CN109871639B - 一种基于视觉感知技术的清扫车作业功率计算装置及方法 - Google Patents

一种基于视觉感知技术的清扫车作业功率计算装置及方法 Download PDF

Info

Publication number
CN109871639B
CN109871639B CN201910170749.3A CN201910170749A CN109871639B CN 109871639 B CN109871639 B CN 109871639B CN 201910170749 A CN201910170749 A CN 201910170749A CN 109871639 B CN109871639 B CN 109871639B
Authority
CN
China
Prior art keywords
garbage
power
sweeper
coverage rate
visual perception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910170749.3A
Other languages
English (en)
Other versions
CN109871639A (zh
Inventor
于远彬
唐志诚
闵海涛
宋琪
张周平
张明智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910170749.3A priority Critical patent/CN109871639B/zh
Publication of CN109871639A publication Critical patent/CN109871639A/zh
Application granted granted Critical
Publication of CN109871639B publication Critical patent/CN109871639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于视觉感知技术的清扫车作业功率计算装置,包括摄像头、速度传感器、GPS定位装置、工控机、车载直流电源、控制器。本发明还公开了一种基于视觉感知技术的清扫车作业功率计算方法,根据视觉感知方法获取路面垃圾物种类及覆盖率;基于视觉感知方法建立扫盘功率拟合模型及制定风机挡位选取规则;结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率。本发明基于能源耗损问题对清扫车进行功率优化,使得清扫车能够根据实际作业工况智能选取最优作业功率,提高清扫车智能化程度的同时,达到了节约能源降低功率损耗的目的。

Description

一种基于视觉感知技术的清扫车作业功率计算装置及方法
技术领域
本发明属于智能清扫车技术领域,具体涉及一种基于视觉感知技术的清扫车作业功率计算装置及方法。
背景技术
随着生活水平的提高,城市环卫工作逐渐由清扫车承担,在一定程度上解放了人工劳动力,但是现阶段清扫车智能化水平不高,并且由于其作业工况特殊,传统道路清扫车在作业期间人工选取作业功率,无法根据路面实际作业工况选取最优作业功率,容易出现功率不匹配的现象,势必造成一定程度的能源损失。
如图1所示,传统清扫车进行道路清扫时,驾驶员根据路面状态在操作面板上进行风机、扫盘以及高压水泵挡位的选取,控制各执行器的清扫挡位,根据大多数驾驶员操作习惯,选取的清扫挡位往往比所需挡位高,而相邻挡位扫盘转速相差20~40r/min,高一挡位风机功率大约为低一档位风机功率的一倍,挡位选取不合理会造成很大的能量损失,此外由于水泵不同挡位之间损耗功率差别较小,故本发明针对风机、扫盘挡位/功率进行智能控制,基于能源耗损问题对清扫车进行功率优化,使得清扫车能够根据实际作业工况智能选取最优作业功率,提高清扫车智能化程度的同时,达到了节约能源降低功率损耗的目的。
发明内容
本发明所要解决的技术问题是克服了现有技术存在的问题,提供了一种基于视觉感知技术的清扫车作业功率计算装置,基于能源耗损问题对清扫车进行功率优化,使得清扫车能够根据实际作业工况智能选取最优作业功率,提高清扫车智能化程度的同时,达到了节约能源降低功率损耗的目的。
为解决上述技术问题,本发明是采用如下技术方案实现的:
一种基于视觉感知技术的清扫车作业功率计算装置,包括摄像头、速度传感器、GPS定位装置、工控机、车载直流电源、控制器;
摄像头通过GigE接口与工控机连接,车载直流电源分别给工控机及摄像头供电,工控机通过CAN接口与上装集成控制器连接,上装集成控制器通过数字I/O接口与扫盘、风机以及高压水泵连接;
摄像头共有两个,分别安装在车头处以及车尾处,车头处摄像头可以看到前方是否有垃圾物;车尾摄像头实时拍摄清扫后的路面状态,并通过工控机将信息传送至环卫队;速度传感器用于实时获取清扫车作业车速;
工控机中存有视觉感知模型以及执行器功率拟合模型,能够接收摄像头传递的视频流信息,识别路面垃圾物种类、覆盖率,预测作业工况下所需最佳执行器功率/挡位,同时工控机可将摄像头拍摄的视频流信息以及GPS定位装置的清扫车位置信息实时传送至环卫部门,对道路清扫情况的实时监控;
控制器包括底盘集成控制器以及上装集成控制器,通过CAN接口接收工控机指令,并输出数字I/O以调节执行器作业功率。
本发明同时提供了一种基于视觉感知技术的清扫车作业功率计算方法,包括以下步骤:
步骤一、根据视觉感知方法获取路面垃圾物种类及覆盖率;
步骤二、基于视觉感知方法建立扫盘功率拟合模型及制定风机挡位选取规则;
步骤三、结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率。
进一步地,所述步骤二中基于视觉感知方法建立扫盘功率拟合模型包括以下过程:
1)实验获取多组不同工况下的扫盘功率;
2)采用主成分分析算法对输入变量进行降维处理;
3)采用线性回归算法拟合主成分与扫盘功率之间的函数关系;
4)得到扫盘功率拟合模型。
更进一步地,所述步骤2)采用主成分分析算法对输入变量进行降维处理的具体过程为:
在建模过程中,将样本数据划分为拟合数据和验证数据,
给定数据集D={(x1,p11,p21),(x2,p12,p22),…,(xm,p1m,p2m)},其中xi=(xi1,xi2,xi3,xi4,xi5)表示一个样本中对应的五个属性,分别为垃圾覆盖率、垃圾种类、垃圾物的亲水性、路面状态以及天气状态;
输入矩阵为
Figure BDA0001987803990000021
(1)计算输入矩阵X1的协方差矩阵;
(2)计算协方差矩阵的特征值和特征向量;
(3)利用MATLAB软件对各个变量进行主成分分析,获得各成分的特征值、贡献率和累计贡献率,确定主成分个数及其贡献率;
系统主成分为垃圾覆盖率、垃圾种类以及路面状态,输入矩阵变为X′:
Figure BDA0001987803990000031
所述步骤3)采用线性回归算法拟合主成分与扫盘功率之间的函数关系的具体过程为:
此时数据集变为D={(x1,p11,p21),(x2,p12,p22),…,(xm,p1m,p2m)},其中xi=(xi1,xi2,xi3)表示一个样本中对应的三个主成分;
采用线性回归算法,试图学得:
Figure BDA0001987803990000032
其中,
Figure BDA0001987803990000033
为预测的盘扫功率;P1为该工况下对应的最优盘扫功率,该值由实验测得;
Figure BDA0001987803990000034
化输入矩阵为
Figure BDA0001987803990000035
其中,m表示输入样例个数,输入矩阵每一行即表示一个样例;xm1、xm2、xm3分别表示输入的三个属性,即垃圾覆盖率、垃圾种类以及垃圾亲水性;
由最小二乘算法估计误差可知,误差为:
Figure BDA0001987803990000036
定义损失函数为:
Figure BDA0001987803990000037
找到一个
Figure BDA0001987803990000038
使得
Figure BDA0001987803990000039
最小,即
Figure BDA00019878039900000310
进一步地,所述步骤二中基于视觉感知方法制定风机挡位选取规则包括以下过程:
1)实验获取各个组合某一覆盖率j下单类垃圾质量mi、体积Vi,其中,下标表示第i类垃圾,i=1,2,3,4,5,由此可得到单类垃圾覆盖率与质量、体积对应表;
2)采用盘扫将垃圾扫成一长条状,计算可得第i类垃圾盘扫后的堆状垃圾长Li
Figure BDA00019878039900000311
式中,w为堆状垃圾宽度,h为堆状垃圾高度;
3)计算第i类垃圾对应的上装系数:
定义单类垃圾上装系数θi为:
Figure BDA0001987803990000041
式中,vc为清扫车清扫车速;
4)得到n类垃圾混合后的等效上装系数θn
Figure BDA0001987803990000042
由此可得到风机挡位-等效上装系数θn关系表。
进一步地,所述步骤三结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率,包括以下过程:
3.1)摄像头实时获取作业路面图像,根据视觉感知获取路面垃圾物种类i及覆盖率j,自带速度传感器获取当前作业车速vc
3.2)获取作业工况所需扫盘功率:
将垃圾物种类i及覆盖率j输入至所述步骤二建立的扫盘功率拟合模型中,得到当前作业工况下的最低扫盘功率
Figure BDA0001987803990000043
3.2)获取作业工况所需风机挡位:
根据步骤二建立的单类垃圾覆盖率-质量-体积对应表以及摄像头识别得到的垃圾种类i、覆盖率j查找得到单类垃圾质量
Figure BDA0001987803990000044
体积
Figure BDA0001987803990000045
计算当前工况下混合垃圾等效上装系数
Figure BDA0001987803990000046
根据所述步骤二建立的风机挡位-等效上装系数θn关系表,将所得
Figure BDA0001987803990000047
与风机各档位对应系数做比较,采取向上选取原则得出当前工况所需风机挡位。
与现有技术相比本发明的有益效果是:
1.根据实际作业工况主动选取最优最低工作功率,达到相同清扫程度的前提下能够有效节能,有效解决了传统清扫车功率不匹配的现象;
2.由于清扫车实际作业时,采用先扫盘后风机来清扫垃圾物,且扫盘和风机采用的功率也不尽相同,故将模型构建过程分为两部分进行,如此一来能够排除两个执行器间的功率干扰,提高拟合精度;
3.在构建扫盘功率控制模型时,由于影响扫盘功率的因素众多,首先采用主成分分析法提取出影响权重较大的自变量,有利于排除弱相关因素带来的误差;
4.由于路面垃圾物覆盖率与风机功率没有直接的函数联系,无法建立两者的拟合函数,而在一定吸风功率下风机能够吸附的混合垃圾质量是确定、有限的,故通过实验构建类垃圾覆盖率-质量-体积对应表、风机挡位-等效上装系数θn关系表,制定风机挡位选取规则,更贴近实际作业。
附图说明
图1为传统清扫车功率挡位选取原理图;
图2为本发明一种基于视觉感知技术的清扫车作业功率计算装置原理框图;
图3为本发明一种基于视觉感知技术的清扫车作业功率计算装置运行流程图流程图;
图4为本发明步骤二基于视觉感知建立扫盘功率拟合模型流程图;
图5为本发明步骤二制定风机挡位选取规则流程图;
图6为本发明清扫车实际作业时具体流程图。
具体实施方式
以下结合附图详细介绍本发明的技术方案:
如图2所示,一种基于视觉感知技术的清扫车作业功率计算装置,包括acA1920-40gm/gc摄像头、速度传感器、GPS定位装置、车载级工控机Nuvo-5095GC、车载直流电源、控制器;
摄像头通过GigE接口与工控机连接,车载直流电源分别给车载工控机及摄像头供电,车载工控机通过CAN接口与上装集成控制器连接,上装集成控制器通过数字I/O接口与扫盘、风机以及高压水泵连接;
其中,摄像头共有两个,分别安装在车头处以及车尾处,车头处摄像头安装在内后视镜前端,可以看到前方8米内是否有垃圾物;车尾摄像头实时拍摄清扫后的路面状态,并通过工控机将信息传送至环卫队,有利于环卫队对未处理垃圾进行及时处理;速度传感器用于实时获取清扫车作业车速;
车载级工控机中存有视觉感知模型以及执行器功率拟合模型,能够接收摄像头传递的视频流信息,识别路面垃圾物种类、覆盖率,进一步地,预测作业工况下所需最佳执行器功率/挡位,同时工控机可将摄像头拍摄的视频流信息以及GPS定位装置的清扫车位置信息实时传送至环卫部门,可实现对道路清扫情况的实时监控;
控制器包括底盘集成控制器以及上装集成控制器,可通过CAN接口接收工控机指令,并输出数字I/O以调节执行器作业功率。
一种基于视觉感知技术的清扫车作业功率计算方法,具体步骤为:
步骤一、根据视觉感知方法获取路面垃圾物种类及覆盖率;
步骤二、基于视觉感知方法建立扫盘功率拟合模型、制定风机挡位选取规则;
步骤三、结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率。
步骤一根据视觉感知方法获取路面垃圾物种类及覆盖率的具体过程为:
1.1)采用Faster-RCNN算法构建路面垃圾物智能识别模型,路面垃圾物智能识别模型接收路面垃圾物图像输入后,可识别得到垃圾物的种类;
1.2)构建覆盖率识别模型:
首先采用图像处理算法分割目标与背景,具体步骤为:对输入图像进行阴影去除及图像分块,分块完成后进行高斯去噪,计算Sobel算子梯度并采用二值化面积阈值初步分割目标与背景;进一步地,采用形态学刻画的方法除去分割后图像中的不相干点;最后基于分割后的图像进行路面垃圾物覆盖率判断,得到每一种类垃圾物的占比及其覆盖率。
步骤二基于视觉感知方法建立扫盘功率拟合模型、制定风机挡位选取规则的具体过程为:
2.1)确定实验取样工况数量:
由于清扫车作业工况复杂,具有多样性,且清扫车上装功率大小受环境、垃圾覆盖率、垃圾物种类以及垃圾亲水性的影响,基于影响因素可得实验工况组合数量,如表1所示。同时为排除无关因素对模型精度的影响,每种工况应根据覆盖率大小等距取样,且每种工况取不少于十组数据。
表1
Figure BDA0001987803990000061
Figure BDA0001987803990000071
此外,由于清扫车作业时执行器分为扫盘和风机,实际作业时,对于两个执行器的要求也不尽相同,扫盘功率受路面状态、垃圾亲水性影响较大,而风机挡位受垃圾物种类、质量影响较大,若将两个执行器统一构建一个功率控制模型,则功率控制不能达到其最优效果,仍存在较大的误差以及功率损失,故针对扫盘构建扫盘功率拟合模型、针对风机制定风机挡位选取规则。
2)构建扫盘功率拟合模型
由于垃圾物种类变量以及环境变量不能量化,无法直接代入拟合模型,故将垃圾物种类变量以及环境变量抽象为系列标签,如表2、表3所示:
表2
垃圾种类 标签
树叶或纸片 1
垃圾袋或瓶子 2
灰尘或沙粒 3
煤炭或炉渣 4
碎玻璃或碎石 5
表3
环境 标签
路面情况良好 1
差路面 2
干燥路面 3
潮湿路面 4
由于垃圾物种类标签、环境标签以及垃圾覆盖率与扫盘功率不存在明显的函数联系,故采用主成分回归算法构建扫盘功率拟合模型,在建模过程中,将样本数据划分为两部分,即拟合数据以及验证数据,拟合数据占总数据五分之四,拟合数据用于模型构建,在模型构建完成后,将验证数据代入模型进行误差分析与验证。
有给定数据集D={(x1,p11,p21),(x2,p12,p22),…,(xm,p1m,p2m)},其中xi=(xi1,xi2,xi3,xi4,xi5)表示一个样本中对应的五个属性,分别为垃圾覆盖率、垃圾种类、垃圾物的亲水性、路面状态以及天气状态;
输入矩阵为
Figure BDA0001987803990000081
其中各个种类垃圾物对应的向量xi2如表4所示:
表4
垃圾种类 对应向量x<sub>i2</sub>
树叶或纸片 (1,0,0,0,0,0)
垃圾袋或瓶子 (0,1,0,0,0,0)
灰尘或沙粒 (0,0,1,0,0,0)
煤炭或炉渣 (0,0,0,1,0,0)
碎玻璃或碎石 (0,0,0,0,1,0)
1.对自变量进行主成分分析:
主成分分析是一种降维的思想,将彼此相关的因素转化为新的、数量少的综合因素,通常把转化生成的综合指标称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分之间互不相关。
主成分分析能够保证信息的最大保留度,不会损失太多信息,有利于抓住主要矛盾分析问题同时使问题得到简化,提高分析效率与精度。
步骤如下:
(1)计算输入矩阵X1的协方差矩阵;
(2)计算协方差矩阵的特征值和特征向量;
(3)利用MATLAB软件对各个变量进行主成分分析,即获得各成分的特征值、贡献率和累计贡献率,确定主成分个数及其贡献率;
由主成分分析可知系统主成分为垃圾覆盖率、垃圾种类以及路面状态,输入矩阵变为X′:
Figure BDA0001987803990000091
2.进一步地,对主成分进行回归建模:
此时数据集变为:D={(x1,p11,p21),(x2,p12,p22),…,(xm,p1m,p2m)},其中xi=(xi1,xi2,xi3)表示一个样本中对应的三个主成分;
采用线性回归算法,试图学得:
Figure BDA0001987803990000092
其中,
Figure BDA0001987803990000093
为预测的盘扫功率;P1为该工况下对应的最优盘扫功率,该值由实验测得。
为便于讨论,令
Figure BDA0001987803990000094
化输入矩阵为
Figure BDA0001987803990000095
其中,m表示输入样例个数,输入矩阵每一行即表示一个样例;xm1、xm2、xm3分别表示输入的三个属性,即垃圾覆盖率、垃圾种类以及垃圾亲水性。
由最小二乘算法估计误差可知,误差为
Figure BDA0001987803990000096
为方便计算定义损失函数为:
Figure BDA0001987803990000097
要找到一个
Figure BDA0001987803990000098
使得
Figure BDA0001987803990000099
最小,即
Figure BDA00019878039900000910
(1)当X满秩时,
Figure BDA00019878039900000911
求解对
Figure BDA00019878039900000912
的偏导数,当偏导为0时即为解
Figure BDA00019878039900000913
(2)当输入矩阵X不满秩时:
首先对
Figure BDA00019878039900000914
随机赋予初始值,
改变
Figure BDA00019878039900000915
的值,使得
Figure BDA00019878039900000916
按梯度下降的方向进行减少。
梯度方向由
Figure BDA00019878039900000917
Figure BDA00019878039900000918
的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。结果为
Figure BDA0001987803990000101
式中,α为步长;
按上式不断迭代更新直至找到一个
Figure BDA0001987803990000102
使得
Figure BDA0001987803990000103
最小。
进一步地,将验证数据代入回归模型中对其有效性进行验证,即通过MATLAB作出输入矩阵与输出矩阵的函数图像以及通过主成分回归模型拟合所得的函数图像,查看两者的拟合程度,经过检验,主成分回归模型预测准确度高。
2.3)制定风机挡位选取规则
依据工况组合数量实验获取各个组合某一覆盖率j下单类垃圾质量mi、体积Vi,其中,下标表示第i类垃圾,i=1,2,3,4,5,由此可得到单类垃圾覆盖率-质量-体积对应表;
进一步地,基于各组单类垃圾质量mi、体积Vi,计算各组实验工况对应的等效上装系数θn并记录当前风机挡位,计算步骤如下:
由于清扫车清扫路面垃圾物过程中,首先采用盘扫将垃圾扫成一长条状,且其宽高为固定值,计算可得第i类垃圾盘扫后的堆状垃圾长Li
Figure BDA0001987803990000104
式中,w为堆状垃圾宽度,h为堆状垃圾高度;
定义单类垃圾上装系数θi为:
Figure BDA0001987803990000105
式中,vc为清扫车清扫车速;
进一步得到n类垃圾混合后的等效上装系数θn
Figure BDA0001987803990000106
由此可得到风机挡位-等效上装系数θn关系表。
步骤三结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率的具体过程为,如图6所示:
3.1)摄像头实时获取作业路面图像,根据视觉感知获取路面垃圾物种类i及覆盖率j,自带速度传感器获取当前作业车速vc
3.2)获取作业工况所需扫盘功率:
将垃圾物种类i及覆盖率j输入至扫盘功率拟合模型中,得到当前作业工况下的最低扫盘功率
Figure BDA0001987803990000111
3.2)获取作业工况所需风机挡位:
根据单类垃圾覆盖率-质量-体积对应表以及摄像头识别得到的垃圾种类i、覆盖率j查找得到单类垃圾质量
Figure BDA0001987803990000112
体积
Figure BDA0001987803990000113
计算盘扫后堆状垃圾长:
Figure BDA0001987803990000114
计算当前工况下混合垃圾等效上装系数
Figure BDA0001987803990000115
Figure BDA0001987803990000116
Figure BDA0001987803990000117
查找风机挡位-等效上装系数θn关系表,将所得
Figure BDA0001987803990000118
与风机各档位对应系数做比较,采取向上选取原则得出当前工况所需风机挡位。
此外,由于摄像头可拍摄到前方8米内的路面情况,垃圾清扫完成且摄像头拍摄范围内没有垃圾物时把执行器开到最低档节能行驶。

Claims (4)

1.一种基于视觉感知技术的清扫车作业功率计算方法,其特征在于,包括以下步骤:
步骤一、根据视觉感知方法获取路面垃圾物种类及覆盖率;
步骤二、基于视觉感知方法建立扫盘功率拟合模型及制定风机挡位选取规则;
步骤三、结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率;
所述步骤二中基于视觉感知方法制定风机挡位选取规则包括以下过程:
1)实验获取各个组合某一覆盖率j下单类垃圾质量mi、体积Vi,其中,下标表示第i类垃圾,i=1,2,3,4,5,由此可得到单类垃圾覆盖率与质量、体积对应表;
2)采用盘扫将垃圾扫成一长条状,计算可得第i类垃圾盘扫后的堆状垃圾长Li
Figure FDA0003771695350000011
式中,w为堆状垃圾宽度,h为堆状垃圾高度;
3)计算第i类垃圾对应的上装系数:
定义单类垃圾上装系数θi为:
Figure FDA0003771695350000012
式中,vc为清扫车清扫车速;
4)得到n类垃圾混合后的等效上装系数θn
Figure FDA0003771695350000013
由此可得到风机挡位-等效上装系数θn关系表。
2.如权利要求1所述的一种基于视觉感知技术的清扫车作业功率计算方法,其特征在于,所述步骤二中基于视觉感知方法建立扫盘功率拟合模型包括以下过程:
1)实验获取多组不同工况下的扫盘功率;
2)采用主成分分析算法对输入变量进行降维处理;
3)采用线性回归算法拟合主成分与扫盘功率之间的函数关系;
4)得到扫盘功率拟合模型。
3.如权利要求2所述的一种基于视觉感知技术的清扫车作业功率计算方法,其特征在于,所述步骤2)采用主成分分析算法对输入变量进行降维处理的具体过程为:
在建模过程中,将样本数据划分为拟合数据和验证数据,
给定数据集D={(x1,p11,p21),(x2,p12,p22),…,(xm,p1m,p2m)},其中xi=(xi1,xi2,xi3,xi4,xi5)表示一个样本中对应的五个属性,分别为垃圾覆盖率、垃圾种类、垃圾物的亲水性、路面状态以及天气状态;
输入矩阵为
Figure FDA0003771695350000021
(1)计算输入矩阵X1的协方差矩阵;
(2)计算协方差矩阵的特征值和特征向量;
(3)利用MATLAB软件对各个变量进行主成分分析,获得各成分的特征值、贡献率和累计贡献率,确定主成分个数及其贡献率;
系统主成分为垃圾覆盖率、垃圾种类以及路面状态,输入矩阵变为X′:
Figure FDA0003771695350000022
所述步骤3)采用线性回归算法拟合主成分与扫盘功率之间的函数关系的具体过程为:
此时数据集变为D={(x1,p11,p21),(x2,p12,p22),…,(xm,p1m,p2m)},其中xi=(xi1,xi2,xi3)表示一个样本中对应的三个主成分;
采用线性回归算法,试图学得:
Figure FDA0003771695350000023
其中,
Figure FDA0003771695350000024
为预测的盘扫功率;P1为该工况下对应的最优盘扫功率,该值由实验测得;
Figure FDA0003771695350000031
化输入矩阵为
Figure FDA0003771695350000032
其中,m表示输入样例个数,输入矩阵每一行即表示一个样例;xm1、xm2、xm3分别表示输入的三个属性,即垃圾覆盖率、垃圾种类以及垃圾亲水性;
由最小二乘算法估计误差可知,误差为:
Figure FDA0003771695350000033
定义损失函数为:
Figure FDA0003771695350000034
找到一个
Figure FDA0003771695350000035
使得
Figure FDA0003771695350000036
最小,即
Figure FDA0003771695350000037
4.如权利要求1所述的一种基于视觉感知技术的清扫车作业功率计算方法,其特征在于,所述步骤三结合步骤一获取的垃圾物种类及覆盖率,以及步骤二建立的扫盘功率拟合模型及风机挡位选取规则,预测实际作业工况下清扫车扫盘、风机功率,包括以下过程:
3.1)摄像头实时获取作业路面图像,根据视觉感知获取路面垃圾物种类i及覆盖率j,自带速度传感器获取当前作业车速vc
3.2)获取作业工况所需扫盘功率:
将垃圾物种类i及覆盖率j输入至所述步骤二建立的扫盘功率拟合模型中,得到当前作业工况下的最低扫盘功率
Figure FDA0003771695350000038
3.2)获取作业工况所需风机挡位:
根据步骤二建立的单类垃圾覆盖率-质量-体积对应表以及摄像头识别得到的垃圾种类i、覆盖率j查找得到单类垃圾质量
Figure FDA0003771695350000039
体积Vi *
计算当前工况下混合垃圾等效上装系数
Figure FDA00037716953500000310
根据所述步骤二建立的风机挡位-等效上装系数θn关系表,将所得
Figure FDA0003771695350000041
与风机各档位对应系数做比较,采取向上选取原则得出当前工况所需风机挡位。
CN201910170749.3A 2019-03-07 2019-03-07 一种基于视觉感知技术的清扫车作业功率计算装置及方法 Active CN109871639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910170749.3A CN109871639B (zh) 2019-03-07 2019-03-07 一种基于视觉感知技术的清扫车作业功率计算装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910170749.3A CN109871639B (zh) 2019-03-07 2019-03-07 一种基于视觉感知技术的清扫车作业功率计算装置及方法

Publications (2)

Publication Number Publication Date
CN109871639A CN109871639A (zh) 2019-06-11
CN109871639B true CN109871639B (zh) 2022-09-09

Family

ID=66919904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910170749.3A Active CN109871639B (zh) 2019-03-07 2019-03-07 一种基于视觉感知技术的清扫车作业功率计算装置及方法

Country Status (1)

Country Link
CN (1) CN109871639B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110288035B (zh) * 2019-06-28 2021-05-07 海南树印网络科技有限公司 一种智能垃圾桶在线自主学习方法及系统
CN111678139B (zh) * 2020-06-22 2022-12-02 赵莉莉 一种生活垃圾的无害化处理方法及系统
CN111767896B (zh) * 2020-07-15 2024-04-05 吉林大学 一种清扫车底盘上装协同控制方法及感知识别实现装置
CN112162554B (zh) * 2020-09-23 2021-10-01 吉林大学 面向n3类清扫车的数据存储与回溯平台
CN112257623B (zh) * 2020-10-28 2022-08-23 长沙立中汽车设计开发股份有限公司 一种路面清洁度判定和自动清扫方法及自动清扫环卫装置
CN112489067A (zh) * 2020-12-04 2021-03-12 合肥工业大学 一种清扫车控制方法和采用该控制方法作业的清扫车
CN112685960B (zh) * 2021-01-04 2022-08-19 北京理工大学 一种纯电动扫路车的能量管理方法
CN112965493A (zh) * 2021-02-08 2021-06-15 甘肃建投重工科技有限公司 道路清理环卫车辆吸扫功率自动调节的控制方法
CN113096179B (zh) * 2021-03-09 2024-04-02 杭州电子科技大学 一种基于视觉定位的扫地机器人覆盖率检测方法
CN114494304B (zh) * 2022-04-18 2022-07-01 山东施卫普环保科技有限公司 一种智能的干洗车厢内部物料快速疏导方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787011A (zh) * 2014-02-14 2014-05-14 青岛农业大学 小区垃圾桶智能管理系统及垃圾回收方法
CN106355330A (zh) * 2016-08-31 2017-01-25 郑州航空工业管理学院 基于径向基神经网络预测模型的多响应参数优化方法
CN106447823A (zh) * 2016-09-07 2017-02-22 郑凯 车联网行车信息记录系统
CN107881958A (zh) * 2017-11-06 2018-04-06 徐工集团工程机械有限公司 环卫作业控制方法、系统及洗扫车
CN109024417A (zh) * 2018-07-24 2018-12-18 长安大学 一种智能道路清扫车及其道路污染物识别方法和控制方法
CN109255726A (zh) * 2018-09-07 2019-01-22 中国电建集团华东勘测设计研究院有限公司 一种混合智能技术的超短期风功率预测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600932B2 (en) * 2007-05-07 2013-12-03 Trimble Navigation Limited Telematic asset microfluidic analysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787011A (zh) * 2014-02-14 2014-05-14 青岛农业大学 小区垃圾桶智能管理系统及垃圾回收方法
CN106355330A (zh) * 2016-08-31 2017-01-25 郑州航空工业管理学院 基于径向基神经网络预测模型的多响应参数优化方法
CN106447823A (zh) * 2016-09-07 2017-02-22 郑凯 车联网行车信息记录系统
CN107881958A (zh) * 2017-11-06 2018-04-06 徐工集团工程机械有限公司 环卫作业控制方法、系统及洗扫车
CN109024417A (zh) * 2018-07-24 2018-12-18 长安大学 一种智能道路清扫车及其道路污染物识别方法和控制方法
CN109255726A (zh) * 2018-09-07 2019-01-22 中国电建集团华东勘测设计研究院有限公司 一种混合智能技术的超短期风功率预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Construction and Validation of an Instrument for Measuring Programming Skill;Gunnar R. Bergersen et al.;《IEEE Transactions on Software Engineering》;20140822;第40卷(第12期);1163-1184 *
Research on Intelligent Sensing Algorithm for Road Sweeper Operation Characteristics;Zhi-cheng TANG et al.;《2019 International Conference on Civil Engineering, Mechanics and Materials Science》;20200927;256-262 *
基于视觉感知的清扫车典型作业工况建立及模型表征;唐志诚;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20200815;C035-643 *
基于非线性偏最小二乘的特征提取方法研究;周琳;《中国优秀硕士学位论文全文数据库 信息科技辑》;20111215;I138-775 *

Also Published As

Publication number Publication date
CN109871639A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
CN109871639B (zh) 一种基于视觉感知技术的清扫车作业功率计算装置及方法
CN109753890B (zh) 一种路面垃圾物智能识别与感知方法及其实现装置
CN109658387B (zh) 电力列车的受电弓碳滑板缺陷的检测方法
CN110258412B (zh) 道路清扫设备及其风机和扫盘的智能控制方法和系统
CN102253049B (zh) 带钢生产过程表面质量在线精准检测方法
CN109002841A (zh) 一种基于Faster-RCNN模型的建筑构件提取方法
CN100573618C (zh) 一种交通路口四相位车流量检测方法
WO2020093767A1 (zh) 用于环卫作业的机器人的控制方法、装置以及机器人
CN104021574A (zh) 路面病害自动识别方法
CN1897015A (zh) 基于机器视觉的车辆检测和跟踪方法及系统
CN110110780B (zh) 一种基于对抗神经网络和海量噪声数据的图片分类方法
CN114998852A (zh) 一种基于深度学习的公路路面病害智能检测方法
CN109876569B (zh) 一种布袋除尘器净化气体指标在线检测装置、系统及方法
CN111643014A (zh) 智能清洁方法、装置、智能清洁设备和存储介质
US11776409B2 (en) Methods, internet of things systems and storage mediums for street management in smart cities
CN113110513A (zh) 一种基于ros的居家整理移动机器人
CN113470022B (zh) 基于人工智能和大数据的路政洒水车智能优化方法及系统
CN116922270B (zh) 喷砂机的智能控制系统及其方法
CN112211145A (zh) 一种用于扫路机半自动化扫路方法及装置
Min et al. Research on visual algorithm of road garbage based on intelligent control of road sweeper
CN111160153B (zh) 一种基于图像处理的路面排水监测评估方法及系统
CN114742975B (zh) 一种车载图像铁轨曲线建模方法
CN109131239B (zh) 车辆清洗参数的设置方法与洗车机
CN110847104A (zh) 一种清理小广告的道路清洗车
CN115980783A (zh) 一种基于激光雷达点云的高架边墙提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant