CN109913814B - 一种氧化铜/硒复合材料薄膜 - Google Patents

一种氧化铜/硒复合材料薄膜 Download PDF

Info

Publication number
CN109913814B
CN109913814B CN201910244517.8A CN201910244517A CN109913814B CN 109913814 B CN109913814 B CN 109913814B CN 201910244517 A CN201910244517 A CN 201910244517A CN 109913814 B CN109913814 B CN 109913814B
Authority
CN
China
Prior art keywords
cuo
film
copper oxide
composite material
material film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910244517.8A
Other languages
English (en)
Other versions
CN109913814A (zh
Inventor
高斐
高蓉蓉
刘浩
刘生忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201910244517.8A priority Critical patent/CN109913814B/zh
Publication of CN109913814A publication Critical patent/CN109913814A/zh
Priority to US16/729,343 priority patent/US11008648B2/en
Application granted granted Critical
Publication of CN109913814B publication Critical patent/CN109913814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种氧化铜/硒复合材料薄膜,将低熔点(为221℃)、强光敏性的Se引入CuO,从而得到晶性良好,光、电及光电性能优异的薄膜材料。本发明将Se引入CuO,并通过低温退火使Se熔化,利用熔化的Se对CuO的浸润来消除或减少CuO膜中的空洞和悬挂键等缺陷,从而提高薄膜的晶性、光、电及光电性能,克服了CuO结晶性差、熔点高且高温分解的缺点,在太阳能电池领域具有良好的应用前景。

Description

一种氧化铜/硒复合材料薄膜
技术领域
本发明属于半导体材料技术领域,具体涉及一种新型的半导体氧化铜/硒(CuO/Se)复合材料薄膜。
背景技术
氧化铜(CuO)是一种重要的p型半导体材料,其光学禁带宽度约为1.4eV。在地球上拥有大量的铜资源,因而CuO价格低廉。CuO是一种具有广泛用途的材料,可用在超导、磁性、催化、气敏、储能和太阳能电池等方面。由于CuO在其熔点附近(1026℃)会分解,因此不能用真空热蒸发制备和用高温退火的方法提高其结晶性。目前CuO薄膜的制备主要用磁控溅射、电化学沉积、化学溶液旋涂等方法。用这些方法制备的CuO薄膜结晶性差,缺陷多,导致载流子复合严重,器件性能差。
发明内容
为了解决目前现有技术制备的CuO薄膜结晶性差的问题,本发明提出将低熔点(为221℃)、强光敏性的Se引入CuO,制备一种氧化铜/硒复合材料薄膜,从而提高薄膜的结晶性和光、电及光电性能。
解决上述问题所采用的氧化铜/硒复合材料薄膜为CuO和Se的复合物薄膜,且CuO和Se的复合物中存在中间相CuSe2和CuSe中任意一种或两种;该薄膜中Cu元素的原子百分含量为10%~60%,O元素的原子百分含量与Cu元素相同,Se元素的原子百分含量为10%~60%。
作为优选,上述氧化铜/硒复合材料薄膜中,Cu元素的原子百分含量为20%~40%,O元素的原子百分含量与Cu元素相同,Se元素的原子百分含量为20%~50%。
作为进一步优选,本发明氧化铜/硒复合材料薄膜中还掺杂有Si、Fe、Ge中任意一种,其中掺杂的Si或Fe或Ge元素的原子百分含量为3%~10%。
本发明氧化铜/硒复合材料薄膜采用磁控溅射法制备,具体制备方法为:采用CuO和Se共溅射的方式在衬底上沉积一层CuO/Se复合材料薄膜,然后在空气或氮气中300~400℃退火1~3分钟,得到氧化铜/硒复合材料薄膜;或先用磁控溅射法在玻璃衬底上沉积一层CuO膜,再在CuO膜上热蒸发沉积一层Se膜,接着在空气或氮气中300~400℃退火10~60分钟,得到氧化铜/硒复合材料薄膜。
本发明氧化铜/硒复合材料薄膜还可采用化学溶液法制备,具体制备方法为:将CuO粉末和Se粉末按摩尔比为1:2~3研磨混合均匀后加入二甲亚砜中,在50~70℃下搅拌6~10小时,所得反应液旋涂于衬底上,然后在150~200℃下退火5~10分钟,制备成氧化铜/硒复合材料薄膜。
上述的衬底为单晶硅片、普通玻璃、石英玻璃、氧化铟锡导电玻璃、掺氟氧化锡导电玻璃中的任意一种。
本发明的有益效果如下:
本发明将低熔点(为221℃)、强光敏性的Se引入CuO,并通过低温退火(Se的熔点附近),使Se熔化,利用熔化的Se对CuO的浸润来消除或减少CuO膜中的空洞和悬挂键等缺陷,从而得到一种结晶性良好的CuO/Se复合材料薄膜。该复合材料薄膜结合了CuO对光强吸收、带隙合适,Se的熔点低、适合低温制备和处理且具有强的光敏性的优点,克服了CuO熔点高且高温分解,Se带隙过大(约1.8eV)的缺点,是一种结晶性良好,光、电及光电性能优异的薄膜材料,在光电子器件及太阳能电池领域具有良好的应用前景。
附图说明
图1是实施例1所制备的CuO/Se复合材料薄膜的结构表征X射线衍射图。
图2是实施例1所制备的CuO/Se复合材料薄膜的扫描电镜图。
图3是实施例1所制备的CuO/Se复合材料薄膜的吸收光谱图。
图4是实施例1所制备的CuO/Se复合材料薄膜的光电流随载流子扩散距离的衰减。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将普通玻璃衬底依次在丙酮、乙醇、去离子水中超声清洗10分钟,用氮气吹干,然后将玻璃衬底置于磁控溅射沉积室内,用机械泵和分子泵将沉积室抽真空至2×10-4Pa,调节玻璃衬底和靶材的距离为6cm,然后将玻璃衬底加热至200℃,接着打开氩气通气阀,向沉积室通入氩气,并打开质量流量计,控制氩气流量为30sccm,调节沉积室压强至0.6Pa。采用CuO和Se共溅射的方式,溅射功率为60W,并同时旋转衬底,在玻璃衬底上沉积CuO/Se复合材料薄膜,溅射时间为30分钟,薄膜厚度约4μm。沉积结束后,自然冷却至室温,在空气中350℃退火1分钟,得到CuO/Se复合材料薄膜。
采用霍尔效应仪测量得出所制备的CuO/Se复合材料薄膜为p型导电性,载流子浓度为2.05×1019cm-3,迁移率为98cm2V-1s-1,电阻率为3.12×10-3Ωcm。图1的X射线衍射测量表明,CuO/Se复合材料薄膜中CuO处于非晶态,一部分Se处于纳晶态(用Debye-Scherrer公式估算平均晶粒尺寸为48nm),并出现CuSe2纳晶(平均晶粒尺寸为44nm),说明该薄膜是一种非晶/纳晶复合薄膜,而没有退火的膜中CuO和Se都没有结晶。由能量色散X射线谱(EDX)测量出CuO/Se复合材料薄膜中Cu、O和Se的原子百分含量分别约为30%、32%和38%。图2是CuO/Se复合材料薄膜的表面扫描电子显微镜(SEM)照片,可以看出,该薄膜表面由10~30nm的颗粒组成。用紫外-可见-近红外分光光度计测量CuO/Se复合材料膜的吸收光谱,结果见图3。由图3可以看出,所制备的CuO/Se复合材料薄膜在整个太阳光谱波段(250~2500nm)对光都有强的吸收(平均吸收率接近80%)。用光电流扫描法直接测量CuO/Se复合材料薄膜的光电流随载流子扩散距离的衰减,结果见图4。由指数衰减方程I=I0exp(-L/LD),得出CuO/Se复合材料薄膜的光生载流子扩散长度LD=3.147mm。这比最好的p型单晶硅的载流子扩散长度(1.95mm)还长许多!远远大于目前研究热点的有机-无机杂化钙钛矿材料的载流子扩散长度(如单晶CH3NH3PbI3为0.32mm,多晶薄膜为0.014mm)。这些特性说明本发明CuO/Se复合材料薄膜是一种性能非常优异的光电材料。
实施例2
本实施例中,采用CuO和Se、Si共溅射的方式,按照实施例1的条件制备Cu元素和O元素的原子百分含量均为30%,Se元素的原子百分含量为36%,Si元素的原子百分含量为4%的CuO/Se复合材料薄膜。所制备的CuO/Se复合材料薄膜仍在整个太阳光谱波段(250~2500nm)对光都有强的吸收(平均吸收率接近80%)。用光电流扫描法直接测量CuO/Se复合材料薄膜的光生载流子扩散长度LD=3.124mm。
实施例3
先用磁控溅射法,按照实施例1的条件在玻璃衬底上沉积一层CuO膜,再在CuO膜上用常规的热蒸发沉积一层Se膜,接着在空气中300℃退火30分钟,制备成CuO/Se复合材料薄膜。
实施例4
将0.4g(5mmol)CuO粉末和0.34g(10mmol)Se粉末研磨并混合均匀后,加入3mLDMSO中,在60℃下搅拌8小时,所得反应液以1000转/分的转速旋涂于玻璃衬底上,然后在150℃下退火10分钟,制备成CuO/Se复合材料薄膜。

Claims (5)

1.一种氧化铜/硒复合材料薄膜,其特征在于:所述氧化铜/硒复合材料薄膜为CuO和Se的复合物薄膜,且CuO和Se的复合物中存在中间相CuSe2和CuSe中任意一种或两种;该薄膜中Cu元素的原子百分含量为10%~60%,O元素的原子百分含量与Cu元素相同,Se元素的原子百分含量为10%~60%;
上述CuO和Se的复合物薄膜采用磁控溅射法制备,具体制备方法如下:
采用CuO和Se共溅射的方式在玻璃衬底上沉积一层CuO/Se复合材料薄膜,然后在空气中300~400℃退火1~3分钟,得到氧化铜/硒复合材料薄膜;或先用磁控溅射法在玻璃衬底上沉积一层CuO膜,再在CuO膜上热蒸发沉积一层Se膜,接着在空气中300~400℃退火10~60分钟,得到氧化铜/硒复合材料薄膜;
或者上述氧化铜/硒复合材料薄膜采用化学溶液法制备而成,具体制备方法为:将CuO粉末和Se粉末按摩尔比为1:2~3研磨混合均匀后加入二甲亚砜中,在50~70℃下搅拌6~10小时,所得反应液旋涂于玻璃衬底上,然后在150~200℃下退火5~10分钟,制备成氧化铜/硒复合材料薄膜。
2.根据权利要求1所述的氧化铜/硒复合材料薄膜,其特征在于:所述氧化铜/硒复合材料薄膜中Cu元素的原子百分含量为20%~40%,O元素的原子百分含量与Cu元素相同,Se元素的原子百分含量为20%~50%。
3.根据权利要求1或2所述的氧化铜/硒复合材料薄膜,其特征在于:所述氧化铜/硒复合材料薄膜中还掺杂有Si、Fe、Ge中任意一种。
4.根据权利要求3所述的氧化铜/硒复合材料薄膜,其特征在于:所述氧化铜/硒复合材料薄膜中掺杂的Si或Fe或Ge元素的原子百分含量为3%~10%。
5.根据权利要求1所述的氧化铜/硒复合材料薄膜,其特征在于:所述的玻璃衬底为普通玻璃、石英玻璃、氧化铟锡导电玻璃、掺氟氧化锡导电玻璃中的任意一种。
CN201910244517.8A 2019-03-28 2019-03-28 一种氧化铜/硒复合材料薄膜 Active CN109913814B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910244517.8A CN109913814B (zh) 2019-03-28 2019-03-28 一种氧化铜/硒复合材料薄膜
US16/729,343 US11008648B2 (en) 2019-03-28 2019-12-28 CuO/Se composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910244517.8A CN109913814B (zh) 2019-03-28 2019-03-28 一种氧化铜/硒复合材料薄膜

Publications (2)

Publication Number Publication Date
CN109913814A CN109913814A (zh) 2019-06-21
CN109913814B true CN109913814B (zh) 2020-11-17

Family

ID=66967509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910244517.8A Active CN109913814B (zh) 2019-03-28 2019-03-28 一种氧化铜/硒复合材料薄膜

Country Status (2)

Country Link
US (1) US11008648B2 (zh)
CN (1) CN109913814B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555459B (zh) * 2021-07-20 2022-08-30 陕西师范大学 具有强发光特性的二硫化硒掺杂氧化铜
CN113549453B (zh) * 2021-07-20 2023-05-12 陕西师范大学 一种具有高光电性能的CuO基复合材料
CN113698932B (zh) * 2021-09-06 2022-11-08 陕西师范大学 一种强红外发光的Cu2O/SnO半导体复合材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058484A (zh) * 2007-03-28 2007-10-24 杭州电子科技大学 一种p型掺氮的氧化亚铜薄膜材料及其制造方法
JP5713743B2 (ja) * 2011-03-22 2015-05-07 Dowaエレクトロニクス株式会社 セレン化銅粒子粉末およびその製造方法
CN105009304A (zh) * 2013-03-12 2015-10-28 韩国能源研究技术研究所 具有背面缓冲层的太阳能电池及其制造方法
CN105112869A (zh) * 2015-08-31 2015-12-02 哈尔滨工业大学 一种钇掺杂氧化铜红外透明导电薄膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2627557A1 (en) * 2005-10-31 2007-05-10 Ucl Business Plc Nanoparticle and nanocomposite films
US8053861B2 (en) * 2009-01-26 2011-11-08 Novellus Systems, Inc. Diffusion barrier layers
US20120132281A1 (en) * 2010-11-26 2012-05-31 Nexpower Technology Corporation Thin-film solar cell and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058484A (zh) * 2007-03-28 2007-10-24 杭州电子科技大学 一种p型掺氮的氧化亚铜薄膜材料及其制造方法
JP5713743B2 (ja) * 2011-03-22 2015-05-07 Dowaエレクトロニクス株式会社 セレン化銅粒子粉末およびその製造方法
CN105009304A (zh) * 2013-03-12 2015-10-28 韩国能源研究技术研究所 具有背面缓冲层的太阳能电池及其制造方法
CN105112869A (zh) * 2015-08-31 2015-12-02 哈尔滨工业大学 一种钇掺杂氧化铜红外透明导电薄膜的制备方法

Also Published As

Publication number Publication date
CN109913814A (zh) 2019-06-21
US20200308691A1 (en) 2020-10-01
US11008648B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
Zhao et al. In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells
EP0853345B1 (en) METHOD FOR FORMING CdTe FILM
CN109913814B (zh) 一种氧化铜/硒复合材料薄膜
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
Karmakar et al. Improved TCO characteristics of ZnO: Si films via utilization of Si4+ ionized donor states and its application in n-SZO/p-Si heterojunction solar cells
Kim et al. Narrow-bandgap Cu2Sn1− xGexSe3 thin film solar cells
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Chalapathi et al. Two-stage-processed AgSbS2 films for thin-film solar cells
Wang et al. Heteroepitaxial growth of Cu2O films on Nb-SrTiO3 substrates and their photovoltaic properties
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
Li et al. Cu2ZnSnS4 solar cells prepared by sulfurization of sputtered ZnS/Sn/CuS precursors
Guang-Pu et al. Investigation on SnS film by RF sputtering for photovoltaic application
US9954123B2 (en) Multifunctional nanostructured metal-rich metal oxides
CN111009589A (zh) 氮化铜薄膜太阳能电池及其制备方法
Tanaka et al. Preparation of Cu (In, Ga) 2 Se 3.5 thin films by radio frequency sputtering from stoichiometric Cu (In, Ga) Se 2 and Na 2 Se mixture target
Kartopu et al. Inline atmospheric pressure metal-organic chemical vapour deposition for thin film CdTe solar cells
KR101124226B1 (ko) 전구체를 이용한 cis 박막의 제조방법
Li et al. Growth of Zn doped Cu (In, Ga) Se2 thin films by RF sputtering for solar cell applications
Di Mare et al. Analysis of SnS growth and post deposition treatment by congruent physical vapor deposition
Munir et al. Non-sulfurization single solution approach to synthesize CZTS thin films
Watthage et al. Novel, facile back surface treatment for CdTe solar cells
Lee et al. Growth and p-type doping of cuprous oxide thin-films for photovoltaic applications
Kim et al. Effect of Sintering Temperature on the Characteristics of Zn 0.99 Li 0.01 O Thin Film on Si Substrate
Djeffal et al. Elaboration of Graded Band-Gap a-SiC Thin-Film Using RF Magnetron Sputtering Technique
Zhang et al. Effects of annealing on Cu 2 ZnSnS 4 thin films prepared on Mo substrate and the fabrication of solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant