使用现代专业光学数字技术测量在水-烃液体系统中在岩石表面上形成的弯月面的角度来光学测量润湿角。如果岩石被水润湿,则润湿角θ几乎为零,这是岩石亲水性的指标。如果岩石被油润湿,则润湿角θ接近180°,这是岩石疏水性的指标。在具有中间润湿性的表面上,接触角取决于表面张力的平衡。
在这个例子中,岩石的润湿角几乎为零,这是岩石亲水性的指标(即岩石被水润湿),在此基础上确定了乳液的类型—直接型。
催在处理之前,有必要通过执行以下技术操作来确保BHZ的清洁度:
-用下冲管鞋或“羽毛”进行管道下降。(спуск колонны насосно-компрессорных труб(далее-НКТ)своронкой или пером до искусственного забоя)
-使用标准冲洗溶液对井进行初步冲洗,使管道逐渐耐受射孔层段,并通过冲洗液下降到底部,由于质量含量为1-2%的表面活性剂,这不会降低BHZ岩石的渗透性。
-漏斗安装在射孔层段的底部。
完成所有准备工作后,继续进行用于BHZ选择性处理的工艺操作:
1)按以下顺序将乳液注入管道和将封隔器装入:
--泵送乳液至目标层段顶部射孔上方10-15米的水平。直接乳液含有(质量%):乳化剂3-5,烃相20-25,胶体二氧化硅纳米粒子溶液0.5-3,其余为水相,其中胶体二氧化硅纳米粒子溶液含有(质量%):丙烯酸中胶体二氧化硅40,丙二醇单甲醚59.5,其余为水。使用Sinol EM品牌的乳化剂,以柴油燃料作为烃相,并以氯化钙水溶液作为水相。乳液通过人工降低高渗透性水饱和区的渗透性来限制水的流入。
--安装封隔器(上部射孔上方1-5米)。
--继续注入剩余体积的乳液,以便其进一步推进至目标层段。
2)将估计量(0.2吨)的作为缓冲区的油封(油环)泵入管道中以防止乳液与酸性组合物(下一步注入)在井筒中直接接触。
3)用计算量的酸性组合物推动管道中的工艺液体(带油环的乳液)。使用以下组成的酸性组合物:15%盐酸,二甘醇,乙酸,酰胺基防水剂,腐蚀抑制剂,工艺用水。
将酸性组合物泵送至管道端部的高度。将乳液移入储层期间的压力设定在不高于套管上的安全压力的水平。
4)用含有表面活性剂(2-3%质量)的水溶液将管道中的液体(乳液+油环+酸性组合物)推到管道末端。ChAS-M或IVV-1防水剂可用作表面活性剂。
由于乳液阻隔了高渗透性层段,酸性组合物被推入石油储层的非工作的、低渗透性中间层中。用含有表面活性剂的盐水溶液将酸性组合物移动到储层中。
5)关闭管道上的阀门并保留孔以使酸与岩石反应。暴露时间取决于组合物中盐酸的浓度。通过实验室方法确定更准确的时间,以在使用中用酸性组合物溶解岩心。
进行最后的工作:
1)用井筒的两个体积的量抽汲井,以从储层中除去反应产物。
2)抬起油管柱、泵送设备,并启动油井投入运行。
3)为了研究技术效果,进行了一系列水动力和地球物理研究,旨在确定生产率系数和BHZ中流体流动的分布。
在储层岩石为疏水性的情况下,该方法可以类似地执行,但是使用具有以下组成的反相乳液(质量%):烃相40-45,乳化剂3-5,胶体二氧化硅纳米粒子1-3,其余为水相。
因此,本发明提供了用于复杂技术的乳化剂,其具有增加的稳定性,以增强石油产量,获得额外的石油产量,由于选择性阻断水饱和层段而提高具有高流速的油井的效率。
参考文献:
1.Shibaev,А.V.蠕虫状胶束的粘弹性溶液在吸收碳氢化合物后如何转变成微乳液(How a viscoelastic solution of wormlike micelles transforms into amicroemulsion upon absorption of hydrocarbon):新见解(New insight)[TEXT]/A.V.Shibaev,M.V.Tamm,V.S.Molchanov,A.V.Rogachev,A.I.Kuklin,E.E.Dormidontova,O.E.Philippova//Langmuir.-2014.-V.30.-No13.-P.3705-3714.
2.Pletneva,V.A.基于蠕虫状表面活性剂胶束和相反带电磁性粒子的智能流体的粘弹性(Viscoelasticity of Smart Fluids Based on Wormlike Surfactant Micellesand Oppositely Charged Magnetic Particles)/V.A.Pletneva,V.S.Molchanov,O.E.Philippova[Text]//Langmuir.-2015.-V.31(1).-P.110-1 19.
3.Nettesheim,F.纳米粒子对蠕虫状胶束溶液性质的影响(Influence ofNanoparticle Addition on the Properties of Wormlike Micellar Solutions)[Text]/F.Nettesheim,M.W.Liberatore,Т.К.Hodgdon,N.J.Wagner,E.W.Kaler,M.Vethamuthu//Langmuir.-2008.-V.24.-P.7718-7726.
4.Ismagilov Ilnur Fanzatovich的博士论文,“基于阴离子表面活性剂和二氧化硅纳米粒子的圆柱形胶束的超分子体系”2016年喀山“喀山国立研究科技大学”的FSBEI。(Диссертация на соискание к.х.н.Исмагилов Ильнур Фанзатович.《Супрамолекулярная система на основе цилиндрических мицелл анионногоПАВ и наночастиц оксида кремния》.ФГБОУ ВО《Казанский национальный исследовательский технологический университет》,Казань,2016г.)
5.石油和天然气审查,斯伦贝谢公司,2007年夏季。(Нефтегазовое обозрение.Шлюмберже.Лето 2007г)

Claims (5)

1.一种处理井底地层带的方法,其特征在于:用乳液顺序处理井底地层带,该乳液通过人为地降低储层的高渗透层段的渗透性来限制水的流入,使用油封作为缓冲区防止乳液与后注入的酸性组合物的相互作用,其特征在于,预先确定井底地层中储层岩石的润湿性,并且在储层岩石为亲水性的情况下,使用具有以下组成的直接型乳液(质量%):
烃相:20-25,
乳化剂:3-5,
胶体二氧化硅纳米粒子:0.5-3,
水相:余量,
在储层岩石为疏水性的情况下,使用具有以下组成的反相型乳液(质量%):烃相:40-45,
乳化剂:3-5,
胶体二氧化硅纳米粒子:1-3,
水相:余量。
2.根据权利要求1所述的方法,其特征在于,所述胶体二氧化硅纳米粒子包含(质量%):
丙烯酸中胶体二氧化硅:40,
丙二醇单甲醚:59.5,
水相:余量。
3.根据权利要求1所述的方法,其特征在于,所述乳化剂为Sinol EM或SinolEMI。
4.根据权利要求1所述的方法,其特征在于,所述烃相为柴油燃料或集油站制备的石油。
5.根据权利要求1所述的方法,其特征在于,所述水相为氯化钙或氯化钠的水溶液。
CN201780054047.8A 2016-09-02 2017-02-21 处理井底地层带的方法 Active CN109996930B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2016135679 2016-09-02
RU2016135679A RU2631460C1 (ru) 2016-09-02 2016-09-02 Способ обработки призабойной зоны пласта
PCT/RU2017/000086 WO2018044200A1 (ru) 2016-09-02 2017-02-21 Способ обработки призабойной зоны пласта

Publications (2)

Publication Number Publication Date
CN109996930A true CN109996930A (zh) 2019-07-09
CN109996930B CN109996930B (zh) 2021-12-21

Family

ID=59931098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780054047.8A Active CN109996930B (zh) 2016-09-02 2017-02-21 处理井底地层带的方法

Country Status (6)

Country Link
US (1) US11162023B2 (zh)
EP (1) EP3508684B1 (zh)
CN (1) CN109996930B (zh)
EA (1) EA034198B1 (zh)
RU (1) RU2631460C1 (zh)
WO (1) WO2018044200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562239A (zh) * 2022-03-07 2022-05-31 吉林大学 采用纳米流体提高水合物藏开采效率的方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662721C1 (ru) * 2017-10-05 2018-07-27 Виталий Вячеславович Сергеев Способ глушения нефтяных и газовых скважин в осложненных условиях (варианты)
RU2662720C1 (ru) * 2017-10-05 2018-07-27 Виталий Вячеславович Сергеев Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты)
RU2670308C1 (ru) * 2017-11-13 2018-10-22 Общество с ограниченной ответственностью "Джиар Петролеум" Способ ликвидации поглощений бурового раствора при строительстве нефтяных и газовых скважин
RU2670307C1 (ru) * 2017-11-13 2018-10-22 Общество с ограниченной ответственностью "Джиар Петролеум" Способ предупреждения проявлений при строительстве нефтяных и газовых скважин
RU2700851C1 (ru) 2018-06-18 2019-09-23 Общество с ограниченной ответственностью "ВИ-ЭНЕРДЖИ" Способ селективной обработки призабойной зоны пласта
RU2702175C1 (ru) * 2018-06-18 2019-10-04 Общество с ограниченной ответственностью "ВИ-ЭНЕРДЖИ" Способ обработки призабойной зоны пласта с высокопроницаемыми трещинами гидравлического разрыва пласта
RU2728168C9 (ru) * 2020-01-21 2020-10-28 Общество с ограниченной ответственностью "Джиар Петролеум" Способ предотвращения прорывов пластовых вод к забоям газовых, газоконденсатных или газогидратных скважин

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068054A (en) * 1997-05-23 2000-05-30 Exxon Production Research Company Oil recovery method using an emulsion
CN1472418A (zh) * 2003-06-26 2004-02-04 辽宁天意实业股份有限公司 一种高温高压人工防砂井壁及其施工工艺
US20090211758A1 (en) * 2005-12-22 2009-08-27 Bragg James R Method of Oil Recovery Using a Foamy Oil-External Emulsion
RU2394155C1 (ru) * 2009-03-30 2010-07-10 Общество с ограниченной ответственностью "Дельта-пром" Способ разработки неоднородного нефтяного пласта
CN101835956A (zh) * 2007-03-23 2010-09-15 德克萨斯州立大学董事会 用于处理水堵井的组合物和方法
KR101020485B1 (ko) * 2010-09-20 2011-03-09 김택수 침투성 발수 강화 코팅재 조성물 및 이를 사용한 노면 그루브 시공방법
CN102268975A (zh) * 2011-06-30 2011-12-07 中国石油天然气股份有限公司 一种乳化稠油堵水施工工艺
CN102387854A (zh) * 2009-06-25 2012-03-21 科莱恩金融(Bvi)有限公司 油包水乳液及其制备方法
US20120125616A1 (en) * 2009-07-22 2012-05-24 Bergen Teknologioverforing Method for integrated enhanced oil recovery from heterogeneous reservoirs
CN102575146A (zh) * 2009-07-27 2012-07-11 普拉德研究及开发股份有限公司 通过控制吸水以促进页岩气生产的微乳液
CN103256032A (zh) * 2013-05-31 2013-08-21 中国地质大学(北京) 一种利用纳米粉体材料增强低渗油田注水能力的方法
CN103992781A (zh) * 2014-04-22 2014-08-20 中国石油技术开发公司 一种稠油热采封窜剂及其注入方法
CN104448126A (zh) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 苛刻油藏反相微乳液调驱体系及其制备方法
CN104610945A (zh) * 2013-11-05 2015-05-13 中国石油化工集团公司 一种环保型强封堵油基钻井液
AU2015261738A1 (en) * 2012-04-27 2015-12-24 Halliburton Energy Services, Inc. Well treatment compositions and methods utilizing nano-particles
CN105295878A (zh) * 2014-07-21 2016-02-03 中国石油化工股份有限公司 一种纳米二氧化硅乳化堵水剂及其应用
CN105419750A (zh) * 2014-09-17 2016-03-23 Cesi化工有限公司 用于油井和/或气井的方法和组合物
RU2583104C1 (ru) * 2014-12-17 2016-05-10 Виталий Вячеславович Сергеев Способ обработки призабойной зоны пласта

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60325966D1 (de) * 2002-05-24 2009-03-12 3M Innovative Properties Co Verwendung von oberflächenmodifizierten nanopartikeln zur ölgewinnung
RU2242494C2 (ru) * 2002-11-06 2004-12-20 Общество с ограниченной ответственностью "Кубаньгазпром" Реагент для выноса водоконденсатной смеси из скважины
US7458424B2 (en) * 2006-05-16 2008-12-02 Schlumberger Technology Corporation Tight formation water shut off method with silica gel
US7975764B2 (en) * 2007-09-26 2011-07-12 Schlumberger Technology Corporation Emulsion system for sand consolidation
US8822386B2 (en) * 2010-06-28 2014-09-02 Baker Hughes Incorporated Nanofluids and methods of use for drilling and completion fluids
RU2494245C1 (ru) * 2012-04-18 2013-09-27 Общество с ограниченной ответственностью "Научно-производственный центр "Интехпромсервис" Способ обработки призабойной зоны пласта
US20140116695A1 (en) * 2012-10-30 2014-05-01 Halliburton Energy Services, Inc. Emulsified acid with hydrophobic nanoparticles for well stimulation

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068054A (en) * 1997-05-23 2000-05-30 Exxon Production Research Company Oil recovery method using an emulsion
CN1472418A (zh) * 2003-06-26 2004-02-04 辽宁天意实业股份有限公司 一种高温高压人工防砂井壁及其施工工艺
US20090211758A1 (en) * 2005-12-22 2009-08-27 Bragg James R Method of Oil Recovery Using a Foamy Oil-External Emulsion
CN101835956A (zh) * 2007-03-23 2010-09-15 德克萨斯州立大学董事会 用于处理水堵井的组合物和方法
RU2394155C1 (ru) * 2009-03-30 2010-07-10 Общество с ограниченной ответственностью "Дельта-пром" Способ разработки неоднородного нефтяного пласта
CN102387854A (zh) * 2009-06-25 2012-03-21 科莱恩金融(Bvi)有限公司 油包水乳液及其制备方法
US20120125616A1 (en) * 2009-07-22 2012-05-24 Bergen Teknologioverforing Method for integrated enhanced oil recovery from heterogeneous reservoirs
CN102575146A (zh) * 2009-07-27 2012-07-11 普拉德研究及开发股份有限公司 通过控制吸水以促进页岩气生产的微乳液
KR101020485B1 (ko) * 2010-09-20 2011-03-09 김택수 침투성 발수 강화 코팅재 조성물 및 이를 사용한 노면 그루브 시공방법
CN102268975A (zh) * 2011-06-30 2011-12-07 中国石油天然气股份有限公司 一种乳化稠油堵水施工工艺
AU2015261738A1 (en) * 2012-04-27 2015-12-24 Halliburton Energy Services, Inc. Well treatment compositions and methods utilizing nano-particles
CN103256032A (zh) * 2013-05-31 2013-08-21 中国地质大学(北京) 一种利用纳米粉体材料增强低渗油田注水能力的方法
CN104448126A (zh) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 苛刻油藏反相微乳液调驱体系及其制备方法
CN104610945A (zh) * 2013-11-05 2015-05-13 中国石油化工集团公司 一种环保型强封堵油基钻井液
CN103992781A (zh) * 2014-04-22 2014-08-20 中国石油技术开发公司 一种稠油热采封窜剂及其注入方法
CN105295878A (zh) * 2014-07-21 2016-02-03 中国石油化工股份有限公司 一种纳米二氧化硅乳化堵水剂及其应用
CN105419750A (zh) * 2014-09-17 2016-03-23 Cesi化工有限公司 用于油井和/或气井的方法和组合物
RU2583104C1 (ru) * 2014-12-17 2016-05-10 Виталий Вячеславович Сергеев Способ обработки призабойной зоны пласта

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Л.Т.ЗАХАРЕНКО ,余昊: "利用Полисил-ДФ反相油水乳化液选择性堵水", 《国外油田工程》 *
付云,张铜耀,尹洪超: "选择性堵水剂研究进展及应用中存在的问题分析", 《化学工程与装备》 *
刘翔鹗著: "《刘翔鹗采油工程技术论文集》", 31 March 1999 *
李刚辉 等: "柴油基纳米粒子乳液的制备及其堵水性能研究", 《陕西科技大学学报》 *
赵永峰,熊金平,左禹: "田堵水用反相乳液的制备与性能研究", 《精细石油化工进展》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562239A (zh) * 2022-03-07 2022-05-31 吉林大学 采用纳米流体提高水合物藏开采效率的方法及装置

Also Published As

Publication number Publication date
EA034198B1 (ru) 2020-01-16
WO2018044200A1 (ru) 2018-03-08
CN109996930B (zh) 2021-12-21
EP3508684A1 (en) 2019-07-10
EA201890853A1 (ru) 2018-09-28
EP3508684B1 (en) 2023-08-30
US11162023B2 (en) 2021-11-02
EP3508684A4 (en) 2020-04-08
RU2631460C1 (ru) 2017-09-22
US20190241797A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
CN109996930A (zh) 处理井底地层带的方法
CA3080924C (en) Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery
AU2014281205B2 (en) Simultaneous method for combined acidizing and proppant fracturing
RU2452851C2 (ru) Способы добычи нефти из нефтяного месторождения
Al-Assi et al. Formation and propagation of gel aggregates using partially hydrolyzed polyacrylamide and aluminum citrate
WO2017136641A1 (en) Mesoporous silica nanoparticles as fluorescent tracers for reservoir characterization
Khalilinezhad et al. Characterizing the role of clay and silica nanoparticles in enhanced heavy oil recovery during polymer flooding
AU2016250381A1 (en) Determining residual surfactant concentrations in produced water
MX2014013141A (es) Activadores biodegradables para sol de gel silice para bloqueo de permeabilidad.
US20160264849A1 (en) Hydrofluoric Based Invert Emulsions for Shale Stimulation
CN103958643A (zh) 作为油藏纳米试剂的碳基荧光示踪剂
EA017431B1 (ru) Приготовление вязкой композиции под землей
CN103748190A (zh) 修井流体和用该流体修井的方法
CN101568616A (zh) 石油的提取
US10550307B2 (en) One-step consolidation treatment
RU2614827C2 (ru) Способ добычи нефти из подземных нефтяных месторождений
Wang et al. Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection
Taiwo et al. SURFACTANT AND SURFACTANT-POLYMER FLOODING FOR LIGHT OIL: A GUM ARABIC APPROACH.
Qing et al. Study and application of gelled foam for in-depth water shutoff in a fractured oil reservoir
CA3137118A1 (en) Cationic formation stabilizers compatible with anionic friction reducing polymers
Wang et al. Experimental evaluations of nano high-viscosity friction reducers to improve acid fracturing efficiency in low-permeability carbonate reservoirs
Dong et al. Effect of wettability of ceramic proppant surface in guar gum solution on the oil flow efficiency in fractures
Taiwo et al. Characterization of surfactant flooding for light oil using Gum Arabic
Linjing et al. Characteristics of damage of guar fracturing fluid to reservoir permeability
WO2015041661A1 (en) Composition for stabilizing unconsolidated formation and fines agglomeration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211129

Address after: Office 89, bosoi Avenue, 42, building 1, Skolkovo innovation center, Moscow, Russia

Applicant after: VI-Energy Co.,Ltd.

Applicant after: Nissan Chemical Co., Ltd

Address before: Innovation Center in Skolkovo, Moscow, Russian Federation

Applicant before: VI-Energy Co.,Ltd.

GR01 Patent grant
GR01 Patent grant