RU2662720C1 - Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты) - Google Patents

Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты) Download PDF

Info

Publication number
RU2662720C1
RU2662720C1 RU2017135375A RU2017135375A RU2662720C1 RU 2662720 C1 RU2662720 C1 RU 2662720C1 RU 2017135375 A RU2017135375 A RU 2017135375A RU 2017135375 A RU2017135375 A RU 2017135375A RU 2662720 C1 RU2662720 C1 RU 2662720C1
Authority
RU
Russia
Prior art keywords
oil
vol
silicon dioxide
rest
wells
Prior art date
Application number
RU2017135375A
Other languages
English (en)
Inventor
Виталий Вячеславович Сергеев
Original Assignee
Виталий Вячеславович Сергеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виталий Вячеславович Сергеев filed Critical Виталий Вячеславович Сергеев
Priority to RU2017135375A priority Critical patent/RU2662720C1/ru
Application granted granted Critical
Publication of RU2662720C1 publication Critical patent/RU2662720C1/ru
Priority to EP18864963.6A priority patent/EP3693539A4/en
Priority to CN201880075678.2A priority patent/CN111406144B/zh
Priority to PCT/RU2018/050121 priority patent/WO2019070166A1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/426Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности, а именно к технологиям глушения нефтяных и газовых скважин. Технический результат - повышение эффективности геолого-технических мероприятий по глушению нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта. Способ согласно первому варианту применяется при приемистости скважин выше 350 м3/сут и включает последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор гидрофобных наночастиц двуокиси кремния, тампонирующие частицы - гидрофильные наночастицы двуокиси кремния, а также водный раствор хлористого кальция или хлористого калия. Коллоидный раствор гидрофобных наночастиц двуокиси кремния состоит из двуокиси кремния, монометилового эфира пропиленгликоля и воды. В качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора. Способ согласно второму варианту применяется при приемистости скважин выше 350 м3/сут, в данном случае в качестве тампонирующих частиц используют гидрофильные микрочастицы ильменита или тетраоксида тримарганца. 2 н.п. ф-лы, 10 ил.

Description

Изобретение относится к нефтедобывающей промышленности, а именно к технологиям глушения нефтяных и газовых скважин.
Современное состояние нефтегазоносных объектов разработки в основных нефтегазодобывающих странах характеризуется истощением запасов нефти и газа. Данный факт приводит к необходимости широкого внедрения различных видов физических и химических методов воздействия на нефтегазоносные пласты с целью интенсификации добычи нефти. Одним из наиболее широко распространенных физических методов интенсификации добычи нефти является гидравлический разрыв пласта (далее - ГРП). Гидравлический разрыв пласта направлен на создание в продуктивном пласте сети высокопроницаемых трещин, которые обеспечивают приток нефти и газа из менее проницаемых и слабодренируемых зон продуктивного пласта.
Наряду с этим, гидравлический разрыв пласта имеет и недостатки, к примеру, неконтролируемый рост трещины гидравлического разрыв пласта приводит к тому, что под высоким давлением гидроразрыва, трещины прорываются к ниже или вышележащим водоносным пластам и этим обеспечивают гидродинамическое сообщение скважины с водоносными пластами.
Дополнительные сложности для специалистов отрасли представляют вопросы глушения скважин, в которых был проведен гидравлический разрыв пласта, т.к. наличие в призабойной зоне пласта (далее - ПЗП) искусственно созданной сети высокопроницаемых трещин, закрепленной пропантом, приводит к поглощению огромных объемов жидкостей глушения на водной основе, что отрицательно сказывается на фазовой проницаемости горных пород и снижает эффективность геолого-технических мероприятий по глушению, освоению и выводу скважины на режим.
Из уровня техники известен способ глушения нефтяных и газовых скважин (патент РФ на изобретение №2047745, МПК E21B 43/12, C09K 7/06, опубликован 10.11.1995), включающий последовательную закачку в призабойную зону пласта буферной жидкости, блокирующей жидкости и жидкости для глушения. При этом в качестве буферной жидкости используют поверхностно-активное вещество (далее - ПАВ) или водоуглеводородную эмульсию с содержанием ПАВ. В качестве блокирующей жидкости используют гидрофобно-эмульсионный раствор, содержащий нефть, солевой раствор, эмульгатор, стабилизатор. В качестве жидкости для глушения используют минерализованную воду или солевой раствор. Недостатком способа является отсутствие в технологических жидкостях тампонирующих частиц. В связи с этим, применение способа будет неэффективно в коллекторах с высокопроницаемыми трещинами ГРП.
Из патента РФ на изобретение №2483092, МПК C09K 8/42, опубликован 27.05.2013 известен способ приготовления состава полисахаридного геля для глушения скважин, содержащего пресную или минерализованную воду, полисахаридный загуститель, сшиватель -ацетат хрома с оксидом магния, хлористый кальций. Недостатком способа является применение нерастворимого в пластовых условиях полисахаридного геля, приводящего к неконтролируемой кольматации ПЗП и отсутствие в технологических жидкостях тампонирующих частиц, применяющихся для снижения фильтрационно-емкостных характеристик коллекторов с высокопроницаемыми трещинами ГРП.
Из патента РФ на изобретение №2616632, МПК E21B 43/12, C09K 8/48, C09K 8/493, опубликован 18.04.2017 известен способ глушения скважин после гидравлического разрыва пласта, включающий последовательную закачку в призабойную зону пласта солевого раствора на основе хлористого калия, вязкоупругого состава (солевой раствор на основе хлористого калия, каустическая сода и полимер-загуститель с наполнителем) и солевого раствора. Недостатком способа является применение полимера-загустителя с содержанием ксантановой камеди и вермикулита для создания вязкоупругого состава. Применение полимеров-загустителей с содержанием вермикулита приводит к неконтролируемому снижению проницаемости принимающих интервалов и невыполнению одного из основных условий глушения скважин - временное снижение фильтрационно-емкостных характеристик ПЗП. Также закачка в продуктивный пласт водного раствора хлористого калия на первом этапе реализации способа и его продавка вглубь ПЗП на второй и третьей стадиях отрицательно влияет на фазовую проницаемость продуктивного пласта.
Из патента РФ на изобретение №2279462, МПК C09K 8/42, опубликован 10.07.2006 известен способ приготовления жидкости для глушения нефтегазовых скважин, содержащей эмульсию полимера, эмульгатор - поверхностно-активное вещество, водный раствор минеральной соли - в частности, хлористого кальция или хлористого калия, высокодисперсный гидрофобный материал - в частности, диоксид кремния, оксиды титана, железа, по одному из вариантов дополнительно применяется углеводород. Недостатком способа является применение полимеров для загущения жидкости глушения. Применение водных растворов полимеров к неконтролируемому снижению проницаемости принимающих интервалов и невыполнению одного из основных условий глушения скважин - временное снижение фильтрационно-емкостных характеристик ПЗП.
Из патента РФ на изобретение №2184839, МПК E21B 43/12, опубликован 10.07.2002 известен способ глушения скважин, включающий закачку в призабойную зону пласта инвертной эмульсионно-суспензионной системы, содержащей минерализованную водную дисперсную фазу, углеводородную дисперсионную фазу - в частности, нефть или продукты ее переработки, эмульгатор, стабилизатор - гидрофобный модифицированный парами диметилдихлорсилана кремнезем. Недостатком способа является то, что добавка химически модифицированного кремнезема не изменяет фазовую проницаемость поверхности поровых каналов, а лишь увеличивает стабильность эмульсионно-суспензионной системы. А также отсутствие в инвертной эмульсионно-суспензионной системе тампонирующих частиц, применяющихся для снижения фильтрационно-емкостных характеристик коллекторов с высокопроницаемыми трещинами ГРП.
Из патента СА 2765192, МПК C09K 8/36, C09K 8/467, E21B 7/00, опубликован 23.12.2010 известен способ приготовления инвертной эмульсии для глушения скважин. Эмульсия содержит углеводороды, водный раствор, эмульгатор, разлагаемые частицы и тампонирующие частицы. Недостатком способа является технологически необоснованное объемное содержание в инвертной эмульсии водной фазы в интервале от 1 до 70% об. Содержание водной фазы в указанном интервале не обеспечит эмульсии вязкость, достаточную для блокировки высокопроницаемых интервалов ПЗП. Также применение волокнистых материалов в совокупности с крупными частицами со средним диаметром от 1 до 1500 мкм неэффективно в коллекторах со средними и низкими фильтрационно-емкостными характеристиками, т.к. диаметр крупных частиц не обеспечит достаточное проникновение эмульсии вглубь ПЗП для предотвращения перетоков в системе пласт-скважина.
Для решения указанных проблем разработки нефтяных и газовых месторождений предлагается способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта, основанный на последовательной закачке в ПЗП эмульсионно-суспензионной системы и водного раствора хлористого кальция или хлористого калия с содержанием гидрофобизатора.
Сущность изобретения заключается в том, что способ согласно первому варианту выполнения, применяющийся при приемистости скважин ниже 350 м3/сут, включает последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 10-30, эмульгатор - 2-3, коллоидный раствор гидрофобных наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, содержащий (% об.) двуокись кремния - 31-32,5, монометиловый эфир пропиленгликоля - 67-69, воду - остальное, гидрофильные наночастицы двуокиси кремния - 1-3, водный раствор хлористого кальция или хлористого калия - остальное, в качестве эмульгатора используют композицию, содержащую (% об.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо - остальное, в качестве гидрофильных наночастиц двуокиси кремния используют композицию, содержащую (% об.): двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное, или двуокись кремния - 29-31 в этиленгликоле - остальное, или сухую аморфную двуокись кремния с размером частиц от 5 до 500 нм, в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора марок ИВВ-1 или ЧАС-М с содержанием 2% об.
Способ согласно второму варианту выполнения, применяющийся при приемистости скважин выше 350 м3/сут, включает последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 10-30, эмульгатор - 2-3, коллоидный раствор гидрофобных наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0.5-1, содержащий (% об.) двуокись кремния - 31-32,5, монометиловый эфир пропиленгликоля - 67-69, воду - остальное, гидрофильные микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 2-5, водный раствор хлористого кальция или хлористого калия - остальное, в качестве эмульгатора используют композицию, содержащую (% об.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот -40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо - остальное, в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора марок ИВВ-1 или ЧАС-М с содержанием 2% об.
Техническим результатом изобретения является повышение эффективности геолого-технических мероприятий по глушению нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта.
Изобретение иллюстрируется следующими графическими материалами.
На фиг. 1 приведено схематическое изображение структуры множественной эмульсии.
На фиг. 2 приведена таблица, раскрывающая технику и оборудование для приготовления и закачки блокирующей пачки (далее - БП).
На фиг. 3 приведена таблица, иллюстрирующая результаты измерения плотности эмульсионно-суспензионной системы (далее - ЭСС) с содержанием гидрофобных и гидрофильных наночастиц двуокиси кремния.
На фиг. 4 приведена таблица, иллюстрирующая результаты измерения плотности ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц ильменита.
На фиг. 5 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости (электростабильности) ЭСС с содержанием гидрофобных и гидрофильных наночастиц двуокиси кремния.
На фиг. 6 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости (электростабильности) ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц ильменита.
На фиг. 7 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости (электростабильности) ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц тетраоксида тримарганца.
На фиг. 8 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости ЭСС с содержанием гидрофобных и гидрофильных наночастиц двуокиси кремния.
На фиг. 9 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц ильменита.
На фиг. 10 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости ЭСС с содержанием гидрофобных наночастиц двуокиси кремния и микрочастиц тетраоксида тримарганца.
Содержание в ЭСС тампонирующих частиц - наночастиц с различными поверхностно-активными свойствами - позволяет создать множественную эмульсию. Множественная эмульсия является одним из наиболее стабильных видов эмульсий и позволяет регулировать реологические свойства ЭСС в широком диапазоне. На фиг. 1 представлено схематическое изображение структуры множественной эмульсии, в которой 1 - углеводородная среда, 2 - глобулы водной фазы, 3 - глобулы углеводородной фазы, 4 - адсорбционно-сольватные слои наночастиц и ПАВ.
При адсорбции поверхностно-активных наночастиц двуокиси кремния на адсорбционно-сольватные слои глобул водной и углеводородной фаз эмульсии создается дополнительный слой, предотвращающий коалесценцию глобул.
Приготовление блокирующей пачки (БП) производится на установке приготовления растворов: блок приготовления растворов «БПР» - миксер с мешалкой и внешним центробежным насосом.
Необходимое оборудование для приготовления блокирующей пачки указано на фиг. 2.
Для скважин с приемистостью ниже 350 м3/сут в емкость для приготовления эмульсионной системы набирается (% об.): дизельное топливо или подготовленная нефть с пункта подготовки и перекачки нефти - 10-30, далее запускается центробежный насос на циркуляцию и лопастной перемешиватель, после этого последовательно в дизельном топливе диспергируются эмульгатор - 2-3, коллоидный раствор гидрофобных наночастиц двуокиси кремния в монометиловом эфире пропиленгликоля и воде - 0.5-1, гидрофильные наночастицы двуокиси кремния - 1-3, водный раствор хлористого кальция или хлористого калия - остальное.
В качестве тампонирующих частиц - гидрофильных наночастиц двуокиси кремния - можно использовать, в частности, композицию одного из следующих составов (% об.):
- двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное;
- двуокись кремния - 29-31 в этиленгликоле - остальное;
- сухую аморфную двуокись кремния с размером частиц от 5 до 500 нм.
Содержание сухой аморфной двуокиси кремния составляет 92-99% масс., оставшаяся часть - это примеси, остающиеся после выработки. В качестве примесей могут быть, в частности, следующие вещества (% масс.): нелетучие с фтористо-водородной кислотой вещества (0.2-0.5), нитраты (0.002-0.005), сульфаты (0.015), хлориды (0.001-0.005), железо (0.002-0.005), тяжелые металлы (0.003-0.007) и др. согласно ГОСТ 9428-73 «Реактивы. Кремний (IV) оксид. Технические условия (с Изменениями N 1, 2)». Какие именно содержатся примеси в сухой аморфной двуокиси кремния в настоящем изобретении - не является его существенным признаком, поскольку не влияет на достижение его технического результата.
Для скважин с приемистостью выше 350 м3/сут в емкость для приготовления систем набирается (% об.) дизельное топливо или подготовленная нефть с пункта подготовки и перекачки нефти - 10-30, далее запускается центробежный насос на циркуляцию и лопастной перемешиватель, после этого последовательно в дизельном топливе диспергируются эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, микрочастицы ильменита или тетраоксида тримарганца размером от 0.2 до 5 мкм - 2-5 в качестве тампонирующих частиц, а также водный раствор хлористого кальция или хлористого калия - остальное.
В качестве эмульгатора как для скважин с приемистостью ниже 350 м3/сут, так и для скважин с приемистостью выше 350 м3/сут, может применяться композиция следующего состава (% об.): эфиры высших ненасыщенных кислот жирного ряда (линолевая, олеиновая, линоленовая) и смоляных кислот - 40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо (летнее или зимнее) - остальное.
Ввод составляющих ЭСС в углеводородную основу производится последовательно в указанном порядке через эжектор с помощью вакуумного шланга. Скорость загрузки составляющих лимитируется всасывающей производительностью эжектора.
Используемые емкости должны быть оборудованы лопастными или иными мешалками, обеспечивающими постоянное и равномерное распределение реагентов по всему объему. Для обеспечения получения и поддержания стабильности свойств ЭСС рекомендуется применять лопастные мешалки с реверсивным направлением вращения.
Качество приготовления и стабильность свойств ЭСС зависит от полноты охвата перемешиванием всего объема емкости приготовления, чистоты емкостей, скорости ввода составляющих и времени диспергирования. Рекомендуется использовать емкость со «скошенными» углами (форма, близкая к цилиндрической).
Контроль качества приготовления ЭСС проводится путем проверки седиментационной устойчивости ЭСС. Тест считается положительным, если при выдержке образца ЭСС при температуре 20°C в течение 2 ч произошло отделение водной фазы в объеме, не превышающим 3% от объема ЭСС.
Ниже приведен расчет объема блокирующей пачки.
Объем БП (VБП), м3 определяется объемами вскрытого интервала перфорации, зумпфа скважины и запаса безопасности, по формуле:
Figure 00000001
где hтз - уровень текущего забоя, м;
hвд - уровень верхней отметки интервала перфорации, м;
hзап - уровень безопасного запаса, м (при эксплуатационной колонне глубиной менее 500 м ≈ 25 метров);
Vуд - удельный внутренний объем обсадной колонны, м3 на 1 погонный метр;
0,0007 - коэффициент расхода БП на смачивание стенок труб;
hсп - глубина спуска колонны НКТ;
Vпродавки - объем продавки БП в пласт, м3.
Объем V продавки, м3, определяют по формуле:
Figure 00000002
где hвскр - вскрытый интервал перфорации, м
Ka - коэффициент аномальности, при этом Ka=Pпласт. / Pгидростат., где Pпласт. - пластовое давление, Pгидростат. - гидростатическое давление.
Критерии расчета hзап - верхней границы установки БП (при эксплуатационной колонне глубиной более 500 м):
1) При наличии подвески электроцентробежного насоса (ЭЦН), БП устанавливается от забоя до интервала, находящегося на 50 м выше верхних отверстий перфорации, но ниже приема насоса на 50 м:
Figure 00000003
где hвд - уровень верхних перфорационных отверстий, м;
hтек.заб. - уровень текущего забоя, м.
2) При наличии пакерного устройства БП устанавливается от текущего забоя до интервала установки пакера:
Figure 00000004
где hпак - уровень установки пакерного устройства, м;
hтек.заб. - уровень текущего забоя, м.
3) При применении гибких насосно-компрессорных труб (ГНКТ) с пакерным устройством, БП устанавливается от текущего забоя до интервала установки пакера аналогично формуле 4.
4) При применении ГНКТ без пакера, БП устанавливается от забоя до интервала, находящегося на 50 м выше верхних отверстий перфорации:
Figure 00000005
где hвд - уровень верхних дыр перфорации, м;
hтек.заб. - уровень текущего забоя, м.
Дополнительный объем БП на смачивание стенок определяется исходя из минимальной нормы в 1 м3 на скважину, расчетный расход БП на смачивание составляет 0,7 дм3/1 метр спущенных труб. Верхняя граница установки БП должна быть не менее чем на 50 м ниже приема спущенного глубинно-насосного оборудования (ГНО) для обеспечения циркуляции при уравновешивании скважины в процессе глушения.
Установку блокирующей пачки (БП) проводят стандартными методами: «прямой закачки» или «обратной закачки» в зависимости от наличия, вида подземного оборудования скважины и конструктивных особенностей скважины. Предпочтительным является метод «обратной закачки» через кольцевое межтрубное пространство.
Не рекомендуется производить глушение «прямой закачкой» при наличии спущенного электроцентробежного насоса (ЭЦН)/штангового глубинного насоса (ШГН) в связи с риском обрыва колонны с ростом давления при передавливании БП через отверстие сбивного клапана.
При наличии не герметичности эксплуатационной колонны возможным способом установки БП являет метод «прямой закачки» с ограничением максимально допустимого давления в 35 атм на колонну НКТ с ГНО.
Эмульсионная система с данными составляющими не предназначена для глушения скважин с не герметичностью эксплуатационной колонны.
Установка БП прямой закачкой:
1) Объем БП меньше объема НКТ.
Первый этап - закачка БП в НКТ доводка до низа НКТ (подвески насоса) на циркуляции при открытой затрубной задвижке.
БП закачивают в НКТ в объеме пустотного пространства НКТ и перемещают до низа НКТ (среза воронки) жидкостью глушения на циркуляции в объеме:
Figure 00000006
где V(цирк) - объем жидкости глушения закачиваемой при открытой затрубной задвижке, для перемещения БП до низа НКТ, м3;
V(НКТ) - внутренний объем НКТ, м3;
V(штат) - водоизмещение штанг, м3; (при ЭЦН У(штанг)=0);
V(БП) - объем БП, м3;
Второй этап - продавка БП на забой при закрытой затрубной задвижке жидкостью глушения в объеме:
Figure 00000007
где V(прод) - объем жидкости глушения закачиваемой при закрытой затрубной задвижке (на продавку), м3;
0,001 - коэффициент перерасчета дм3(л) в м3;
Vк.(уд) - удельный внутренний объем обсадной колонны под ГНО, дм3/м,
h(НКТ) - глубина подвески насоса или НКТ, м;
h(тек.заб.) - глубина текущего забоя, м;
V(БП) - объем БП, м3;
V(скв. под ГНО) - объем скважины под ГНО, м3,
1 - запас объема жидкости глушения на продавку БП в пласт, м3;
2) Объем БП больше объема НКТ.
Первый этап - закачка БП в НКТ в объеме пустотного пространства НКТ (до подвески насоса) на циркуляции при открытой затрубной задвижке на перемещение.
Figure 00000008
где V(БП-цирк) - объем БП закачиваемой при открытой затрубной задвижке, м3;
V(НКТ) - внутренний объем НКТ, м3;
V(штанг) - водоизмещение штанг, м3; (при ЭЦН V(штанг)=0);
Второй этап - закачка в НКТ оставшегося объема БП и ее продавка на забой при закрытой затрубной задвижке жидкостью глушения в объеме:
Figure 00000009
Figure 00000010
где V(прод) - объем жидкости глушения закачиваемой на продавку при закрытой затрубной задвижке, м3;
0,001 - коэффициент перерасчета дм3(л) в м3;
Vк.(уд) - удельный внутренний объем обсадной колонны под ГНО, дм3/м;
h(НКТ) - глубина подвески насоса или НКТ, м;
h(тек.заб.) - глубина текущего забоя, М;
VНКТ(уд.) - удельный внутренний объем НКТ, дм3/м;
V(штанг) - водоизмещение штанг,, М3; (при ЭЦН V(штанг)=0);
V(БП) - объем БП, м3;
V(скв. под ГНО) - объем скважины под ГНО, м3;
V(НКТ) - внутренний объем НКТ, м3;
1 - запас объема жидкости глушения на продавку БП в пласт, м3;
При продавке БП на забой скважины при глушении методом прямой закачки рекомендуется не превышать предельное давление на подвеску насоса, давление опрессовки колонны и кабельного ввода (как правило, максимально до 60 атм).
После установки БП на забое скважины операция глушения заканчивается замещением затрубного объема скважинной жидкости расчетным объемом жидкости глушения:
Figure 00000011
где V(замещ.) - объем жидкости глушения закачиваемой в НКТ на циркуляции для замещения затрубной жидкости, м3;
0,001 - коэффициент перерасчета дм3 в м3;
Vзатруб. (уд) - удельный объем затрубного пространства, дм3/м;
h(НКТ) - глубина подвески насоса или НКТ, м;
1,5 - запас жидкости глушения для полноценной промывки с выходом чистого раствора глушения на устье скважины.
Установка БП при глушении обратной закачкой:
1) Первый этап - закачка БП в затрубное пространство и доводка до низа НКТ (или до подвески насоса) на циркуляции при открытой задвижке НКТ на перемещение жидкостью глушения в объеме.
Figure 00000012
где V(цирк) - объем жидкости глушения закачиваемой при открытой задвижке НКТ, м3;
V(затр.) - объем затрубного пространства до низа НКТ или до подвески насоса, м3;
V(БП) - объем БП, м3;
2) Второй этап - продавка БП при закрытой задвижке НКТ жидкостью глушения в объеме:
Figure 00000013
Figure 00000014
где V(прод) - объем жидкости глушения закачиваемой на продавку при закрытой задвижке НКТ, м3;
0,001 - коэффициент перерасчета дм3(л) в м3;
Vзатр..(уд) - удельный внутренний объем затрубного пространства, дм3/м;
V(затр.) - объем затрубного пространства до низа НКТ или подвески насоса, м3;
h(НКТ) - глубина подвески насоса или НКТ, м;
h(тек.заб.) - глубина текущего забоя, м;
V(БП) - объем БП, м3;
V(скв. под ГНО) - объем скважины под ГНО, м3;
1 - запас объема жидкости глушения на продавку БП в пласт, м3.
При продавке БП к забою скважины методом обратной закачки рекомендуется не превышать давление опрессовки кабельного ввода (как правило, 80 атм), давления опрессовки эксплуатационной колонны.
В качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием гидрофобизатора. При этом в качестве гидрофобизатора как для скважин с приемистостью ниже 350 м3/сут, так и для скважин с приемистостью выше 350 м3/сут, можно использовать, в частности, гидрофобизаторы марок ИВВ-1 или ЧАС-М с содержанием 2% об.
Гидрофобизатор «ИВВ-1» выпускается по ТУ 2482-111-56856807-2016 и представляет собой смесь алкилдиметилбензиламоний хлорида и четвертичной амониевой соли третичного амина, получаемый путем конденсации алкилдиметиламина и бензилхлорида.
Гидрофобизатор «ЧАС-М» выпускается по ТУ 20.41.20-125-56856807-2017 и представляет собой водно-спиртовой раствор четвертичных аммониевых солей алкилдиметиламина.
После установки БП заполняют и промывают «до чистого» оставшийся объем (затрубный или трубный) водным раствором ПАВ, закрывают трубную и затрубную задвижки, оставляют скважину на уравновешивание в течение 1 часа. После чего измеряют избыточное давление в затрубном и трубном пространстве и, при необходимости, уравновешивают. Стравливают избыточное давление через технологические трубки на желобную емкость.
БП считается установленной в заданном интервале при прокачке расчетного количества жидкости глушения на доставку по лифту (в режиме циркуляции), и продавке расчетного количества жидкости глушения при его установке на забой скважины (в режиме продавки). По окончании режима продавки, возможен рост устьевого давления на 15-20 атм при посадке БП на забой.
Для предотвращения преждевременного выноса БП из ПЗП при проведении спускоподъемных операций на скважине, заглушенной с использованием БП, запрещается превышать предельную скорость подъема подземного скважинного оборудования.
Удаление блокирующей пачки рекомендуется проводить путем перевода скважины на нефть и вызовом притока флюидов в скважину. В случае отсутствия возможности перевода скважины на нефть, допускается проводить удаление БП путем перевода скважины на водный раствор ПАВ и вызовом притока жидкости в скважину. Приток в скважину можно вызвать классическими методами освоения скважины. Не рекомендуется вызывать приток жидкости в скважину пуском ЭЦН. Остатки БП в каналах фильтрации углеводородов разрушаются самопроизвольно в ходе притока продукции скважины в течение первых суток.
Для удаления БП без вызова притока из пласта, необходимо произвести закачку подготовленной нефти в интервал установки БП. Рекомендуемый расход нефти: объем 0,6-0,8 м3 на 1 м3 БП с продавкой в пласт.
Лабораторные исследования физических свойств ЭСС
Для исследования физических свойств ЭСС были подготовлены образцы с различным объемным содержанием компонентов.
В результате проведения экспериментов определялись следующие параметры ЭСС:
- Плотность;
- Агрегативная устойчивость;
- Термостабильность;
- Кинематическая вязкость.
После приготовления образцов ЭСС производилась их выдержка не менее 2 часов при комнатной температуре до начала проведения экспериментов.
Исследование плотности ЭСС Результаты измерения плотности ЭСС пикнометрическим методом представлены на фиг. 3 и 4.
Исследование агрегативной устойчивости ЭСС Агрегативная устойчивость - это способность ЭСС сохранять степень дисперсности внутренней фазы. Оценку проводили экспериментально по показателю электростабильности -измерений значений электрического напряжения, соответствующего моменту разрушения ЭСС, заключенной между электродами измерительной ячейки прибора. Эксперименты проводились на приборе марки FANN. Результаты измерения агрегативной устойчивости (электростабильности) ЭСС представлены на фиг. 5, 6 и 7.
Исследование термостабильности ЭСС Измерение термостабильности ЭСС проводили путем их выдержки в мерных герметично закрытых цилиндрах в термошкафу в течение 24 часов при заданном температурном режиме 80°C. Тест считался положительным (образец стабилен), если после 6 ч термостатирования из ЭСС отделилось не более 2 об. % воды от общего объема водной составляющей ЭСС. В результате экспериментов на термостабильность определено, что все образцы стабильны в течение 24 часов.
Исследование кинематической вязкости ЭСС Результаты исследований кинематической вязкости ЭСС представлены на фиг. 8, 9 и 10. Измерения проводились при температуре 20°C (погрешность измерения температуры ± 0,1°C) на вискозиметре ВПЖ-2 с константой вискозиметра - 0,09764. Перед экспериментами ЭСС перемешивали в механической мешалке при заданной скорости 1200 об/мин в течение 20 минут.
Результаты комплекса проведенных базовых лабораторных исследований физических свойств ЭСС подтвердили высокие технологические свойства разработанного состава. Особенно важными параметрами с точки зрения промышленного применения ЭСС являются высокая термостабильность и агрегативная устойчивость, а также возможность регулировать вязкостные свойства ЭСС изменяя объемную долю составляющих компонентов в зависимости от фильтрационно-емкостных и геолого-физических характеристик ПЗП.
Далее приведены примеры осуществления способа глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта при приемистости скважин ниже и выше 350 м3/сут.

Claims (10)

1. Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта при приемистости скважин ниже 350 м3/сут, включающий последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.):
дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти 10-30 эмульгатор 2-3 коллоидный раствор гидрофобных наночастиц двуокиси кремния с размером частиц от 5 до 100 нм, содержащий (% об.) двуокись кремния - 31-32,5, монометиловый эфир пропиленгликоля - 67-69, воду - остальное 0,5-1 гидрофильные наночастицы двуокиси кремния 1-3 водный раствор хлористого кальция или хлористого калия остальное,
в качестве эмульгатора используют композицию, содержащую (% об.):
эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот 40-42 окись амина 0,7-1 высокомолекулярный органический термостабилизатор 0,5-1 дизельное топливо остальное,
в качестве гидрофильных наночастиц двуокиси кремния используют композицию, содержащую (% об.): двуокись кремния 30-31 в изопропаноле - 67-69 и метиловом спирте остальное, или двуокись кремния 29-31 в этиленгликоле - остальное, или сухую аморфную двуокись кремния с размером частиц от 5 до 500 нм, в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием 2% об. гидрофобизатора марок ИВВ-1 или ЧАС-М.
2. Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта при приемистости скважин выше 350 м3/сут, включающий последовательную закачку в призабойную зону пласта блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую (% об.):
дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти 10-30 эмульгатор 2-3 коллоидный раствор гидрофобных наночастиц двуокиси кремния с размером частиц от 5 до 100 нм, содержащий (% об.) двуокись кремния 31-32,5, монометиловый эфир пропиленгликоля 67-69, воду - остальное, гидрофильные микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм 2-5, водный раствор хлористого кальция или хлористого калия - остальное 0,5-1,
в качестве эмульгатора используют композицию, содержащую (% об.):
эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот 40-42 окись амина 0,7-1 высокомолекулярный органический термостабилизатор 0,5-1 дизельное топливо остальное,
в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия с содержанием 2% об.гидрофобизатора марок ИВВ-1 или ЧАС-М.
RU2017135375A 2017-10-05 2017-10-05 Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты) RU2662720C1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017135375A RU2662720C1 (ru) 2017-10-05 2017-10-05 Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты)
EP18864963.6A EP3693539A4 (en) 2017-10-05 2018-10-05 PROCEDURE FOR CLOSING OIL AND GAS HOLES
CN201880075678.2A CN111406144B (zh) 2017-10-05 2018-10-05 油气井压井方法
PCT/RU2018/050121 WO2019070166A1 (ru) 2017-10-05 2018-10-05 Способ глушения нефтяных и газовых скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017135375A RU2662720C1 (ru) 2017-10-05 2017-10-05 Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты)

Publications (1)

Publication Number Publication Date
RU2662720C1 true RU2662720C1 (ru) 2018-07-27

Family

ID=62981750

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017135375A RU2662720C1 (ru) 2017-10-05 2017-10-05 Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты)

Country Status (4)

Country Link
EP (1) EP3693539A4 (ru)
CN (1) CN111406144B (ru)
RU (1) RU2662720C1 (ru)
WO (1) WO2019070166A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711131C1 (ru) * 2019-01-10 2020-01-15 Общество с ограниченной ответственностью "Газпром ПХГ" Способ глушения газовых скважин с контролем давления на забое
CN114634802A (zh) * 2020-12-15 2022-06-17 中国石油化工股份有限公司 一种耐温抗盐超疏水覆膜堵剂及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2766872C1 (ru) * 2021-11-16 2022-03-16 Общество с ограниченной ответственностью "Синергия Технологий" Жидкость для глушения нефтяных и газовых скважин
CN115324553B (zh) * 2022-10-13 2022-12-13 西安博探石油工程有限公司 一种纳米混相渗吸驱油自交联压裂方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1624132A1 (ru) * 1988-10-31 1991-01-30 Государственный научно-исследовательский и проектный институт по освоению месторождений нефти и газа "Гипроморнефтегаз" Способ увеличени нефтеотдачи обводненных пластов
RU2047745C1 (ru) * 1992-01-27 1995-11-10 Канзафаров Фидрат Яхьяевич Способ глушения скважин
RU2184839C2 (ru) * 2000-04-25 2002-07-10 Открытое акционерное общество "Российская инновационная топливно-энергетическая компания" Состав для глушения скважин
RU2257863C1 (ru) * 2004-03-09 2005-08-10 Общество с ограниченной ответственностью "Дальневосточная медицинская компания" Зеркало гинекологическое для однократного использования
RU2279462C1 (ru) * 2005-01-27 2006-07-10 Владимир Анатольевич Волков Жидкость глушения нефтегазовой скважины
CA2765192A1 (en) * 2009-06-17 2010-12-23 M-I L.L.C. Application of degradable fibers in invert emulsion fluids for kill pills
US20160017204A1 (en) * 2014-07-18 2016-01-21 Cesi Chemical, Inc. Methods and compositions comprising particles for use in oil and/or gas wells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927404A (en) * 1997-05-23 1999-07-27 Exxon Production Research Company Oil recovery method using an emulsion
RU2184836C2 (ru) * 2000-04-25 2002-07-10 Открытое акционерное общество "Российская инновационная топливно-энергетическая компания" Способ селективного ограничения водопритоков в эксплуатационных скважинах
US9199879B2 (en) * 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
RU2483092C1 (ru) 2011-12-29 2013-05-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Состав полисахаридного геля для глушения высокотемпературных скважин
US20140116695A1 (en) * 2012-10-30 2014-05-01 Halliburton Energy Services, Inc. Emulsified acid with hydrophobic nanoparticles for well stimulation
CA2925115C (en) * 2013-11-25 2018-06-05 Halliburton Energy Services, Inc. A fiber suspending agent for lost-circulation materials
CN104710968A (zh) * 2013-12-17 2015-06-17 中国石油化工集团公司 封堵材料和钻井液添加剂及其使用方法
RU2616632C1 (ru) 2016-01-11 2017-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ глушения нефтяной скважины с высоким газовым фактором в условиях наличия многолетнемерзлых пород
RU2631460C1 (ru) * 2016-09-02 2017-09-22 Общество с ограниченной ответственностью "ВИ-ЭНЕРДЖИ" Способ обработки призабойной зоны пласта

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1624132A1 (ru) * 1988-10-31 1991-01-30 Государственный научно-исследовательский и проектный институт по освоению месторождений нефти и газа "Гипроморнефтегаз" Способ увеличени нефтеотдачи обводненных пластов
RU2047745C1 (ru) * 1992-01-27 1995-11-10 Канзафаров Фидрат Яхьяевич Способ глушения скважин
RU2184839C2 (ru) * 2000-04-25 2002-07-10 Открытое акционерное общество "Российская инновационная топливно-энергетическая компания" Состав для глушения скважин
RU2257863C1 (ru) * 2004-03-09 2005-08-10 Общество с ограниченной ответственностью "Дальневосточная медицинская компания" Зеркало гинекологическое для однократного использования
RU2279462C1 (ru) * 2005-01-27 2006-07-10 Владимир Анатольевич Волков Жидкость глушения нефтегазовой скважины
CA2765192A1 (en) * 2009-06-17 2010-12-23 M-I L.L.C. Application of degradable fibers in invert emulsion fluids for kill pills
US20160017204A1 (en) * 2014-07-18 2016-01-21 Cesi Chemical, Inc. Methods and compositions comprising particles for use in oil and/or gas wells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711131C1 (ru) * 2019-01-10 2020-01-15 Общество с ограниченной ответственностью "Газпром ПХГ" Способ глушения газовых скважин с контролем давления на забое
CN114634802A (zh) * 2020-12-15 2022-06-17 中国石油化工股份有限公司 一种耐温抗盐超疏水覆膜堵剂及制备方法
CN114634802B (zh) * 2020-12-15 2023-08-04 中国石油化工股份有限公司 一种耐温抗盐超疏水覆膜堵剂及制备方法

Also Published As

Publication number Publication date
WO2019070166A1 (ru) 2019-04-11
EP3693539A1 (en) 2020-08-12
EP3693539A4 (en) 2021-07-07
CN111406144A (zh) 2020-07-10
CN111406144B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
RU2662720C1 (ru) Способ глушения нефтяных и газовых скважин с высокопроницаемыми трещинами гидравлического разрыва пласта (варианты)
RU2659046C1 (ru) Способ глушения нефтяных и газовых скважин
CA2094088C (en) Gas well treatment compositions and methods
US3378074A (en) Method for fracturing subterranean formations
EP3508684B1 (en) Method for treating the near-wellbore region of a formation
US10160904B2 (en) Volatile surfactant treatment for subterranean formations
BR112015014428A2 (pt) métodos para gerenciar ou controlar uma operação de perfuração de um poço e para perfurar ou tratar de uma porção de um poço
US20160264849A1 (en) Hydrofluoric Based Invert Emulsions for Shale Stimulation
US10240078B2 (en) Volatile surfactant treatment for use in subterranean formation operations
RU2700851C1 (ru) Способ селективной обработки призабойной зоны пласта
AU2014337582A1 (en) Volatile surfactant treatment for use in subterranean formation operations
AU2013403405A1 (en) Volatile surfactant treatment for subterranean formations
RU2583104C1 (ru) Способ обработки призабойной зоны пласта
CN111433432B (zh) 在油气井的建井期间消除流体漏失的方法
RU2662721C1 (ru) Способ глушения нефтяных и газовых скважин в осложненных условиях (варианты)
RU2702175C1 (ru) Способ обработки призабойной зоны пласта с высокопроницаемыми трещинами гидравлического разрыва пласта
RU2754552C1 (ru) Способ глушения добывающей скважины (варианты)
RU2728168C9 (ru) Способ предотвращения прорывов пластовых вод к забоям газовых, газоконденсатных или газогидратных скважин
EA040038B1 (ru) Способ глушения нефтяных и газовых скважин
WO2018084842A1 (en) Self-breaking emulsified fluid system

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20181031