CN109959689A - 一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器 - Google Patents

一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器 Download PDF

Info

Publication number
CN109959689A
CN109959689A CN201910166536.3A CN201910166536A CN109959689A CN 109959689 A CN109959689 A CN 109959689A CN 201910166536 A CN201910166536 A CN 201910166536A CN 109959689 A CN109959689 A CN 109959689A
Authority
CN
China
Prior art keywords
cnf
cile
aptamer
platinum
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910166536.3A
Other languages
English (en)
Inventor
谢慧
孙伟
牛燕燕
邓英
黄少梅
刘娟
阮承祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN201910166536.3A priority Critical patent/CN109959689A/zh
Publication of CN109959689A publication Critical patent/CN109959689A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种利用金/铂@碳纤维复合材料制备无标记电化学适配体传感器来检测汞离子的方法,属于电化学和传感领域。由于适配体中的T碱基能与Hg2+形成T‑Hg2+‑T结构从而影响电极表面的状态,根据其电信号前后变化可实现对Hg2+的定量检测。以碳离子液体电极(CILE)为基底电极,通过静电纺丝法制备了碳纳米纤维(CNF),通过水热法在CNF上负载铂纳米颗粒(PtNPs)得到Pt@CNF复合材料,将其用于CILE的界面修饰并运用电沉积法进一步在电极表面形成金纳米颗粒(AuNPs),通过自组装法将巯基化适配体(Aptamer)固定在电极表面,并以硫代乙醇酸(TGA)来封闭未结合的活性位点,构筑了核酸适配体传感器(Aptamer/Au/Pt@CNF/CILE),建立了一种能够对Hg2+定量分析的电化学传感新方法。

Description

一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传 感器
技术领域
本发明主要构筑了一种无标记核酸适配体传感器并利用电化学方法对汞离子进行定量检测,属于电化学和传感器领域。
背景技术
自20世纪90年代适配体的概念被提出以来,科研工作者不断致力于适配体的研究,适配体在生化分析中表现出许多优点:首先相比较传统微生物培养,其检测周期短、检测限低且具有高亲和力与强特异性;其次相比较抗体检测,筛选获得的适配体易于体外大量合成,重复性好、稳定性高且易于贮存;再次相比较分子生物学,操作简便易行,检测成本较低;同时适配体的靶标广泛,包括农药、组织、细胞、病毒、蛋白质、毒素、维生素和过敏原等。
汞(Hg)是有毒的重金属元素之一,其造成的环境污染是威胁人类健康的主要原因。低浓度的汞也会对环境和人类健康产生严重影响。人体内的汞通常通过食物链摄取,并在活体组织中积累,对大脑、肝脏或肾脏造成严重的损害。因此,研究具有高灵敏性和特异识别性的方法来检测目标物中的Hg2+含量具有非常重要的意义。目前检测Hg2+的方法有很多,包括荧光、拉曼散射、比色法、原子吸收光谱、原子力显微镜和电感耦合等离子体质谱等,但均存在样品前处理复杂、应用范围窄、干扰严重、仪器昂贵等缺点,电化学方法可以很好地解决这些问题,因为电化学传感装置具有检测限低、选择性高、携带方便、操作简便、成本低等优点。
本发明以碳离子液体电极(CILE)为基底电极,通过静电纺丝和水热法制备了铂@碳纤维纳米复合材料(Pt@CNF),将其固定于CILE表面制备了Pt@CNF/CILE;进一步通过电沉积法在Pt@CNF/CILE表面形成一层纳米金,利用Au-S键合力将巯基化适配体自组装在Au/Pt@CNF/CILE表面,并以硫代乙醇酸来封闭未结合的活性位点,构筑出一种核酸适配体传感器(Aptamer/Au/Pt@CNF/CILE),并建立了一种快速有效检测Hg2+的电化学传感分析新方法。
发明内容
本发明的目的是为了提供了一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,本发明通过引入对汞离子有特异性结合能力的适配体捕获探针,并以铁氰化钾为电信号探针,利用高灵敏的示差脉冲伏安法,根据适配体结合靶标物(Hg2+)前后的电化学信号变化来实现对Hg2+的定量检测。这种适配体传感器表现出快速的电化学响应,灵敏度高,选择性好,检测范围宽,重现性与稳定性良好等优点。
本发明采用的技术手段如下:
(1)称取1.6 g石墨粉和0.8 g N-己基吡啶六氟磷酸盐(HPPF6)置于研钵中研磨呈糊状,在玻璃电极管(Φ = 4 cm)中插入铜丝作为导线,取适量碳糊导入电极管中压实,即制备出基底电极(CILE),使用前将其表面打磨成光滑镜面;
(2)进一步将8.0 µL 1.5 mg/mL的Pt@CNF分散液均匀涂布在CILE表面,室温晾干后得到Pt@CNF/CILE;
(3)进一步将Pt@CNF/CILE置于2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行恒电位沉积,沉积电位为- 0.3 V,沉积时间为100 s,取出电极洗涤后自然晾干,即制得Au/Pt@CNF/CILE;
(4)进一步将Au/Pt@CNF/CILE置入1.0 µmol/L适配体探针中于4 °C下自组装12 h,取出后洗涤并晾干;
(5)所使用的Hg2+适配体探针由生工生物工程(上海)股份有限公司合成,其寡核苷酸序号为:3’-TTTTTTTTTTT-C6SH-5’;
(6)进一步涂覆30 µL 1.0 mmol/L TGA于电极表面,1 h后用超纯水冲洗并晾干,即制得适配体传感器(Aptamer/Au/Pt@CNF/CILE);
(7)电化学实验是以铁氰化钾为电信号探针,采用示差脉冲伏安法检测适配体传感器结合Hg2+前后的电信号变化来制作工作曲线,并对含Hg2+的样品进行定量检测。
与现有技术相比,本发明的优点是:
(1)本发明使用了一种三元纳米复合材料(Au/Pt@CNF)作为电极界面增敏剂,通过在CILE表面分步修饰得到Au/Pt@CNF复合材料后,传感器的电子传输能力得到很大的提升,其良好的生物相容性与大的比表面积更利于生物识别元素的固定,使得传感器的响应速度与灵敏度得到提升;
(2)本发明使用的汞离子适配体探针能够对汞离子特异性识别并捕获形成T-Hg2+-T结构从而引起电信号的改变,因此其所制备的核酸适配体传感器具有良好的特异性识别能力和选择性;
(3)本发明以铁氰化钾为电信号探针,采用示差脉冲伏安法对汞离子的浓度进行检测,得到的检测范围为5×10 -16~1×10-6 mol/L,检出限为1.67×10 -16(3σ),表现出高灵敏度。
附图说明
图1分别为(A)Pt@CNF,(B)Pt@CNF/CILE,(C)Au/Pt@CNF/CILE的扫描电镜图。
图2为不同Pt@CNF用量(a)1.5 mg/mL,(b)2.0 mg/mL,(c)1.0 mg/mL,(d)0.5 mg/mL修饰电极在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合液中的循环伏安曲线。
图3为不同浓度HAuCl4(a)0.5 mmol/L,(b)1.0 mmol/L,(c)3.0 mmol/L,(d)2.0mmol/L电化学沉积制备的修饰电极在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合液中的循环伏安曲线。
图4为不同电沉积时间(a)100 s,(b)50 s,(c)200 s,(d)150 s制备的修饰电极在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合液中的循环伏安曲线。
图5为(a)Au/Pt@CNF/CILE,(b)Pt@CNF/CILE和(c)CILE在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合液中的循环伏安曲线(扫速为0.1 V/s)。
图6为(a)Au/Pt@CNF/CILE,(b)Pt@CNF/CILE和(c)CILE在10 mmol/L K3[Fe(CN)6]和0.1 mol/L KCl混合液中的交流阻抗谱(扫描频率范围为105至0.01 Hz)。
图7为Au/Pt@CNF/CILE在1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合液中不同扫速下的循环伏安曲线(a到m扫速分别为:0.01,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00,1.10,1.20 V/s)。
图8为Aptamer/Au/Pt@CNF/CILE与Hg2+反应前后的峰电流变化值(I-I0)与Hg2+浓度的对数(lgC)间的线性关系曲线。
图9为Aptamer/Au/Pt@CNF/CILE在含浓度为10-8 mol/L不同干扰离子的1.0 mmol/L K3[Fe(CN)6]和0.5 mol/L KCl混合电解液中的示差脉冲伏安曲线。
具体实施方式
以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE。
实施例2
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为100 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
实施例3
Aptamer/Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为100 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE;
将Au/Pt@CNF/CILE置入1.0 µmol/L适配体探针中于4 °C下自组装12 h,取出后洗涤晾干;
涂覆30 µL 1.0 mmol/L TGA于电极表面1 h,用于封闭电极表面未结合位点,洗涤晾干后得到Aptamer/Au/Pt@CNF/CILE。
对比例1
CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE。
对比例2
Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 0.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE。
对比例3
Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.0 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE。
对比例4
Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 2.0 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE。
对比例5
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于0.5 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为100 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
对比例6
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于1.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为100 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
对比例7
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于3.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为100 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
对比例8
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为50 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
对比例9
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为150 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
对比例10
Au/Pt@CNF/CILE的制备,包括以下步骤:
取1.6 g石墨粉和0.8 g HPPF6于研钵中充分研磨呈糊状后导入玻璃电极管中,内插铜丝作导线,即得到CILE;
取8 μL 1.5 mg/mL Pt@CNF分散液滴涂于CILE表面,室温条件下自然晾干,得到Pt@CNF/CILE;
将Pt@CNF/CILE置于2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行电沉积实验,沉积电位为- 0.3 V,沉积时间为200 s,取出洗涤晾干后,得到Au/Pt@CNF/CILE。
一、扫描电子显微镜表征
所制备材料的SEM形貌如图1所示,A和B为Pt@CNF的微观形貌,可以看出PtNPs已成功负载于CNF表面,并且CNF呈现出连续网状纤维结构,进一步在Pt@CNF/CILE表面沉积AuNPs后,可以看出AuNPs均匀覆盖在Pt@CNF表面。
二、传感器制备条件优化
优化了Pt@CNF用量对修饰电极电化学响应的影响,结果如图2所示,当使用8 mL 1.5mg/mL Pt@CNF修饰在电极表面时的氧化还原峰电流响应最大。
优化了不同浓度HAuCl4溶液进行电沉积实验时对所制备的Au/Pt@CNF/CILE性能的影响(沉积电位为- 0.3 V,沉积时间为100 s),结果如图3所示,当HAuCl4溶液浓度为2.0mmol/L时峰电流响应最大。
进一步优化了不同的沉积时间对电沉积效果的影响(沉积电位为- 0.3 V,HAuCl4溶液浓度为2.0 mmol/L),结果如图4所示,当沉积时间为100 s时峰电流响应最大。因而,传感器的制备均在此优化条件下进行。
三、电化学表征
通过循环伏安法研究了不同修饰电极的电化学响应,结果如图5所示,在3种电极上均出现一对氧化还原峰。随着Pt@CNF和AuNPs的逐步修饰,峰电流逐渐升高,表明AuNPs和Pt@CNF的存在提升了电极的电传导率,并为电极界面的电子转移提供丰富的反应活性位点,促进电子转移过程。
在电化学交流阻抗谱中电子转移电阻(Ret)可通过测量阻抗谱的半圆弧的直径求得。考察了不同修饰电极的交流阻抗谱,结果如图6所示,三种电极的电阻值分别为CILE(曲线c,169.92 Ω),Pt@CNF/CILE(曲线b,108.74 Ω),Au/Pt@CNF/CILE(曲线a,59.75 Ω),阻抗值的逐渐降低说明导电性优异的AuNPs与Pt@CNF结合后发挥出良好的协同作用,促进了电子的有效传递,减小了界面电子转移电阻。
五、有效面积求解
在最佳条件下制备了Au/Pt@CNF/CILE并以[Fe(CN)6]3-/4-为氧化还原探针在0.01~1.20V/s扫速范围内记录了循环伏安曲线,结果如图7所示,氧化还原峰电流(Ip)与υ1/2间呈良好的线性关系,线性回归方程为Ipc(μA)= 214.89 υ1/2 – 9.60(n = 13,γ = 0.999)与Ipa(μA)= - 203.13 υ1/2 + 10.74(n = 13,γ = 0.997),表明电极反应为扩散控制过程。根据Randles-Sevcik方程计算出Au-Pt@CNF/CILE的有效面积(A)为0.29 cm2,远大于CILE(0.13cm2),表明CILE表面修饰Au-Pt@CNF复合材料后表现出更大的有效面积。
六、标准曲线
通过改变Hg2+的浓度,以[Fe(CN)6]3-/4-作为信号探针,运用示差脉冲伏安法对所构筑的电化学核酸适配体传感器的灵敏度进行了研究。结果表明Hg2+浓度在5×10-16~1×10-6mol/L的检测范围内,峰电流随着目标物浓度的增加逐渐增大。与Hg2+反应前后的峰电流变化值(DI = I - I0)与Hg2+浓度的对数(lgC)呈良好的线性关系。如图8所示,其线性回归方程可分为两部分,当Hg2+浓度为5×10-16至5×10-12 mol/L范围内,DI (μA) = 3.00•lgC(mol/L) + 46.83 (n = 9, γ = 0.994);当Hg2+浓度为5×10-12至1×10-6 mol/L内,DI (μA) = 5.24•lgC (mol/L) + 71.55 (n = 12, γ = 0.992),检测限为1.67×10-16 mol/L(3σ)。
七、干扰离子
研究了适配体传感器对Hg2+的选择性,通过示差脉冲伏安法测试了多种金属离子如Cd2 +、Ca2+、Mn2+、Al3+、Ag+、Cu2+、Ni2+、Pb2+(浓度均为1.0×10-8 M)的干扰。如图9所示,除Hg2+外的所有离子都表现出很小的电流变化,表明该电化学传感器对Hg2+具有良好的选择性,这是由于所使用的适配体具有良好的特异性。
综上所述,本发明通过静电纺丝技术制备了CNF,采用水热法合成了Pt@CNF复合材料并将其修饰于基底电极上,通过在电极表面沉积AuNPs,得到三元纳米材料修饰电极(Au/Pt@CNF/CILE),进一步利用Au-S键合力将巯基化适配体探针固定并以TGA作封闭剂,成功构筑了核酸适配体传感器(Aptamer/Au/Pt@CNF/CILE)。Pt@CNF表现出良好的导电性和大比表面积,进一步电沉积AuNPs后为电子传递提供了丰富的活性位点。该适配体传感器在应用于Hg2+的分析检测中,表现出较宽的检测范围和低的检测限。鉴于该方法良好的选择性,操作简便性和高灵敏度,预期未来可通过电化学适配体传感器实现对重要分析物的选择性检测。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (7)

1.一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,首先在基底电极(CILE)表面采用涂布法修饰铂@碳纤维纳米复合材料(Pt@CNF),采用电沉积法形成金纳米颗粒(AuNPs),再利用Au-S键将巯基化适配体(Aptamer)自组装在电极表面,进一步以硫代乙醇酸(TGA)为未结合活性位点封闭剂制备了用于电化学检测汞离子的无标记适配体传感器(Aptamer/Au/Pt@CNF/CILE),最后通过检测适配体传感器在含汞离子标液中反应前后的电信号变化制作标准曲线,建立了一种高灵敏检测汞离子的电化学传感新方法。
2.根据权利要求1所述的一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,使用的基底电极(CILE)为碳离子液体电极(Carbon ionic liquidelectrode),其制作步骤为称取质量比为2:1的石墨粉和离子液体(N-己基吡啶六氟磷酸盐,HPPF6)于研钵中充分研磨至糊状后填入玻璃电极管中压实,内插铜丝作为导线,表面打磨光滑后制得。
3.根据权利要求1所述的一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,涂布的铂@碳纤维纳米复合材料(Pt@CNF)分散液的浓度为1.5 mg/mL,体积为8.0 μL。
4.根据权利要求1所述的一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,电沉积金实验是在2.0 mmol/L HAuCl4和0.1 mol/L NaNO3混合液中进行,沉积电位为- 0.3 V,沉积时间为100 s。
5.根据权利要求1所述的一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,所使用的巯基化适配体(Aptamer)浓度为1.0 µmol/L,自组装条件为在4°C下反应12 h。
6.根据权利要求1所述的一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,涂覆的硫代乙醇酸(TGA)浓度为1.0 mmol/L,体积为30.0 µL,于室温下反应1 h。
7.根据权利要求1所述的一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器,其特征在于,该适配体传感器是以铁氰化钾为电化学信号探针用于定量检测Hg2+
CN201910166536.3A 2019-03-06 2019-03-06 一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器 Pending CN109959689A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910166536.3A CN109959689A (zh) 2019-03-06 2019-03-06 一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910166536.3A CN109959689A (zh) 2019-03-06 2019-03-06 一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器

Publications (1)

Publication Number Publication Date
CN109959689A true CN109959689A (zh) 2019-07-02

Family

ID=67024096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910166536.3A Pending CN109959689A (zh) 2019-03-06 2019-03-06 一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器

Country Status (1)

Country Link
CN (1) CN109959689A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398396A (zh) * 2020-05-22 2020-07-10 河南工业大学 一种用于重金属Hg2+和Pb2+同时检测的电化学传感器制备方法
CN111562299A (zh) * 2020-05-20 2020-08-21 海南师范大学 一种用于铅离子检测的电化学适配体传感器件的构建与分析应用
CN111562298A (zh) * 2020-05-20 2020-08-21 海南师范大学 一种以亚甲基蓝为指示剂高灵敏检测铅离子的电化学适配体传感器的构建与应用
CN113117185A (zh) * 2021-04-20 2021-07-16 南方科技大学 一种基于液态金属和静电纺丝修饰的静脉留置针及其制备方法
CN114235924A (zh) * 2021-12-16 2022-03-25 杭州电子科技大学 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591437A (zh) * 2016-11-25 2017-04-26 海南师范大学 一种基于铂‑金‑三维石墨烯纳米复合材料的电化学基因传感器件的制备与应用
CN108802143A (zh) * 2018-05-29 2018-11-13 海南师范大学 一种基于肌红蛋白和二氧化钛-碳纤维纳米复合材料修饰电极的制备与应用研究

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591437A (zh) * 2016-11-25 2017-04-26 海南师范大学 一种基于铂‑金‑三维石墨烯纳米复合材料的电化学基因传感器件的制备与应用
CN108802143A (zh) * 2018-05-29 2018-11-13 海南师范大学 一种基于肌红蛋白和二氧化钛-碳纤维纳米复合材料修饰电极的制备与应用研究

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JING LI 等: "In Situ-Generated Nano-Gold Plasmon-Enhanced Photoelectrochemical Aptasensing Based on Carboxylated Perylene- Functionalized Graphene", ANAL. CHEM., vol. 86, pages 1306 *
RUIZHUO OUYANG 等: "Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)", ANALYTICA CHIMICA ACTA, vol. 722, pages 1 - 7, XP028474955, DOI: 10.1016/j.aca.2012.01.032 *
YANYAN NIU 等: "Electrochemical performance of myoglobin based on TiO2-doped carbon nanofiber decorated electrode and its applications in biosensing", RSC ADV., vol. 9, pages 4480 *
YINGYING QI 等: "Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples:A new signal amplification mechanism", BIOSENSORS AND BIOELECTRONICS, vol. 87, pages 439 *
梁顺超 等: "适配体电化学传感器检测汞离子进展", 分析测试学报, vol. 35, no. 5, pages 618 - 626 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562299A (zh) * 2020-05-20 2020-08-21 海南师范大学 一种用于铅离子检测的电化学适配体传感器件的构建与分析应用
CN111562298A (zh) * 2020-05-20 2020-08-21 海南师范大学 一种以亚甲基蓝为指示剂高灵敏检测铅离子的电化学适配体传感器的构建与应用
CN111398396A (zh) * 2020-05-22 2020-07-10 河南工业大学 一种用于重金属Hg2+和Pb2+同时检测的电化学传感器制备方法
CN111398396B (zh) * 2020-05-22 2022-06-17 河南工业大学 一种用于重金属Hg2+和Pb2+同时检测的电化学传感器制备方法
CN113117185A (zh) * 2021-04-20 2021-07-16 南方科技大学 一种基于液态金属和静电纺丝修饰的静脉留置针及其制备方法
CN114235924A (zh) * 2021-12-16 2022-03-25 杭州电子科技大学 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备
CN114235924B (zh) * 2021-12-16 2023-10-17 杭州电子科技大学 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备

Similar Documents

Publication Publication Date Title
CN109959689A (zh) 一种基于金/铂@碳纤维修饰的Hg(Ⅱ)无标记电化学适配体传感器
Qian et al. Research progress of electrochemical detection of heavy metal ions
Torkashvand et al. Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions
Moarefdoust et al. An electrochemical sensor based on hierarchical nickel oxide nanostructures doped with indium ions for voltammetric simultaneous determination of sunset yellow and tartrazine colorants in soft drink powders
CN107991371B (zh) 氧化铜非酶葡萄糖电化学传感器
Kong et al. Molecularly imprinted quartz crystal microbalance sensor based on poly (o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination
CN108318553A (zh) Afb1电化学免疫传感器及其制备方法及其用于黄曲霉素b1的检测
Bagheri et al. Gold nanoparticles deposited on fluorine-doped tin oxide surface as an effective platform for fabricating a highly sensitive and specific digoxin aptasensor
CN111562298A (zh) 一种以亚甲基蓝为指示剂高灵敏检测铅离子的电化学适配体传感器的构建与应用
CN105842321B (zh) 氧化铜纳米针/氮掺杂石墨烯复合材料的非酶葡萄糖电化学传感器的制备方法
Rajpurohit et al. Simultaneous determination of amlodipine and losartan using an iron metal–organic framework/mesoporous carbon nanocomposite-modified glassy carbon electrode by differential pulse voltammetry
Zhang et al. Label-free immunosensor based on Au@ Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine
Xu et al. Electrochemical preparation of a three dimensional PEDOT–Cu x O hybrid for enhanced oxidation and sensitive detection of hydrazine
Xiao et al. The functionalization of gold nanoparticles as a novel platform for the highly efficient electrochemical detection of silver ions
CN111562299A (zh) 一种用于铅离子检测的电化学适配体传感器件的构建与分析应用
Pu et al. Performance comparison of simultaneo us detection Heavy-Metal ions based on carbon materials electrochemical sensor
Roushani et al. Rationally designed of hollow nitrogen doped carbon nanotubes double shelled with hierarchical nickel hydroxide nanosheet as a high performance surface substrate for cortisol aptasensing
Xia et al. An electrochemical sensor for the sensitive detection of rutin based on a novel composite of activated silica gel and graphene
Khan et al. Molecular imprinted polymer based impedimetric sensor for trace level determination of digoxin in biological and pharmaceutical samples
Qin et al. In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins
Pan et al. A target-triggered ultra-sensitive aptasensor for simultaneous detection of Cd2+ and Hg2+ using MWCNTs-Au NPs modified electrode
Zhang et al. A novel self-assembly voltammetric sensor for malachite green based on ethylenediamine and graphene oxide
CN110146577A (zh) 一种电化学传感器及其检测钾离子的方法
Wang et al. Magnetic electrode-based label-free electrochemical impedance spectroscopy immunosensor for sensitive detection of human malignant melanoma markers using gold nanoparticles functionalized magnetic graphene sheets as signal amplifier
Zhou et al. A simple label-free electrochemical aptamer sensor for detection of Hg2+ based on black phosphorus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190702

WD01 Invention patent application deemed withdrawn after publication