CN109994562A - 超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法 - Google Patents

超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法 Download PDF

Info

Publication number
CN109994562A
CN109994562A CN201910307078.0A CN201910307078A CN109994562A CN 109994562 A CN109994562 A CN 109994562A CN 201910307078 A CN201910307078 A CN 201910307078A CN 109994562 A CN109994562 A CN 109994562A
Authority
CN
China
Prior art keywords
nano
pillar
super
graphical
gaas substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910307078.0A
Other languages
English (en)
Inventor
李国强
粱敬晗
高芳亮
余粤锋
徐珍珠
林静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910307078.0A priority Critical patent/CN109994562A/zh
Publication of CN109994562A publication Critical patent/CN109994562A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法,所述超多晶面六角锥图形化GaAs衬底的每个六角锥图形表面具有6~10个高指数晶面,所述纳米柱的直径为10‑50nm,其制备方法包括如下步骤:(1)超多晶面六角锥图形化GaAs衬底的制备;(2)超多晶面六角锥图形化GaAs衬底的清洗;(3)分子束外延方法生长GaAs纳米柱。解决了分子束外延在无金属催化剂、无掩膜的GaAs衬底表面难以制备高度有序、高密度的GaAs和InGaAs纳米柱和高性能纳米柱结构太阳电池器件的问题。制备超多晶面图形化GaAs衬底采用的湿法蚀刻设备简单,操作方便;生长纳米柱的MBE工艺简单、过程安全、无污染。

Description

超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法
技术领域
本发明涉及GaAs和InGaAs纳米柱生长领域,特别涉及超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法。
背景技术
GaAs基III-V族高效多结太阳能电池与目前广泛使用的硅太阳能电池相比,具有更高的光电转换效率,更强的抗辐照能力和更好的耐高温性能使其在空间太阳能电池领域逐步取代Si系列太阳能电池。目前,尽管单结太阳能电池的实验室光电转换效率已经接近其理论极限值,但从太阳光谱的利用率来看,GaAs基太阳能电池还有很大的提升空间。如何提高太阳光在GaAs基太阳能电池的利用率已经成为当下研究的热点。
图形化衬底技术在提高GaAs基太阳能电池的光利用率方面显示了很好的优势,该技术得到高度关注。图形化衬底是指表面具有周期性图形阵列的衬底。相较于平片衬底,一方面图形化衬底表面图形阵列诱发外延薄膜侧向生长,从而改善外延晶体质量;另一方面图形阵列促使光线散射或折射,抑制内部全反射,从而提升太阳光利用效率。相较于平面薄膜结构电池器件,图形化衬底上制备的纳米柱结构太阳能电池在性能提升方面具有极大优势。首先图形化衬底具有超大表面积,提高了GaAs及InGaAs纳米柱形核位点数量与密度;纳米柱具有超高的表面积/体积比,并且可抑制内部全反射,大幅提升太阳能电池吸光效率。此外,通过精细调控纳米柱尺寸,可实现吸收太阳光波长的可控,实现低成本高性能太阳能电池的制备。
目前,高度有序GaAs和InGaAs纳米柱的生长方法主要有催化剂法和选区生长法。催化剂法以Au、Pt、Ni等纳米粒子为催化剂诱导VLS(Vapor liquid solid)生长机制,使气体反应物溶入纳米催化金属液滴中,在过饱和条件下生成一维纳米柱。然而催化剂法具有以下缺点:1)工艺复杂,需经沉积、退火等工艺制备金属催化剂颗粒;2)有序排列的金属催化剂颗粒制备困难;3)金属催化剂颗粒在外延过程中作为杂质掺入外延材料中,降低器件电学及光学性能。选区生长法需利用纳米压印、聚焦离子束切割、光刻工艺、干法蚀刻工艺等制备周期性掩膜,提供分布均匀的形核位置,从而制备尺寸可控、均匀分布的纳米柱。其缺点为工艺复杂、价格昂贵、去除掩膜工艺困难等。
结构优化的图形化衬底可实现GaAs和InGaAs纳米柱的有序可控生长,且无需引入金属催化剂杂质以及使用昂贵、复杂的聚焦离子束/纳米压印等工艺。因此,建立图形化衬底微结构与纳米柱形核、有序性、质量关系的有效连接,对生长高度有序、高密度的GaAs、InGaAs纳米柱以及制备高性能纳米柱结构太阳能电池器件具有重大意义。
发明内容
本发明的目的是为了解决在无催化剂、无掩膜的衬底上,分子束外延(MBE)方法难以生长高度有序、高密度的GaAs和InGaAs纳米柱的问题,提供了一种在超多晶面图形化GaAs衬底上MBE生长GaAs和InGaAs纳米柱的制备方法,所制备的纳米柱阵列高度有序、密度高。
为了实现上述目的,本发明提供如下的技术方案。
本发明提供了一种超多晶面六角锥图形化GaAs衬底上纳米柱,所述超多晶面六角锥图形化GaAs衬底是指在平片GaAs晶圆的表面蚀刻出凸起和凹坑图形阵列,所述凸起和凹坑构成六角锥;在六角锥图形表面生长有纳米柱。
优选地,所述六角锥图形表面具有6~10个高指数晶面,平片GaAs晶圆的厚度为900~1100 μm,纳米柱的直径为10~50 nm。
本发明还提供了一种所述超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,包括如下步骤:
(1)超多晶面六角锥图形化GaAs衬底的制备:
利用化学气相沉积工艺、光刻工艺和湿法蚀刻工艺,在平片GaAs晶圆表面制得周期性微米级圆柱形SiO2掩膜,得SiO2掩膜覆盖的平片晶圆;利用混酸溶液湿法蚀刻有SiO2掩膜覆盖的平片晶圆,得超多晶面六角锥图形化GaAs衬底;
(2)超多晶面六角锥图形化GaAs衬底的清洗:
使用超纯水冲洗步骤(1)得到的超多晶面六角锥图形化GaAs衬底,再用高纯氮气吹干;
(3)分子束外延方法生长GaAs纳米柱:
将经步骤(2)处理后的超多晶面六角锥图形化GaAs衬底固定于衬底托盘上,依次通过预真空室和生长室;将样品台、Ga源和As源升温,进行外延生长GaAs纳米柱。
优选地,利用分子束外延方法生长InGaAs纳米柱,将经步骤(2)处理后的超多晶面六角锥图形化GaAs衬底固定于衬底托盘上,依次通过预真空室和生长室;将样品台、Ga源、As源和In源升温,进行外延生长InGaAs纳米柱。
优选地,步骤(1)中所述混酸溶液为氢氟酸、磷酸与硫酸混合而制成。所述氢氟酸、磷酸与硫酸均为市售取得,氢氟酸、硫酸、磷酸的质量百分浓度分别为40%、98%和85%。
优选地,混酸溶液中氢氟酸、磷酸与硫酸的体积比为(0.1~0.3):(1~3)∶(1~3)。
优选地,步骤(1)中所述混酸溶液的温度为150~250℃。
优选地,步骤(1)中SiO2掩膜覆盖的平片晶圆的蚀刻时间为10~60分钟。
优选地,步骤(3)中样品台升温至400~600℃, Ga源升温至800~900℃;As源温度升至245~260℃。
优选地,样品台升温至400~600℃,In源升温至600~800℃,Ga源升温至800~900℃,As源温度升至245~260℃。
优选地,外延生长的时间为1~4h。
优选地,步骤(1)中蚀刻SiO2掩膜覆盖的平片晶圆所用的容器为聚四氟乙烯杯。
和现有技术相比,本发明的有益效果是:
(1)相较于平片衬底,超多晶面六角锥图形化GaAs衬底具有更大的表面积和高指数晶面,提供更密集的形核点,从而增大纳米柱密度,并提升纳米柱结构太阳能电池器件性能;
(2)超多晶面六角锥图形化GaAs衬底表面的图形侧壁可促使太阳能电池器件内光线散射或折射,抑制内部全反射;
(3)湿法蚀刻制备的超多晶面六角锥图形化GaAs衬底,仅需超纯水冲洗,氮气吹干后,即可用于MBE生长,衬底的前处理工艺简单。然而其他工艺制备的衬底,需要复杂的超洁净清洗或热处理去除表面杂质后,才能用于MBE生长;
(4)超多晶面六角锥图形化GaAs衬底表面MBE生长的GaAs、InGaAs纳米柱高有序性、密度高,避免了使用引入杂质的金属催化剂,避免了工艺复杂昂贵的选区生长法(需纳米压印或聚焦离子束切割工艺)。
附图说明
图1是实施例1制备的超多晶面六角锥图形化GaAs衬底的扫描电子显微镜图;
图2是实施例1制备的超多晶面六角锥图形化GaAs衬底上MBE生长的GaAs纳米柱的扫描电子显微镜图;
图3是平片GaAs晶圆上MBE生长的GaAs纳米柱的扫描电子显微镜图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细地描述,本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
本实施例提供了一种超多晶面六角锥图形化GaAs衬底上GaAs纳米柱,其制备方法,包括以下步骤:
(1)超多晶面六角锥图形化GaAs衬底的制备:经化学气相沉积SiO2工艺、光刻工艺和湿法蚀刻工艺,在平片GaAs晶圆表面制得周期性微米级圆柱形SiO2掩膜,利用200℃的氢氟酸、磷酸、硫酸混合溶液进行湿法蚀刻,混合溶液的体积比为0.1∶1∶1,蚀刻时间为60分钟,制得超多晶面六角锥图形化GaAs衬底。制得的衬底形貌如图1所示,每个六角锥图形表面具有9个高指数晶面(S1-S9);
(2)将经步骤(1)制备的超多晶面六角锥图形化GaAs衬底从超洁净聚四氟乙烯杯中取出,然后用超纯水冲洗图形化衬底,再用高纯氮气吹干;
(3)MBE外延生长GaAs纳米柱:将经步骤(2)处理后的超多晶面六角锥图形化GaAs衬底固定于衬底托盘上,通过预真空室传递至生长室,样品台升温至指定温度500℃,Ga源升温至指定温度800℃;As源升至245℃;分别打开Ga源与As源挡板,外延生长GaAs纳米柱,生长时间2小时。
平片GaAs晶圆上MBE生长的GaAs纳米柱形貌如图3所示,在超多晶面六角锥图形化GaAs衬底上MBE生长的GaAs纳米柱形貌如图2所示,在纳米柱覆盖衬底表面,六角锥图形表面具有密集纳米柱,和图3相对比,纳米柱高度有序、密度高。
本实施例步骤(1)中的氢氟酸、硫酸、磷酸为市售产品,氢氟酸、硫酸、磷酸的质量百分浓度分别为40%、98%和85%。
实施例2:
本实施例提供了一种超多晶面六角锥图形化GaAs衬底上MBE生长InGaAs纳米柱,其生长方法包括以下步骤:
(1)超多晶面六角锥图形化GaAs衬底的制备:经化学气相沉积SiO2工艺、光刻工艺和湿法蚀刻工艺,在平片GaAs晶圆表面制得周期性微米级圆柱形SiO2掩膜,利用200℃的氢氟酸、磷酸、硫酸混合溶液进行湿法蚀刻,混合溶液的体积比为0.1∶1∶1,蚀刻时间为60分钟,制得超多晶面六角锥图形化GaAs衬底;
(2)将经步骤(1)制备的超多晶面六角锥图形化GaAs衬底从超洁净聚四氟乙烯杯中取出,然后用超纯水冲洗图形化衬底,再用高纯氮气吹干;
(3)MBE外延生长InGaAs纳米柱:将经步骤二处理后的超多晶面六角锥图形化GaAs衬底固定于衬底托盘上,通过预真空室传递至生长室,样品台升温至指定温度500℃,In源升温至780℃,Ga源升温至800℃;As源温度升至245℃;分别打开In、Ga、As源挡板,进行外延生长InGaAs纳米柱,生长时间2小时。
本实施例提供的超多晶面六角锥图形化GaAs衬底生长的InGaAs纳米柱的形貌和实施例1提供的超多晶面六角锥图形化GaAs衬底生长的GaAs纳米柱的形貌相似,见图2。
本发明中在超多晶面六角锥图形化GaAs衬底上MBE制备的GaAs或InGaAs纳米柱高度有序、密度高;制备多晶面六角锥图形化衬底采用的湿法蚀刻设备简单,操作方便;无需在衬底表面制备金属催化剂或掩膜,工艺成本低;生长纳米柱的MBE工艺简单、过程安全、无污染。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.超多晶面六角锥图形化GaAs衬底上纳米柱,其特征在于,所述超多晶面六角锥图形化GaAs衬底是指在平片GaAs晶圆的表面蚀刻出凸起和凹坑图形阵列,所述凸起和凹坑构成六角锥;在六角锥图形表面生长有纳米柱。
2.根据权利要求1所述的超多晶面六角锥图形化GaAs衬底上纳米柱,其特征在于,所述六角锥图形表面具有6~10个高指数晶面,平片GaAs晶圆的厚度为900~1100 μm,纳米柱的直径为10~50 nm。
3.一种制备权利要求1或2所述的超多晶面六角锥图形化GaAs衬底上纳米柱的方法,其特征在于,包括如下步骤:
(1)超多晶面六角锥图形化GaAs衬底的制备:
利用化学气相沉积工艺、光刻工艺和湿法蚀刻工艺,在平片GaAs晶圆表面制得周期性微米级圆柱形SiO2掩膜,得SiO2掩膜覆盖的平片晶圆;利用混酸溶液湿法蚀刻有SiO2掩膜覆盖的平片晶圆,得超多晶面六角锥图形化GaAs衬底;
(2)超多晶面六角锥图形化GaAs衬底的清洗:
使用超纯水冲洗步骤(1)得到的超多晶面六角锥图形化GaAs衬底,再用高纯氮气吹干;
(3)分子束外延方法生长GaAs纳米柱:
将经步骤(2)处理后的超多晶面六角锥图形化GaAs衬底固定于衬底托盘上,依次通过预真空室和生长室;将样品台、Ga源和As源升温,进行外延生长GaAs纳米柱。
4.根据权利要求3所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,利用分子束外延方法生长InGaAs纳米柱,将经步骤(2)处理后的超多晶面六角锥图形化GaAs衬底固定于衬底托盘上,依次通过预真空室和生长室;将样品台、Ga源、As源和In源升温,进行外延生长InGaAs纳米柱。
5.根据权利要求3所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,步骤(1)中所述混酸溶液为氢氟酸、磷酸与硫酸混合而制成,氢氟酸、磷酸与硫酸的体积比为(0.1~0.3):(1~3)∶(1~3)。
6.根据权利要求3所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,步骤(1)中所述混酸溶液的温度为150~250℃。
7.根据权利要求3所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,步骤(1)中SiO2掩膜覆盖的平片晶圆的蚀刻时间为10~60分钟。
8.根据权利要求3所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,步骤(3)中样品台升温至400~600℃; Ga源升温至800~900℃;As源温度升至245~260℃。
9.根据权利要求4所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,样品台升温至400~600℃,In源升温至600~800℃,Ga源升温至800~900℃,As源温度升至245~260℃。
10.根据权利要求3或4所述的超多晶面六角锥图形化GaAs衬底上纳米柱的制备方法,其特征在于,所述外延生长的时间是1~4h。
CN201910307078.0A 2019-04-17 2019-04-17 超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法 Pending CN109994562A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910307078.0A CN109994562A (zh) 2019-04-17 2019-04-17 超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910307078.0A CN109994562A (zh) 2019-04-17 2019-04-17 超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法

Publications (1)

Publication Number Publication Date
CN109994562A true CN109994562A (zh) 2019-07-09

Family

ID=67133900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910307078.0A Pending CN109994562A (zh) 2019-04-17 2019-04-17 超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法

Country Status (1)

Country Link
CN (1) CN109994562A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040129929A1 (en) * 2002-09-06 2004-07-08 Hiroyuki Okuyama Semiconductor light emitting device and fabrication method thereof, integral type semiconductor light emitting unit and fabrication method thereof, image display unit and fabrication method thereof, and illuminating unit and fabrication method thereof
CN102560634A (zh) * 2012-02-20 2012-07-11 华南理工大学 在GaAs衬底上生长InGaAs薄膜的方法
CN103038901A (zh) * 2010-03-31 2013-04-10 Cs解决方案有限公司 半导体模板衬底、使用半导体模板衬底的发光元件及其制造方法
CN103199165A (zh) * 2012-01-05 2013-07-10 昆山中辰矽晶有限公司 发光二极管基板及其加工方法与发光二级管
CN104766910A (zh) * 2015-02-06 2015-07-08 中山大学 一种GaN纳米线及其制备方法
CN107086173A (zh) * 2017-04-01 2017-08-22 天津三安光电有限公司 氮化物底层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040129929A1 (en) * 2002-09-06 2004-07-08 Hiroyuki Okuyama Semiconductor light emitting device and fabrication method thereof, integral type semiconductor light emitting unit and fabrication method thereof, image display unit and fabrication method thereof, and illuminating unit and fabrication method thereof
CN103038901A (zh) * 2010-03-31 2013-04-10 Cs解决方案有限公司 半导体模板衬底、使用半导体模板衬底的发光元件及其制造方法
CN103199165A (zh) * 2012-01-05 2013-07-10 昆山中辰矽晶有限公司 发光二极管基板及其加工方法与发光二级管
CN102560634A (zh) * 2012-02-20 2012-07-11 华南理工大学 在GaAs衬底上生长InGaAs薄膜的方法
CN104766910A (zh) * 2015-02-06 2015-07-08 中山大学 一种GaN纳米线及其制备方法
CN107086173A (zh) * 2017-04-01 2017-08-22 天津三安光电有限公司 氮化物底层及其制备方法

Similar Documents

Publication Publication Date Title
CN102886270B (zh) SiC纳米晶/石墨烯异质结及制备方法和应用
Baek et al. Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes
CN104746144B (zh) 一种二硫化锡单晶纳米片的制备方法
CN101626048B (zh) 一种太阳电池用硅量子点的低温生长方法
CN107964680B (zh) 一种制备单层六方氮化硼大单晶的方法
Xu et al. Correlations among morphology, composition, and photoelectrochemical water splitting properties of InGaN nanorods grown by molecular beam epitaxy
CN108821326B (zh) 一种ZnO纳米材料、及其制备方法
CN112779517B (zh) 一种自支撑纳米锥金刚石的制备方法
CN112760612B (zh) 一种自支撑纳米针多孔金刚石的制备方法
US20150337438A1 (en) High density aligned silicon nanowire
CN109994562A (zh) 超多晶面六角锥图形化GaAs衬底上纳米柱及制备方法
CN113735160B (zh) 一种利用Sn纳米线作为模板引导生长CdS分支结构及其催化生长方法和应用
CN111020692A (zh) 一种多孔Ta3N5单晶材料及其制备方法和应用
CN101693550B (zh) 一种生长CdO纳米线束的方法
CN109023296A (zh) 一种在氟金云母衬底上化学气相沉积生长钼钨硒合金的方法
Wang et al. Ordered semiconductor cdo nanowire arrays: Synthesising by one-step low-temperature electrodeposition and optical properties
CN109179422B (zh) 一种大规模无定形硅颗粒的制备方法
CN108821327B (zh) 一种类松果状的ZnO纳米微球的制备方法、及其应用
Duan et al. Structural and optical properties of porous ZnO nanorods synthesized by a simple two-step method
CN108735866A (zh) 生长在Si/石墨烯复合衬底上InN纳米柱外延片及其制备方法
Adachi et al. Formation, Characterization, and Functions of Ceramic Nanotubes
Li et al. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays
CN101565855B (zh) 基于共蒸法制备硅纳米晶超晶格结构的方法
CN109003888A (zh) 硅/石墨烯复合衬底上外延生长GaN纳米柱及制备方法
Lin et al. Core–shell cermet condensates by pulsed-laser ablation on Zn in TEOS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination