CN109932184A - 基于并集信度规则推理的船用柴油机异常磨损诊断方法 - Google Patents
基于并集信度规则推理的船用柴油机异常磨损诊断方法 Download PDFInfo
- Publication number
- CN109932184A CN109932184A CN201910211395.2A CN201910211395A CN109932184A CN 109932184 A CN109932184 A CN 109932184A CN 201910211395 A CN201910211395 A CN 201910211395A CN 109932184 A CN109932184 A CN 109932184A
- Authority
- CN
- China
- Prior art keywords
- reliability
- union
- value
- fault
- fault mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000002159 abnormal effect Effects 0.000 title abstract description 30
- 239000010687 lubricating oil Substances 0.000 claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 1
- 229920002678 cellulose Polymers 0.000 claims 1
- 239000001913 cellulose Substances 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 230000001568 sexual effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000000332 black box Nutrition 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing Of Engines (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910211395.2A CN109932184B (zh) | 2019-03-20 | 2019-03-20 | 基于并集信度规则推理的船用柴油机异常磨损诊断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910211395.2A CN109932184B (zh) | 2019-03-20 | 2019-03-20 | 基于并集信度规则推理的船用柴油机异常磨损诊断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109932184A true CN109932184A (zh) | 2019-06-25 |
CN109932184B CN109932184B (zh) | 2020-08-04 |
Family
ID=66987801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910211395.2A Active CN109932184B (zh) | 2019-03-20 | 2019-03-20 | 基于并集信度规则推理的船用柴油机异常磨损诊断方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109932184B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110850206A (zh) * | 2019-11-13 | 2020-02-28 | 武汉理工大学 | 基于置信规则推理的逆变器电容老化故障诊断方法 |
CN111444597A (zh) * | 2020-03-17 | 2020-07-24 | 杭州电子科技大学 | 基于随机性修正信度规则系统的螺旋桨卷气效应识别方法 |
CN112036079A (zh) * | 2020-08-18 | 2020-12-04 | 哈尔滨工程大学 | 一种基于anfis的柴油机多信息融合诊断方法 |
CN112784480A (zh) * | 2021-01-13 | 2021-05-11 | 西安交通大学 | 一种油液状态自学习量化表征方法、存储介质及设备 |
CN113379223A (zh) * | 2021-06-04 | 2021-09-10 | 江苏科技大学 | 基于故障关联模型的船舶主机随船备件多层级配置方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170515A2 (en) * | 1984-07-31 | 1986-02-05 | Westinghouse Electric Corporation | Rule based diagnostic system with dynamic alteration capability |
JP2003173259A (ja) * | 2001-12-04 | 2003-06-20 | Seiko Epson Corp | ルール生成支援装置、ルール生成支援装置の制御方法、制御プログラムおよび記録媒体 |
JP2007293489A (ja) * | 2006-04-24 | 2007-11-08 | Mitsubishi Electric Corp | 設備機器用故障診断装置および設備機器用故障診断方法 |
CN102818754A (zh) * | 2012-09-06 | 2012-12-12 | 爱德森(厦门)电子有限公司 | 一种提高发动机油液金属磨粒在线监测精度的方法及装置 |
CN105181338A (zh) * | 2015-09-08 | 2015-12-23 | 广西大学 | 基于振动和油液信息的发动机状态监测和故障诊断方法 |
CN106940281A (zh) * | 2016-12-09 | 2017-07-11 | 中国航空工业集团公司上海航空测控技术研究所 | 一种基于信息融合技术智能模型的航空油液分析方法 |
CN107368854A (zh) * | 2017-07-20 | 2017-11-21 | 华北电力大学(保定) | 一种基于改进证据理论的断路器故障诊断方法 |
CN108982096A (zh) * | 2018-06-01 | 2018-12-11 | 杭州电子科技大学 | 基于启发式规则系统的工业机器人曲柄轴磨损检测方法 |
CN109324598A (zh) * | 2018-09-27 | 2019-02-12 | 广东石油化工学院 | 一种强扰动状态下反馈控制下复合故障的诊断方法及装置 |
-
2019
- 2019-03-20 CN CN201910211395.2A patent/CN109932184B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170515A2 (en) * | 1984-07-31 | 1986-02-05 | Westinghouse Electric Corporation | Rule based diagnostic system with dynamic alteration capability |
JP2003173259A (ja) * | 2001-12-04 | 2003-06-20 | Seiko Epson Corp | ルール生成支援装置、ルール生成支援装置の制御方法、制御プログラムおよび記録媒体 |
JP2007293489A (ja) * | 2006-04-24 | 2007-11-08 | Mitsubishi Electric Corp | 設備機器用故障診断装置および設備機器用故障診断方法 |
CN102818754A (zh) * | 2012-09-06 | 2012-12-12 | 爱德森(厦门)电子有限公司 | 一种提高发动机油液金属磨粒在线监测精度的方法及装置 |
CN105181338A (zh) * | 2015-09-08 | 2015-12-23 | 广西大学 | 基于振动和油液信息的发动机状态监测和故障诊断方法 |
CN106940281A (zh) * | 2016-12-09 | 2017-07-11 | 中国航空工业集团公司上海航空测控技术研究所 | 一种基于信息融合技术智能模型的航空油液分析方法 |
CN107368854A (zh) * | 2017-07-20 | 2017-11-21 | 华北电力大学(保定) | 一种基于改进证据理论的断路器故障诊断方法 |
CN108982096A (zh) * | 2018-06-01 | 2018-12-11 | 杭州电子科技大学 | 基于启发式规则系统的工业机器人曲柄轴磨损检测方法 |
CN109324598A (zh) * | 2018-09-27 | 2019-02-12 | 广东石油化工学院 | 一种强扰动状态下反馈控制下复合故障的诊断方法及装置 |
Non-Patent Citations (4)
Title |
---|
XIAOJIAN XU 等: "A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines", 《IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS》 * |
XINPING YAN 等: "Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology", 《MEASUREMENT SCIENCE AND TECHNOLOGY》 * |
孙伟超 等: "不完备信息条件下的并发故障诊断方法", 《北京航空航天大学学报》 * |
陈果 等: "基于知识规则的发动机磨损故障诊断专家系统", 《航空动力学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110850206A (zh) * | 2019-11-13 | 2020-02-28 | 武汉理工大学 | 基于置信规则推理的逆变器电容老化故障诊断方法 |
CN111444597A (zh) * | 2020-03-17 | 2020-07-24 | 杭州电子科技大学 | 基于随机性修正信度规则系统的螺旋桨卷气效应识别方法 |
CN111444597B (zh) * | 2020-03-17 | 2023-05-26 | 杭州电子科技大学 | 基于随机性修正信度规则系统的螺旋桨卷气效应识别方法 |
CN112036079A (zh) * | 2020-08-18 | 2020-12-04 | 哈尔滨工程大学 | 一种基于anfis的柴油机多信息融合诊断方法 |
CN112784480A (zh) * | 2021-01-13 | 2021-05-11 | 西安交通大学 | 一种油液状态自学习量化表征方法、存储介质及设备 |
CN112784480B (zh) * | 2021-01-13 | 2023-08-08 | 西安交通大学 | 一种油液状态自学习量化表征方法、存储介质及设备 |
CN113379223A (zh) * | 2021-06-04 | 2021-09-10 | 江苏科技大学 | 基于故障关联模型的船舶主机随船备件多层级配置方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109932184B (zh) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109932184B (zh) | 基于并集信度规则推理的船用柴油机异常磨损诊断方法 | |
Tay et al. | Fault diagnosis based on rough set theory | |
Shen et al. | Fault diagnosis using rough sets theory | |
CN102175282B (zh) | 一种基于信息融合的离心式空气压缩机故障诊断方法 | |
EP0637739B1 (en) | Testing an internal combustion engine | |
De Giorgi et al. | A diagnostics tool for aero-engines health monitoring using machine learning technique | |
CN110132603B (zh) | 基于并集置信规则库和蚁群算法的船舶柴油机故障定位方法 | |
CN106769052A (zh) | 一种基于聚类分析的机械系统滚动轴承智能故障诊断方法 | |
Tian et al. | Deep learning-based open set multi-source domain adaptation with complementary transferability metric for mechanical fault diagnosis | |
CN101853320B (zh) | 一种适用于飞机结构腐蚀损伤的模糊综合评判方法 | |
CN115187832A (zh) | 一种基于深度学习与格拉姆角场图像的能源系统故障诊断方法 | |
CN106547967B (zh) | 基于代价分析的柴油机燃油系统维修决策方法 | |
CN113157732A (zh) | 一种基于pso-bp神经网络的地下铲运机故障诊断方法 | |
CN102400902A (zh) | 往复式压缩机性能状态可靠性评价方法 | |
Balin et al. | A hierarchical structure for ship diesel engine trouble-shooting problem using fuzzy AHP and fuzzy VIKOR hybrid methods | |
Zhang et al. | A new adaptive Mamdani-type fuzzy modeling strategy for industrial gas turbines | |
Du et al. | Research on the application of artificial intelligence method in automobile engine fault diagnosis | |
CN110826587B (zh) | 基于改进的加权一类支持向量机的涡轴发动机故障检测方法 | |
Şentürk | Fuzzy regression control chart based on α-cut approximation | |
Setiawan | Fuzzy decision support system for coronary artery disease diagnosis based on rough set theory | |
CN105844288A (zh) | 基于油液监测技术的机器状态识别方法 | |
Zhang | Aeroengine Fault Prediction Based on Bidirectional LSTM Neural Network | |
CN110657031B (zh) | 飞机发动机喘振识别方法 | |
Wei et al. | Fault Status Information Monitoring Technology for Large Complex Electromechanical System. | |
Kumar et al. | Vibration based IC engine fault diagnosis using tree family classifiers-a machine learning approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Lei Jie Inventor after: Xu Xiaojian Inventor after: Chang Leilei Inventor after: Xu Xiaobin Inventor after: Huang Darong Inventor after: Han Deqiang Inventor after: Hou Pingzhi Inventor before: Chang Leilei Inventor before: Lei Jie Inventor before: Xu Xiaobin Inventor before: Xu Xiaojian Inventor before: Huang Darong Inventor before: Han Deqiang Inventor before: Hou Pingzhi |