CN109916842B - 去除植物叶片中总叶绿素干扰h2s含量测定的方法 - Google Patents

去除植物叶片中总叶绿素干扰h2s含量测定的方法 Download PDF

Info

Publication number
CN109916842B
CN109916842B CN201910248898.7A CN201910248898A CN109916842B CN 109916842 B CN109916842 B CN 109916842B CN 201910248898 A CN201910248898 A CN 201910248898A CN 109916842 B CN109916842 B CN 109916842B
Authority
CN
China
Prior art keywords
content
solution
leaves
plant
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910248898.7A
Other languages
English (en)
Other versions
CN109916842A (zh
Inventor
于晓章
林钰涓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201910248898.7A priority Critical patent/CN109916842B/zh
Publication of CN109916842A publication Critical patent/CN109916842A/zh
Application granted granted Critical
Publication of CN109916842B publication Critical patent/CN109916842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体为:将植物叶片在pH=7.0的研磨液中冰浴研磨得到匀浆液;然后加入等体积的提取液A,提取液A为丙酮和正己烷按照体积比1:1混合,涡旋混匀后得到混合液,将混合液离心,吸取上清液,然后加入等体积的三氯甲烷溶液,再次涡旋混匀后得到混合液,将混合液离心,吸取上层水相溶液,采用比色法测定上层水相溶液中的H2S含量。本发明能有效地去除植物叶片总叶绿素对H2S含量测定的干扰,采用比色法测定植物叶片中H2S的含量,测定结果准确、可靠,操作简便、实用、快速、可操作性强,解决了现有技术中存在的问题。

Description

去除植物叶片中总叶绿素干扰H2S含量测定的方法
技术领域
本发明属于生物测定技术领域,涉及一种去除植物叶片中总叶绿素干扰H2S含量测定的方法。
背景技术
植物体内低浓度的H2S是一种信号分子,参与调控植物气孔运动、增强光合作用、延缓衰老、促进植物的生长发育、缓解非生物胁迫等多种生理过程,而高浓度的H2S对植物细胞有毒害作用。植物内源H2S主要由半胱氨酸脱巯基酶催化半胱氨酸分解,以及亚硝酸盐还原酶催化的亚硝酸盐还原过程产生。植物在重金属胁迫、高温胁迫、盐胁迫下形成氧化胁迫,造成活性氧的累积,H2S通过调动抗氧化酶清除活性氧。同时,H2S 是半胱氨酸合成的底物,在植物应对非生物胁迫中起着至关重要的作用。谷胱甘肽是以半胱氨酸为前体物合成的,参与活性氧的清除,同时也可以合成植物络合素而参与重金属解毒。
5,5'-二硫代双(2-硝基苯甲酸)比色法(以下简称DTNB比色法)是最常用于测定植物组织(根系或者胚芽鞘)中H2S含量的一种方法。DTNB比色法通常用100mM的磷酸钾缓冲液(pH=7.0,其中含10mM EDTA)来研磨植物的组织。磷酸钾缓冲液研磨植物根系后,研磨液呈显根系原色;加入5,5'-二硫代双(2-硝基苯甲酸)溶液后,其与根系中的H2S反应生成黄色的硫硝基苯甲酸。由于叶片中叶绿素的存在,如果用该磷酸钾缓冲液研磨植物的叶片,研磨液会呈显绿色,加入5,5'-二硫代双(2-硝基苯甲酸)溶液后仍为绿色,造成吸光值偏大,从而干扰植物叶片中H2S的含量测定。目前,除亚甲蓝法外,DTNB法是测定植物根系中H2S含量的最常用方法,没有发现测定植物叶片中H2S 含量的相关文献。
发明内容
为了去除植物叶片中总叶绿素对H2S含量测定的干扰,本发明提供一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,能有效地去除总叶绿素对H2S测定的干扰,采用比色法测定植物叶片中H2S的含量,测定结果准确、可靠,操作简便、实用、快速、可操作性强,解决了现有技术中存在的问题。
本发明所采用的技术方案是,一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,将植物叶片在pH=7.0的研磨液中冰浴研磨得到匀浆液;
步骤S2,吸取匀浆液,然后加入等体积的提取液A,涡旋混匀后得到混合液,提取液A为丙酮和正己烷按照体积比1:1混合得到;
步骤S3,将步骤S2得到的混合液在4℃的条件下离心12-15min,离心速度为12000-14000r/min;
步骤S4,吸取上清液,然后加入等体积的提取液B,涡旋混匀后得到混合液,提取液B为三氯甲烷溶液;
步骤S5,将步骤S4得到的混合液在4℃的条件下离心3-4min,离心速度为 10000-12000r/min;
步骤S6,吸取上层水相溶液,采用比色法测定上层水相溶液中的H2S含量,即得植物叶片中H2S含量。
进一步的,所述步骤S6,采用比色法测定上层水相溶液中的H2S含量的方法具体为:准确吸取2-3mL水相溶液,向溶液中加入等体积的反应液C,25℃下反应2min,用紫外分光光度计在412nm波长处测定吸光度值,反应液C为0.0317g 5,5'-二硫代双(2-硝基苯甲酸)溶于200毫升研磨液中得到;
Figure GDA0002946760890000021
式中,C:根据标准曲线拟合方程计算出所测样品吸光度值对应的H2S浓度,μmol/L; V1:步骤S1所用的研磨液体积,mL;V2:步骤S2吸取的匀浆液体积,mL;V3:步骤 S6吸取的水相溶液体积,mL;Fw:步骤S1中植物叶片鲜重,g。
进一步的,所述步骤S1中,研磨液为100mM磷酸钾缓冲液,磷酸钾缓冲液中含10 mMEDTA。
进一步的,所述研磨液的用量为:每0.15-0.20g植物叶片加入3.0-5.0mL研磨液。
进一步的,所述步骤S2中,涡旋混合的混合速度为2800-3000r/min,混合时间为15-18s。
进一步的,所述步骤S3中,离心时间为15min。
进一步的,所述步骤S4中,涡旋混合的混合速度为2800-3000r/min,混合时间为15-18s。
进一步的,所述步骤S5中,离心时间为3min。
本发明的有益效果是,比色法测定植物叶片中H2S的含量易受叶片中总叶绿素的干扰,影响测定的准确性;本发明能有效地去除植物叶片总叶绿素对H2S含量测定的干扰,去除叶绿素干扰的效果好、稳定性强,能够准确测定植物叶片中H2S的含量;与色谱方法比较,本方法从样品提取、制备到测定具有简便、实用、快速、可操作性强等优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施案例1的水稻幼苗根部和叶片的H2S含量。
图2是本发明实施案例2、3、4、5的水稻幼苗叶片的H2S含量。
图3是本发明实施案例1、2、3、4、5的对照组水稻幼苗叶片的H2S含量。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明以丙酮(助溶剂)、正己烷(非极性提取剂)、三氯甲烷(极性提取剂)混合提取植物叶片中的总叶绿素,以此避免使用DTNB比色法时植物叶片中总叶绿素对H2S 含量测定的干扰。
叶绿素属酯类化合物,在有机溶剂中的溶解度远大于水中。根据叶绿素的极性,叶绿素在丙酮中的溶解度最大,其次是氯仿、正己烷、甲醇、乙醇。丙酮是目前最常见的植物叶片中总叶绿素(包括叶绿素a和叶绿素b)的提取剂,但是丙酮具有较强的水溶性,无法达到水相和有机相的分离。本发明的提取液A:丙酮与正己烷以体积比1:1混合,起到协同萃取和助溶的效果,该混合溶剂提取总叶绿素的效果比丙酮、正己烷单独提取效果好。提取液A中的正己烷(非极性提取剂)不溶于水,但叶绿素溶解于正己烷溶液中,加入丙酮起到助溶剂的作用,保证正己烷在水相中获得最大的分散相,以此达到总叶绿素在有机相中的溶解,便于充分萃取研磨液中的总叶绿素。
提取液B:三氯甲烷溶液,为极性提取剂,在本文的作用是利用萃取剂的极性差异,把溶解于正己烷和丙酮混合液中的总叶绿素萃取到极性更大的有机相(三氯甲烷)中,以达到去除水相中总叶绿素的目的。
本发明去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,称取0.15-0.20g(Fw,鲜重)水稻幼苗叶片在3.0-5.0mL(V1)、pH=7.0的研磨液中冰浴研磨得到匀浆液,研磨液为100mM磷酸钾缓冲液,磷酸钾缓冲液中含10 mMEDTA;植物叶片用100mM磷酸钾缓冲液研磨,主要是为了保证植物组织中的H2S 含量的稳定;100mM磷酸钾缓冲液(含10mM EDTA),即2.7843g K2HPO4·3H2O、 1.0615g KH2PO4、0.1461g EDTA溶于200mL去离子水中;液研磨主要使水稻幼苗叶片研磨成匀浆液,同时维持溶液环境的pH,使H2S更稳定。H2S在酸性溶液中极易挥发,而在碱性条件下能被氧化成硫酸根。植物细胞液呈弱酸性,pH=7.0的磷酸钾缓冲液可以使植物组织研磨成匀浆液后维持中性环境。
步骤S2,准确吸取匀浆液3.0-4.0毫升(V2),然后加入等体积的提取液A,涡旋混匀(2800-3000r/min,混合15-18s)后得到混合液,提取液A与匀浆液的体积比1:1,提取液A为丙酮和正己烷按照体积比1:1混合;
步骤S3,将步骤S2得到的混合液在12000-14000r/min的条件下,4℃离心12-15min,取上清液a备用;离心转速12000-14000r/min的作用是使得水稻幼苗叶片匀浆液中的细胞壁、细胞器等组分沉淀,离心12-15min即可使匀浆液中的细胞壁、细胞器等沉淀,上清液a主要为叶绿素提取液和H2S;
步骤S4,准确吸取3.0-4.0毫升上清液a,然后加入等体积的提取液B,涡旋混匀(2800-3000r/min,混合15-18s)后得到混合液备用,提取液B与上清液a的体积比1: 1,提取液B为三氯甲烷溶液;
步骤S5,将步骤S4得到的混合液在10000-12000r/min的条件下,4℃离心3-4min,液体分为上层的水相(H2S提取液)和下层的有机相(含有叶绿素的三氯甲烷提取液); 4℃离心是为了避免因温度过高,H2S在提取液中溢出,影响测定结果;
步骤S6,准确吸取上层水相溶液2毫升(V3),向溶液中加入等体积的反应液C,室温(25℃)反应2min,用紫外分光光度计在412nm波长处测定吸光度值,反应液C 与水相溶液的体积比1:1,反应液C:称取0.0317g 5,5'-二硫代双(2-硝基苯甲酸)溶于 200毫升研磨液(100mM磷酸钾缓冲液)中;
Figure GDA0002946760890000051
式中,C:根据标准曲线拟合方程计算出所测样品吸光度值对应的H2S浓度(μmol/L); V1:步骤S1所用的研磨液体积(mL);V2:步骤S2吸取的匀浆液体积(mL);V3:步骤S6吸取的水相溶液体积(mL);Fw:步骤S1的水稻幼苗叶片鲜重(g)。
实施案例1,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,对照组:正常生长的水稻幼苗根部和叶片;处理组1:采用100μmol/L NaHS对水稻幼苗处理6h。NaHS是刺激植物细胞产生H2S的前驱物,以此来增加水稻幼苗体内的H2S含量,使其含量高于对照组,用于验证方法的准确性;处理组2:采用200μmol /L NaHS对水稻幼苗处理6h,增加水稻幼苗体内的H2S含量,使H2S含量高于处理组1,用于验证方法的灵敏性;分别取对照组、处理组1、处理组2的水稻幼苗根部和叶片各 0.2g在5.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液;研磨液:100mM磷酸钾缓冲液(含10mM EDTA);
步骤S2,将匀浆液在12000r/min的条件下,4℃离心15min,取2.0mL上清液备用;
步骤S3,取上清液,用DTNB比色法测定水稻根系和叶片中H2S的含量,具体结果见图1。结果可以看出,根系中H2S的含量在对照组与2个处理组之间存在显著性差异,而且处理组2与处理组1之间也存在明显的差异。但是叶片中H2S的含量在对照组与2 个处理组之间无显著性差异,2个处理组之间也无明显差异,说明该方法对水稻幼苗叶片中H2S含量的测定结果准确性差。
实施案例2,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,分别取实施案例1中对照组、处理组1、处理组2的水稻幼苗叶片各0.2g,在5.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液;研磨液:100mM磷酸钾缓冲液(含 10mMEDTA);
步骤S2,准确吸取3.0mL匀浆液加入3.0mL正己烷,涡旋混匀(3000r/min,混合15s)后备用;
步骤S3,将步骤2中的混合液在12000r/min的条件下,4℃离心3min,液体分为下层水相(H2S提取液)和上层有机相(含有叶绿素的正己烷提取液);
步骤S4,吸取下层的水相溶液2.0mL,用DTNB比色法测定水稻叶片中H2S的含量。
试验中能够用肉眼观察到下层水相溶液颜色为绿色,加入5,5'-二硫代双(2-硝基苯甲酸)溶液后仍为绿色,叶片中H2S的含量与实施案例1的测定结果无显著变化,具体测定结果见图2。从图2可以看出,尽管2个处理组叶片中H2S的含量略高于对照组,但是2个处理组之间不存在显著性差异,2个处理组叶片中H2S的含量无显著差异,说明该方法对水稻幼苗叶片中H2S含量的测定依然不准确。
实施案例3,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,分别取实施案例1中对照组、处理组1、处理组2的水稻幼苗叶片各0.2g,在5.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液;研磨液:100mM磷酸钾缓冲液(含 10mMEDTA);
步骤S2,准确吸取3.0mL匀浆液加入3.0mL三氯甲烷,涡旋混匀(3000r/min,混合15s)后备用;
步骤S3,将步骤2得到的混合液在12000r/min的条件下,4℃离心3min,液体分为上层水相(H2S提取液)和下层有机相(含有叶绿素的三氯甲烷提取液);
步骤S4,吸取上层的水相溶液2.0mL,用DTNB比色法测定水稻叶片中H2S的含量。
试验中能够用肉眼观察到上层水相溶液颜色为绿色,加入5,5'-二硫代双(2-硝基苯甲酸)溶液后仍为绿色,叶片中H2S的含量与实施案例1的测定结果无显著变化,具体测定结果见图2。从图2可以看出,尽管2个处理组叶片中H2S的含量略高于对照组,但是2个处理组之间不存在显著性差异,2个处理组叶片中H2S的含量无显著差异,说明该方法对水稻幼苗叶片中H2S含量的测定依然不准确。
实施案例4,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,分别取实施案例1中对照组、处理组1、处理组2的水稻幼苗叶片各0.2g,在5.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液;研磨液:100mM磷酸钾缓冲液(含 10mMEDTA);
步骤S2,准确吸取3.0mL匀浆液加入3.0mL丙酮,涡旋混匀(3000r/min,混合15s)后备用;
步骤S3,将步骤2中的混合液在12000r/min的条件下,4℃离心15min,取3.0mL 上清液留作备用;
步骤S4,在步骤3中得到的上清液加入3.0mL三氯甲烷,涡旋混匀(3000r/min,混合15s)后备用;
步骤S5,步骤4得到的混合液在12000r/min的条件下,4℃离心3min,液体分为上层的水相(H2S提取液)和下层的有机相(含有叶绿素的三氯甲烷提取液);
步骤S6,吸取上层水相溶液2.0mL,用DTNB比色法测定水稻叶片中H2S的含量。
试验中能够用肉眼观察到上层水相溶液颜色变浅,是因为溶解于丙酮中的总叶绿素部分萃取到了含有三氯甲烷的有机相中,丙酮的水溶性决定了水相的H2S提取液中仍然含有一定比例的总叶绿素残留,加入5,5'-二硫代双(2-硝基苯甲酸)溶液后仍显绿色,叶片中H2S的含量与实施案例1的测定结果无显著变化,具体测定结果见图2。从图2 可以看出,尽管2个处理组叶片中H2S的含量略高于对照组,但是2个处理组之间不存在显著性差异,2个处理组叶片中H2S的含量无显著差异,说明该方法对水稻幼苗叶片中H2S含量的测定依然不准确。
实施案例5,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,分别取实施案例1中对照组、处理组1、处理组2的水稻幼苗叶片各0.2g,在5.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液,研磨液:100mM磷酸钾缓冲液(含 10mMEDTA);
步骤S2,准确吸取3.0mL步骤S1的匀浆液,然后加入3.0mL提取液A,涡旋混匀(3000r/min,混合15s)后备用,提取液A为丙酮和正己烷按照体积比1:1混合;
步骤S3,将步骤S2中的混合液在12000r/min的条件下,4℃离心15min,吸取3.0mL上清液备用;
步骤S4,在步骤S3中所得到的3.0mL上清液中加入3.0mL提取液B,涡旋混匀(3000r/min,混合15s)后备用;提取液B为三氯甲烷;
步骤S5,将步骤S4所得到的混合液在12000r/min的条件下,4℃离心3min,液体分为上层的水相(H2S提取液)和下层的有机相(含有叶绿素的三氯甲烷提取液);
步骤S6,吸取上层的水相溶液2.0mL用DTNB比色法测定叶片中的H2S含量。
利用本方法获得的水稻叶片H2S粗提液(步骤S5的上清液)几乎没有绿色,加入5,5'-二硫代双(2-硝基苯甲酸)溶液后显色为黄色,叶片中的H2S含量见图2。结果可以看出,不仅2个处理组叶片中H2S的含量明显高于对照组,而且2个处理组叶片中H2S 的含量也存在显著性差异,且对照组、处理组1、处理组2的叶片中H2S含量的差异与实施案例1中水稻幼苗根部H2S含量的差异非常接近,说明实施案例5的测定方法去除了叶绿素的干扰,测定结果更接近真实情况。
实施案例6,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,取实施案例1中对照组的水稻幼苗叶片0.15g,在4.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液,研磨液:100mM磷酸钾缓冲液(含10mM EDTA);
步骤S2,准确吸取3.0mL步骤S1的匀浆液,然后加入等体积的提取液A,涡旋混匀(2800r/min,混合18s)后备用,提取液A为丙酮和正己烷按照体积比1:1混合;
步骤S3,将步骤S2中的混合液在14000r/min的条件下,4℃离心12min;
步骤S4,吸取3.0mL上清液,加入等体积提取液B,涡旋混匀(2800r/min,混合 18s)后备用;提取液B为三氯甲烷;
步骤S5,将步骤S4所得到的混合液在10000r/min的条件下,4℃离心4min,液体分为上层的水相(H2S提取液)和下层的有机相(含有叶绿素的三氯甲烷提取液);
步骤S6,吸取上层的水相溶液2.0mL用DTNB比色法测定叶片中的H2S含量。
实施案例7,
去除植物叶片中总叶绿素干扰H2S含量测定的方法,具体按照以下步骤进行:
步骤S1,取实施案例1中对照组的水稻幼苗叶片0.2g,在3.0mL、pH=7.0的研磨液中冰浴研磨成匀浆液,研磨液:100mM磷酸钾缓冲液(含10mM EDTA);
步骤S2,准确吸取3.0mL步骤S1的匀浆液,然后加入等体积的提取液A,涡旋混匀(2900r/min,混合16s)后备用,提取液A为丙酮和正己烷按照体积比1:1混合;
步骤S3,将步骤S2中的混合液在13000r/min的条件下,4℃离心14min;
步骤S4,吸取3.0mL上清液,加入等体积提取液B,涡旋混匀(2900r/min,混合 16s)后备用;提取液B为三氯甲烷;
步骤S5,将步骤S4所得到的混合液在11000r/min的条件下,4℃离心4min,液体分为上层的水相(H2S提取液)和下层的有机相(含有叶绿素的三氯甲烷提取液);
步骤S6,吸取上层的水相溶液2.0mL用DTNB比色法测定叶片中的H2S含量。
实施案例8,
提取液A:丙酮和正己烷的体积混合比分别采用40%:60%、60%:40%、30%:70%、 70%:30%。在步骤S2分别采用以上四种不同组合的提取液A,其它步骤与实施案例5相同,发现上层水相的颜色均有显示不同程度的淡绿色。
实施案例9,
在实施案例5的步骤S4,将3.0mL提取液B缩减到1.5-2.5mL时,其它步骤与实施案例5相同,得到上层水相的颜色显示淡绿色,说明萃取剂三氯甲烷的加入体积不足。
由实施案例2-4可以看出,由丙酮、正己烷、三氯甲烷单独去除叶绿素,对H2S含量测定效果不明显。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (8)

1.一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,具体按照以下步骤进行:
步骤S1,将植物叶片在pH=7.0的研磨液中冰浴研磨得到匀浆液;
步骤S2,吸取匀浆液,然后加入等体积的提取液A,涡旋混匀后得到混合液,提取液A为丙酮和正己烷按照体积比1:1混合得到;
步骤S3,将步骤S2得到的混合液在4℃的条件下离心12-15min,离心速度为12000-14000r/min;
步骤S4,吸取上清液,然后加入等体积的提取液B,涡旋混匀后得到混合液,提取液B为三氯甲烷溶液;
步骤S5,将步骤S4得到的混合液在4℃的条件下离心3-4min,离心速度为10000-12000r/min;
步骤S6,吸取上层水相溶液,采用比色法测定上层水相溶液中的H2S含量,即得植物叶片中H2S含量。
2.根据权利要求1所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述步骤S6,采用比色法测定上层水相溶液中的H2S含量的方法具体为:准确吸取2-3mL水相溶液,向溶液中加入等体积的反应液C,25℃下反应2min,用紫外分光光度计在412nm波长处测定吸光度值,反应液C为0.0317g5,5'-二硫代双(2-硝基苯甲酸)溶于200毫升研磨液中得到;
Figure FDA0002011817770000011
式中,C:根据标准曲线拟合方程计算出所测样品吸光度值对应的H2S浓度,μmol/L;V1:步骤S1所用的研磨液体积,mL;V2:步骤S2吸取的匀浆液体积,mL;V3:步骤S6吸取的水相溶液体积,mL;Fw:步骤S1中植物叶片鲜重,g。
3.根据权利要求1所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述步骤S1中,研磨液为100mM磷酸钾缓冲液,磷酸钾缓冲液中含10mM EDTA。
4.根据权利要求3所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述研磨液的用量为:每0.15-0.20g植物叶片加入3.0-5.0mL研磨液。
5.根据权利要求1所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述步骤S2中,涡旋混合的混合速度为2800-3000r/min,混合时间为15-18s。
6.根据权利要求1所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述步骤S3中,离心时间为15min。
7.根据权利要求1所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述步骤S4中,涡旋混合的混合速度为2800-3000r/min,混合时间为15-18s。
8.根据权利要求1所述的一种去除植物叶片中总叶绿素干扰H2S含量测定的方法,其特征在于,所述步骤S5中,离心时间为3min。
CN201910248898.7A 2019-03-29 2019-03-29 去除植物叶片中总叶绿素干扰h2s含量测定的方法 Active CN109916842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910248898.7A CN109916842B (zh) 2019-03-29 2019-03-29 去除植物叶片中总叶绿素干扰h2s含量测定的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910248898.7A CN109916842B (zh) 2019-03-29 2019-03-29 去除植物叶片中总叶绿素干扰h2s含量测定的方法

Publications (2)

Publication Number Publication Date
CN109916842A CN109916842A (zh) 2019-06-21
CN109916842B true CN109916842B (zh) 2021-04-02

Family

ID=66967592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910248898.7A Active CN109916842B (zh) 2019-03-29 2019-03-29 去除植物叶片中总叶绿素干扰h2s含量测定的方法

Country Status (1)

Country Link
CN (1) CN109916842B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793846A (zh) * 2005-12-20 2006-06-28 沈阳建筑大学 一种监测叶绿素a的方法
CN102532146A (zh) * 2010-12-13 2012-07-04 依诺特生物能量控股公司 萃取叶绿素和检测叶绿素浓度的方法
CN102721690A (zh) * 2012-05-10 2012-10-10 山西大学 一种植物组织中h2s的化学染色方法
CN103641838A (zh) * 2013-11-27 2014-03-19 威海市桢昊生物技术有限公司 一种从莴苣中提取叶绿素的方法
CN103724354A (zh) * 2013-12-06 2014-04-16 山东好当家海洋发展股份有限公司 一种从萝卜缨中提取叶绿素的方法
KR20140081765A (ko) * 2014-04-24 2014-07-01 강원대학교산학협력단 녹차로부터 클로로필류의 추출방법
KR20140082600A (ko) * 2014-04-24 2014-07-02 강원대학교산학협력단 녹차 아세톤 추출물의 추출방법
KR20170085663A (ko) * 2016-01-15 2017-07-25 김학수 난노클로롭시스를 이용한 클로로필 a 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793846A (zh) * 2005-12-20 2006-06-28 沈阳建筑大学 一种监测叶绿素a的方法
CN102532146A (zh) * 2010-12-13 2012-07-04 依诺特生物能量控股公司 萃取叶绿素和检测叶绿素浓度的方法
CN102721690A (zh) * 2012-05-10 2012-10-10 山西大学 一种植物组织中h2s的化学染色方法
CN103641838A (zh) * 2013-11-27 2014-03-19 威海市桢昊生物技术有限公司 一种从莴苣中提取叶绿素的方法
CN103724354A (zh) * 2013-12-06 2014-04-16 山东好当家海洋发展股份有限公司 一种从萝卜缨中提取叶绿素的方法
KR20140081765A (ko) * 2014-04-24 2014-07-01 강원대학교산학협력단 녹차로부터 클로로필류의 추출방법
KR20140082600A (ko) * 2014-04-24 2014-07-02 강원대학교산학협력단 녹차 아세톤 추출물의 추출방법
KR20170085663A (ko) * 2016-01-15 2017-07-25 김학수 난노클로롭시스를 이용한 클로로필 a 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Quantification of Hydrogen Sulfide Concentration Using Methylene Blue and 5,5-Dithiobis(2-Nitrobenzoic Acid) Methods in Plants;Zhong-Guang Li;《Methods in Enzymology》;20151231;第554卷;第101-110页 *
植物H2S气体信号分子的生理功能研究进展;金竹萍 等;《中国细胞生物学学报》;20130630;第35卷(第6期);第880-888页 *

Also Published As

Publication number Publication date
CN109916842A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
Han et al. Selenium uptake, speciation and stressed response of Nicotiana tabacum L.
Marker The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin.
Balakhnina et al. Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress
Küpper et al. Photometric method for the quantification of chlorophylls and their derivatives in complex mixtures: fitting with Gauss-peak spectra
Wang et al. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice
Mazzafera Growth and biochemical alterations in coffee due to selenite toxicity
Rady et al. Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil
Vera-Villalobos et al. Sulfate nutrition improves short-term Al3+-stress tolerance in roots of Lolium perenne L
Vansuyt et al. Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin
CN109916842B (zh) 去除植物叶片中总叶绿素干扰h2s含量测定的方法
Qina et al. Root aeration promotes cadmium accumulation in rice by regulating iron uptake-associated system
Yu et al. Sodium hydrosulfide alleviates aluminum toxicity in Brassica napus through maintaining H2S, ROS homeostasis and enhancing aluminum exclusion
Kumar et al. Zinc deficiency-induced differential biochemical responses of zinc-efficient and zinc-inefficient rice plants
Kringstad et al. The rapid isolation of vacuoles from leaves of Crassulacean acid metabolism plants
Zhang et al. Physiological and proteomic dissection of the rice roots in response to iron deficiency and excess
CN101781640B (zh) 一种以叶绿素酶作为烟草加工辅助的酶制剂及制备、使用方法
Zhu et al. Biochar improves the growth performance of maize seedling in response to antimony stress
CN112595785B (zh) 水稻籽粒中一种高毒性的砷形态二甲基单巯基砷的分析方法
Li et al. Root chemistry and microbe interactions contribute to metal (loid) tolerance of an aromatic plant–Vetiver grass
Wang et al. Do freeze-thaw cycles affect the cadmium accumulation, subcellular distribution, and chemical forms in spinach (Spinacia oleracea L.)?
Yang et al. Determination of trace zinc in water, soil and rabbit blood samples using cloud point extraction coupled with ultraviolet-visible spectrophotometry.
Mi et al. Surface spraying of anthocyanin through antioxidant defense and subcellular sequestration to decrease Cd accumulation in rice (Oryza sativa L.) grains in a lead–zinc mine area
Yang et al. Effects of silicon and iron application on arsenic absorption and physiological characteristics of rice (Oryza sativa l.)
Brunner et al. Phytotoxic effects of the high molecular weight fraction of an aqueous leaf litter extract on barley root development
CN114604975A (zh) 腐殖酸在提高水体重金属植物修复效果中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant