CN109859311B - 基于Liutex-Omega涡识别理论的模拟方法 - Google Patents

基于Liutex-Omega涡识别理论的模拟方法 Download PDF

Info

Publication number
CN109859311B
CN109859311B CN201910088752.0A CN201910088752A CN109859311B CN 109859311 B CN109859311 B CN 109859311B CN 201910088752 A CN201910088752 A CN 201910088752A CN 109859311 B CN109859311 B CN 109859311B
Authority
CN
China
Prior art keywords
cavitation
vortex
omega
flow
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910088752.0A
Other languages
English (en)
Other versions
CN109859311A (zh
Inventor
张睿
徐辉
费照丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910088752.0A priority Critical patent/CN109859311B/zh
Publication of CN109859311A publication Critical patent/CN109859311A/zh
Application granted granted Critical
Publication of CN109859311B publication Critical patent/CN109859311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于Liutex‑Omega涡识别理论的空化流动数值模拟方法,具体为:采用标准化的Liutex‑Omega涡识别系数ΩL对空化流场中的旋涡区域进行判断,对旋转占优的强涡区进行有效识别,根据强涡对空化中汽液凝结过程的延迟作用机制,建立基于Liutex‑Omega涡识别系数ΩL分区的空化流动计算流体力学模型并对三维空化流场进行数值计算获得涡空化流动特性。通过与实测结果和现有经典的空化模型计算结果进行对比分析,验证了本发明能够有效反映涡空化的流动特点及其时空演化规律,显著提高了涡空化流动的预测精度,可推广应用于三维水翼、水泵、水轮机、螺旋桨等的涡空化流动特性数值模拟研究。

Description

基于Liutex-Omega涡识别理论的模拟方法
技术领域
本发明属于空化流动数值模拟技术领域,具体涉及一种基于Liutex-Omega 涡识别理论的空化流动数值模拟方法。
背景技术
空化是一种发生在液相中特有的相变现象,在一定温度下,当水流中的压力降低至其饱和蒸汽压时将产生充满气体和蒸汽的空泡,即水流中发生空化,尤其在旋涡流动的核心区极易诱发涡空化。涡空化是一种常见却又复杂的空化形式,涡空化流动中旋涡与空化之间相互影响,涡量集中区域形成低压涡心引发空化,与此同时,空化又成为产生涡的影响机制。涡空化的出现通常是不利的,会严重影响水泵、水轮机以及螺旋桨等的工作性能及运行稳定性。涡空化流动的研究有助于认知其流动特性,对于解决涡空化引发的各种工程问题具有重要的意义。
目前,基于计算流体动力学(CFD)的数值模拟技术发展迅速,成为涡空化发生发展机理及其流动特性的重要研究手段,而有效的空化流动数值模拟方法是准确预测涡空化流动的前提与保证。空化是包含气液相间质量传输的非定常可压缩多相湍流流动现象,空化流动数值模拟的关键在于合适的湍流模型和空化模型。关于湍流模型,涡空化中旋涡会引起强烈的旋转曲率效应,而通过对传统涡粘模型进行适当修正可以反映出旋转曲率效应的作用影响。但是关于空化模型方面,普遍采用的均相流模型无法反映出旋涡运动对空化相变过程中质量传输过程的影响,从而导致涡空化流动数值精度不高,所预测的涡空化流态与真实流态偏差较大,无法反映出涡空化流动特点。因此,有必要建立一种有效反映涡空化流动特点的高精度空化流动数值模拟方法。
发明内容
本发明的目的是针对现有针对涡空化流动数值模拟技术的不足,提出一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法。
为实现本发明的目的,采用如下技术方案:
步骤一:建立计算域的三维几何模型,根据所研究的三维空化流动计算域的结构尺寸图,利用几何建模软件Croe、AutoCAD、Solidworks、UG或CATIA等建立计算域的三维几何模型,并按照计算网格划分软件的文件格式要求输出相应的几何文件;
步骤二:计算域网格划分,将步骤一输出的几何文件导入计算网格划分软件ANSYS Icem CFD、ANSYS Gambit、Hypermesh或TrueGrid中,采用高质量的六面体结构化网格方案划分计算网格,对近壁区、叶顶间隙区域以及涡空化流动范围区域的网格进行加密处理以便于数值计算获得精细化的速度场、压力及其脉动、湍动能、湍流耗散率、涡量、汽、液相的体积分数以及标准化的Liutex-Omega 涡识别系数ΩL等各种流动物理参数,采用基于理查德森外推法的GCI(Grid Convergence Index)、GCI-OR、GCI-LN、GCI-R、CF(Correction Factor Method)、 FS(Factor and Safety)或FS1等网格不确定度估计方法对计算网格离散误差进行估计并确定计算网格的数量,生成后的计算网格按照步骤四的数值模拟计算软件所需的计算网格文件格式导出相应的网格文件;
步骤三:建立三维空化流动计算流体力学模型,三维空化流动的计算流体力学模型包括流动控制方程、湍流模型以及基于Liutex-Omega涡识别系数ΩL分区的空化模型;
步骤三所述的流动控制方程由连续性方程、动量方程和组分输运方程构成:
连续性方程:
Figure GDA0002818119630000021
动量方程:
Figure GDA0002818119630000022
组分输运方程:
Figure GDA0002818119630000023
其中,ρ和μ为汽液混合相的密度和动力粘性系数且满足:
ρ=ρvαvlαl (4)
μ=μvαvlαl (5)
公式中t为时间(单位s),xi、xj为网格节点坐标且i,j=1,2,3,δij为克罗内克符号;μt为湍流粘性系数(单位N·s/m2),ui、uj为汽液混合相速度分量(单位 m/s),uvi为气相速度分量(单位m/s),P为流场压力(单位Pa),ρv和ρl分别为汽相和液相的密度(单位kg/m3),μv和μl分别为汽相的动力粘性系数(单位 N·s/m2)和液相的动力粘性系数(单位N·s/m2),αv和αl分别为汽相和液相体积分数且满足:
αvl=1 (6)
公式(3)中的源项
Figure GDA0002818119630000035
和mc -分别表示汽、液两相间的蒸发率和凝结率;
湍流粘性系数μt通过湍流模型来求解,考虑涡空化中旋涡流动具有强烈的旋转曲率效应,采用旋转曲率修正的湍流模型:
Figure GDA0002818119630000031
Figure GDA0002818119630000032
公式中,k为湍动能,ω为比耗散率;
湍动能生成项Pk为:
Figure GDA0002818119630000033
湍流粘性系数μt求解公式为:
Figure GDA0002818119630000034
经验常数β*=0.09,a1=0.31;对于湍流模型方程中各变量系数σk、σω、βk、βω以及γ采用Wilcox k-ω模型方程和标准k-ε模型方程的相关经验常数加权得到:
φ=F1φ1+(1-F12,φ={σkωkω,γ} (11)
其中,Wilcox k-ω模型方程的各常数为:σk1=0.85,σω1=0.5,βk1=0.09,βω1=0.075,γ1=5/9;标准k-ε模型方程的各常数为:σk2=1.0,σω2=0.856,βk2=0.09,βω2=0.0828,γ2=0.44;
对于混合函数F1和F2:
Figure GDA0002818119630000041
Figure GDA0002818119630000042
Figure GDA0002818119630000043
Figure GDA0002818119630000044
Figure GDA0002818119630000045
公式(7)和(8)中的旋转曲率修正系数fr为:
Figure GDA0002818119630000046
其中Cscale=1.0,参数
Figure GDA0002818119630000047
的表达式为:
Figure GDA0002818119630000048
Figure GDA0002818119630000049
上式中的各相关变量的表达式分别为:
r*=S/Ω (20)
Figure GDA00028181196300000410
Figure GDA00028181196300000411
Figure GDA00028181196300000412
Figure GDA00028181196300000413
D2=max(S2,0.09ω2) (25)
其中,Sij为应变率张量,Ωij为旋转率张量,εimn和εmji为勒维-契维塔符号,各相关变量参考的坐标系是惯性坐标系或旋转坐标系且旋转速度为Ωm,模型常数cr1=1.0,cr2=2.0,cr3=1.0;
空化汽液相变过程模拟基于简化Rayleigh-Plesset方程的空化模型,兼顾考虑流场局部压力脉动对空化影响,对于蒸发率
Figure GDA0002818119630000051
和凝结率
Figure GDA0002818119630000052
分别为:
Figure GDA0002818119630000053
Figure GDA0002818119630000054
其中,Pv为液体饱和蒸汽压强,空泡半径Rb=1μm,成核区体积分数αb=0.0005,蒸发系数Fv=50,凝结系数Fc=0.01;
采用基于Liutex-Omega涡识别理论方法对三维空化流场中的旋涡区进行判断,Liutex-Omega涡识别系数ΩL为:
Figure GDA0002818119630000055
其中,bL=0.001~0.002,且对于αL和βL通过下列公式求得:
Figure GDA0002818119630000056
Figure GDA0002818119630000057
式(29)、(30)中的各速度梯度是基于原始坐标系下速度梯度张量
Figure GDA0002818119630000058
的坐标变换获得:
Figure GDA0002818119630000059
Figure GDA00028181196300000510
Figure GDA00028181196300000511
其中λL
Figure GDA0002818119630000061
的实特征值,r为旋转实特征向量;
根据三维空化流场中涡识别系数ΩL分布情况对强涡区域进行辨识,(27)式中建立基于ΩL分区的修正系数fΩL对空化凝结率进行修正,以体现涡空化流动中旋涡对汽-液凝结过程的延迟作用机制,fΩL的表达式为:
Figure GDA0002818119630000062
步骤四:根据所研究对象的实际运行工况,设定相应的边界条件进行三维空化流场的数值计算,计算模型的进口液相体积分数为1、湍流度采用低湍流度1%,固壁采用无滑移边界,基于步骤三建立的空化流动计算流体动力学模型,采用 CFD计算软件ANSYS CFX、ANSYS FLUENT、OpenFORM、STAR-CD、 STAR-CCM、NUMECA或PumpLinx对三维空化流场进行计算;
步骤五:对步骤四的计算结果进行后处理,采用CFD软件自带后处理及通用CFD后处理软件,如CFX-POST、Tecplot、Paraview、Ensight、FieldView、 CFview等对计算输出的结果进行分析处理,获得速度场、压力差、涡量场、湍动能、汽相和液相体积分数,以及涡空化形态及其演化发展过程等空化流场信息。
本发明的有益效果是:
本发明的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,相比现有技术,兼顾考虑了涡空化流动中旋涡流动引起的旋转曲率效应以及旋涡与空化之间的相互作用影响,通过引入标准化的Liutex-Omega涡识别系数ΩL对空化流场中的强涡区进行有效识别,并采用基于ΩL分区的空化流动计算流体力学模型进行数值计算,实现了对涡空化流动区域快速高精度的数值预测,有效反映出涡空化的流动特点及其时空演化规律,显著提高了涡空化流动的预测精度,可推广用于三维水翼、水泵、水轮机、螺旋桨等具有显著涡空化现象的三维空化流动数值模拟研究,对认识涡空化流动特性及辅助解决涡空化流动所引起的诸多问题具有重要的现实意义和工程应用价值。
附图说明
图1是本发明基于Liutex-Omega涡识别理论的空化流动数值模拟方法的计算流程图;
图2a是本发明实施例的三维水翼模型结构示意图,2b是断面上的旋涡涡心位置对比情况;
图3是本发明实施例的三维水翼的计算网格图;
图4是本发明实施例三维水翼典型断面涡心位置对比图;其中,4a示出了三维水翼中心点O沿主流z向的0.1C断面上的旋涡涡心位置对比情况,4b示出了三维水翼中心点O沿主流z向的0.12C断面上的旋涡涡心位置对比情况;
图5是本发明实施例的三维水翼涡空化流态对比图,其中,5a为实验观测到的空化流态图,5b为现有空化数值模拟方法所预测的空化流态图,5c为本发明空化数值模拟方法所预测的空化流态图。
具体实施方式
下面结合附图与实施例对本发明作进一步详细描述。
实施例
本实施例是以带有叶顶间隙的三维水翼为对象进行相关说明,一种基于 Liutex-Omega涡识别理论的空化流动数值模拟方法,如图1所示,主要包括以下步骤:
步骤一:带有叶顶间隙的三维水翼的计算域为矩形水槽,如图2a、2b,三维水翼截面为NACA0009翼型,翼型弦长C=0.1m,水槽长度为0.8m、宽度为 0.15m,水翼的一侧与水槽边壁相接、另一侧则与其邻近边壁具有wtip=1.98mm 的间隙,利用几何建模软件Croe建立计算域的三维几何模型,并输出*.igs格式文件用于步骤二的计算网格划分;
步骤二:计算域网格划分,将步骤一输出的几何文件*.igs导入网格划分软件ANSYS Icem CFD中,采用高质量的六面体结构化网格方案划分计算网格,对水翼壁面区、叶顶间隙区域以及涡空化流动范围区域的网格进行加密处理以便于数值计算获得精细化的速度场、压力及其脉动、湍动能、湍流耗散率、涡量、汽、液相的体积分数以及标准化的Liutex-Omega涡识别系数ΩL等各种流动物理参数,通过采用基于理查德森外推法的GCI(Grid Convergence Index)网格不确定度估计方法对计算网格离散误差进行估计,确定计算网格的数量为480万,如图3所示,导出计算网格文件*.cfx5用于步骤四的CFD计算;六面体结构化网格方案为现有技术,在此不再赘述;
步骤三:建立三维空化流动计算流体力学模型,三维空化流动的计算流体力学模型包括流动控制方程、湍流模型以及基于Liutex-Omega涡识别系数ΩL分区的空化模型;
步骤三所述的流动控制方程由连续性方程、动量方程和组分输运方程构成:
连续性方程:
Figure GDA0002818119630000081
动量方程:
Figure GDA0002818119630000082
组分输运方程:
Figure GDA0002818119630000083
其中,ρ和μ为汽液混合相的密度和动力粘性系数且满足:
ρ=ρvαvlαl (4)
μ=μvαvlαl (5)
公式中t为时间(单位s),xi、xj为网格节点坐标且i,j=1,2,3,δij为克罗内克符号;μt为湍流粘性系数(单位N·s/m2),ui、uj为汽液混合相速度分量(单位 m/s),uvi为气相速度分量(单位m/s),P为流场压力(单位Pa),ρv和ρl分别为汽相和液相的密度(单位kg/m3),μv和μl分别为汽相的动力粘性系数(单位 N·s/m2)和液相的动力粘性系数(单位N·s/m2),αv和αl分别为汽相和液相体积分数且满足:
αvl=1 (6)
公式(3)中的源项
Figure GDA0002818119630000084
Figure GDA0002818119630000085
分别表示汽、液两相间的蒸发率和凝结率;
湍流粘性系数μt通过湍流模型来求解,考虑涡空化中旋涡流动具有强烈的旋转曲率效应,采用旋转曲率修正的湍流模型:
Figure GDA0002818119630000086
Figure GDA0002818119630000091
公式中,k为湍动能,ω为比耗散率;
湍动能生成项Pk为:
Figure GDA0002818119630000092
湍流粘性系数μt求解公式为:
Figure GDA0002818119630000093
经验常数β*=0.09,a1=0.31;对于湍流模型方程中各变量系数σk、σω、βk、βω以及γ采用Wilcox k-ω模型方程和标准k-ε模型方程的相关经验常数加权得到:
φ=F1φ1+(1-F12,φ={σkωkω,γ} (11)
其中,Wilcox k-ω模型方程的各常数为:σk1=0.85,σω1=0.5,βk1=0.09,βω1=0.075,γ1=5/9;标准k-ε模型方程的各常数为:σk2=1.0,σω2=0.856,βk2=0.09,βω2=0.0828,γ2=0.44;
对于混合函数F1和F2:
Figure GDA0002818119630000094
Figure GDA0002818119630000095
Figure GDA0002818119630000096
Figure GDA0002818119630000097
Figure GDA0002818119630000098
公式(7)和(8)中的旋转曲率修正系数fr为:
Figure GDA0002818119630000101
其中Cscale=1.0,参数
Figure GDA0002818119630000102
的表达式为:
Figure GDA0002818119630000103
Figure GDA0002818119630000104
上式中的各相关变量的表达式分别为:
r*=S/Ω (20)
Figure GDA0002818119630000105
Figure GDA0002818119630000106
Figure GDA0002818119630000107
Figure GDA0002818119630000108
D2=max(S2,0.09ω2) (25)
其中,Sij为应变率张量,Ωij为旋转率张量,εimn和εmji为勒维-契维塔符号,各相关变量参考的坐标系是惯性坐标系或旋转坐标系且旋转速度为Ωm,模型常数cr1=1.0,cr2=2.0,cr3=1.0;
空化汽液相变过程模拟基于简化Rayleigh-Plesset方程的空化模型,兼顾考虑流场局部压力脉动对空化影响,对于蒸发率
Figure GDA0002818119630000109
和凝结率
Figure GDA00028181196300001010
分别为:
Figure GDA00028181196300001011
Figure GDA00028181196300001012
其中,Pv为液体饱和蒸汽压强,空泡半径Rb=1μm,成核区体积分数αb=0.0005,蒸发系数Fv=50,凝结系数Fc=0.01;
采用基于Liutex-Omega涡识别理论方法对三维空化流场中的旋涡区进行判断,Liutex-Omega涡识别系数ΩL为:
Figure GDA0002818119630000111
其中,bL=0.001~0.002,且对于αL和βL通过下列公式求得:
Figure GDA0002818119630000112
Figure GDA0002818119630000113
式(29)、(30)中的各速度梯度是基于原始坐标系下速度梯度张量
Figure GDA0002818119630000114
的坐标变换获得:
Figure GDA0002818119630000115
Figure GDA0002818119630000116
Figure GDA0002818119630000117
其中λL
Figure GDA0002818119630000118
的实特征值,r为旋转实特征向量;
根据三维空化流场中涡识别系数ΩL分布情况对强涡区域进行辨识,(27)式中建立基于ΩL分区的修正系数fΩL对空化凝结率进行修正,以体现涡空化流动中旋涡对汽-液凝结过程的延迟作用机制,fΩL的表达式为:
Figure GDA0002818119630000119
步骤四:基于步骤三建立的空化流动计算流体动力学模型,采用CFD计算软件ANSYS CFX对三维水翼空化流场进行计算,将步骤二输出的计算网格文件 *.cfx5导入至ANSYS CFX软件中,根据实验工况,对于三维水翼计算模型的进口边界进行设定,设定均匀流速为10m/s、液相体积分数为1、采用1%低湍流度,固壁为无滑移边界,出口边界设定为压力边界条件且确保进口的压力值为105Pa;
步骤五:对步骤四的计算结果进行后处理,采用ANSYS CFX后处理软件 CFX-POST对计算输出的结果进行分析处理,获得速度场、压力差、涡量场、湍动能、汽相和液相体积分数,以及涡空化形态及其演化发展过程等空化流场信息。
图4和图5分别给出本实施例三维水翼实验测量与采用现有数值模拟方法和本发明数值模拟方法预测获得的典型断面涡心位置与空化流态。
图4中的4a、4b为三维水翼中心点O沿主流方向的Z/C=1.0和Z/C=1.2断面上旋涡的涡心位置对比情况,图中x、y分别为两断面上的横、纵坐标。由图 4可以发现,相比现有的空化数值模拟方法(如图4中的黑色三角形),本发明所提出的数值模拟方法(如图4中的黑色圆形)与试验测量获得的断面上泄漏涡的涡心位置(如图4中的黑色方形)更为接近,表明本发明所提出的数值模拟方法具有较好的计算精度,可以更加精确的预测旋涡流动结构和流动特性。
图5为三维水翼叶顶间隙处的空化流态图,其中数值计算获得的空化流态采用90%的汽相体积分数等值面来反映。由图5中的5a、5b可知,相比实验观测到的空化流态,现有的空化数值模拟方法所预测的无论是叶顶间隙空化还是泄漏涡空化,空化体积(图中阴影部分)明显偏小,特别是泄漏涡空化溃灭速度较快而表现为长度偏短;通过本发明提出的方法模拟预测的叶顶间隙空化和泄漏涡空化的流态与实验观测结果吻合良好,尤其是泄漏涡空化流态表现出在强烈的旋涡作用下空泡团在向下游运动的过程中,是随着旋涡强调减弱而空化现象才逐渐消失,如图5中的5c所示。本发明的方法能够反映出由于旋涡旋转作用影响下的相间质量传输过程,可以更好地预测涡空化流动现象。
以上结合附图对本发明的技术方案做出详细说明,但本发明不局限于所描述的技术方案。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和改进仍落入本发明的保护范围之内。

Claims (7)

1.一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:具体包括如下步骤:
步骤一:建立计算域的三维几何模型,根据所研究的三维空化流动计算域的结构尺寸图,利用几何建模软件建立计算域的三维几何模型,并按照计算网格划分软件的文件格式要求输出相应的几何文件;
步骤二:计算域网格划分,将步骤一输出的几何文件导入计算网格划分软件中,采用六面体结构化网格方案划分计算网格,对近壁区、叶顶间隙区域以及涡空化流动范围区域的网格进行加密处理以便于数值计算获得精细化的流动物理参数,采用基于理查德森外推法的网格不确定度估计方法对计算网格离散误差进行估计并确定计算网格的数量,生成后的计算网格按照数值模拟计算软件所需的计算网格文件格式导出相应的网格文件;
步骤三:建立三维空化流动计算流体力学模型,三维空化流动的计算流体力学模型包括流动控制方程、湍流模型以及基于Liutex-Omega涡识别系数ΩL分区的空化模型;
步骤三所述的流动控制方程由连续性方程、动量方程和组分输运方程构成:
连续性方程:
Figure FDA0003005688850000011
动量方程:
Figure FDA0003005688850000012
组分输运方程:
Figure FDA0003005688850000013
其中,ρ和μ为汽液混合相的密度和动力粘性系数且满足:
ρ=ρvαvlαl (4)
μ=μvαvlαl (5)
公式中t为时间单位s,xi、xj为网格节点坐标且i,j=1,2,3,δij为克罗内克符号;μt为湍流粘性系数单位N·s/m2,ui、uj为汽液混合相速度分量单位m/s,uvi为气相速度分量单位m/s,P为流场压力单位Pa,ρv和ρl分别为汽相和液相的密度单单位kg/m3,μv和μl分别为汽相的动力粘性系数单位N·s/m2和液相的动力粘性系数单位N·s/m2,αv和αl分别为汽相和液相体积分数且满足:
αvl=1 (6)
公式(3)中的源项
Figure FDA0003005688850000021
Figure FDA0003005688850000022
分别表示汽、液两相间的蒸发率和凝结率;
湍流粘性系数μt通过湍流模型来求解,考虑涡空化中旋涡流动具有强烈的旋转曲率效应,采用旋转曲率修正的湍流模型:
Figure FDA0003005688850000023
Figure FDA0003005688850000024
公式中,k为湍动能,ω为比耗散率;
湍动能生成项Pk为:
Figure FDA0003005688850000025
湍流粘性系数μt求解公式为:
Figure FDA0003005688850000026
经验常数β*=0.09,a1=0.31;对于湍流模型方程中各变量系数σk、σω、βk、βω以及γ采用Wilcox k-ω模型方程和标准k-ε模型方程的相关经验常数加权得到:
φ=F1φ1+(1-F12,φ={σkωkω,γ} (11)
其中,Wilcox k-ω模型方程的各常数为:σk1=0.85,σω1=0.5,βk1=0.09,βω1=0.075,γ1=5/9;标准k-ε模型方程的各常数为:σk2=1.0,σω2=0.856,βk2=0.09,βω2=0.0828,γ2=0.44;
对于混合函数F1和F2:
Figure FDA0003005688850000027
Figure FDA0003005688850000031
Figure FDA0003005688850000032
Figure FDA0003005688850000033
Figure FDA0003005688850000034
公式(7)和(8)中的旋转曲率修正系数fr为:
Figure FDA0003005688850000035
其中Cscale=1.0,参数
Figure FDA0003005688850000036
的表达式为:
Figure FDA0003005688850000037
Figure FDA0003005688850000038
上式中的各相关变量系数的表达式分别为:
r*=S/Ω (20)
Figure FDA0003005688850000039
Figure FDA00030056888500000310
Figure FDA00030056888500000311
Figure FDA00030056888500000312
D2=max(S2,0.09ω2) (25)
其中,Sij为应变率张量,Ωij为旋转率张量,εimn和εmji为勒维-契维塔符号,各相关变量参考的坐标系是惯性坐标系或旋转坐标系且旋转速度为Ωm,模型常数cr1=1.0,cr2=2.0,cr3=1.0;
空化汽液相变过程模拟基于简化Rayleigh-Plesset方程的空化模型,兼顾考虑流场局部压力脉动对空化影响,对于蒸发率
Figure FDA00030056888500000313
和凝结率
Figure FDA00030056888500000314
分别为:
Figure FDA0003005688850000041
Figure FDA0003005688850000042
其中,Pv为液体饱和蒸汽压强,空泡半径Rb=1μm,成核区体积分数αb=0.0005,蒸发系数Fv=50,凝结系数Fc=0.01;
采用基于Liutex-Omega涡识别理论方法对三维空化流场中的旋涡区进行判断,Liutex-Omega涡识别系数ΩL为:
Figure FDA0003005688850000043
其中,bL=0.001~0.002,且对于αL和βL通过下列公式求得:
Figure FDA0003005688850000044
Figure FDA0003005688850000045
式(29)、(30)中的各速度梯度是基于原始坐标系下速度梯度张量
Figure FDA00030056888500000410
的坐标变换获得:
Figure FDA0003005688850000046
Figure FDA0003005688850000047
Figure FDA0003005688850000048
其中λL
Figure FDA0003005688850000049
的实特征值,r为旋转实特征向量;
根据三维空化流场中涡识别系数ΩL分布情况对强涡区域进行辨识,式(27)中建立基于ΩL分区的修正系数fΩL对空化凝结率进行修正,以体现涡空化流动中旋涡对汽-液凝结过程的延迟作用机制,fΩL的表达式为:
Figure FDA0003005688850000051
步骤四:根据所研究对象的实际运行工况,设定相应的边界条件进行三维空化流场的数值计算,计算模型的进口液相体积分数为1、湍流度采用1%低湍流度,固壁采用无滑移边界,基于步骤三建立的空化流动计算流体动力学模型,采用CFD计算软件对三维空化流场进行计算;
步骤五:对步骤四的计算结果进行后处理,采用后处理软件对计算输出的结果进行分析处理,获得空化流场信息;
步骤五所述的空化流场信息包括速度场、压力差、涡量场、湍动能、汽相和液相体积分数,以及涡空化形态及其演化发展过程。
2.根据权利要求1所述的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:步骤一所述的几何建模软件为Croe、AutoCAD、Solidworks、UG或CATIA。
3.根据权利要求1所述的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:步骤二所述的计算网格划分软件为ANSYS Icem CFD、ANSYS Gambit、Hypermesh或TrueGrid。
4.根据权利要求1所述的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:步骤二所述的流动物理参数包括速度场、压力及其脉动、湍动能、湍流耗散率、涡量、汽、液相的体积分数以及标准化的Liutex-Omega涡识别系数ΩL
5.根据权利要求1所述的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:步骤二所述的基于理查德森外推法的网格不确定度估计方法为GCI、GCI-OR、GCI-LN、GCI-R、CF、FS或FS1。
6.根据权利要求1所述的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:步骤四所述的CFD计算软件为ANSYS CFX、ANSYS FLUENT、OpenFORM、STAR-CD、STAR-CCM、NUMECA或PumpLinx。
7.根据权利要求1所述的一种基于Liutex-Omega涡识别理论的空化流动数值模拟方法,其特征是:步骤五所述的后处理软件为各CFD软件自带后处理及通用CFD后处理软件,CFX-POST、Tecplot、Paraview、Ensight、FieldView或CFview。
CN201910088752.0A 2019-01-29 2019-01-29 基于Liutex-Omega涡识别理论的模拟方法 Active CN109859311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910088752.0A CN109859311B (zh) 2019-01-29 2019-01-29 基于Liutex-Omega涡识别理论的模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910088752.0A CN109859311B (zh) 2019-01-29 2019-01-29 基于Liutex-Omega涡识别理论的模拟方法

Publications (2)

Publication Number Publication Date
CN109859311A CN109859311A (zh) 2019-06-07
CN109859311B true CN109859311B (zh) 2021-05-18

Family

ID=66896988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910088752.0A Active CN109859311B (zh) 2019-01-29 2019-01-29 基于Liutex-Omega涡识别理论的模拟方法

Country Status (1)

Country Link
CN (1) CN109859311B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489709B (zh) * 2019-08-01 2022-06-10 中国空气动力研究与发展中心计算空气动力研究所 基于可压缩流动的解析壁面函数的数值模拟方法
CN110516342B (zh) * 2019-08-22 2021-08-24 北京理工大学 一种基于OpenFOAM平台的螺旋桨可压缩空化流动数值预测方法
CN110727996B (zh) * 2019-09-17 2021-07-27 北京理工大学 适用于动边界绕流的湍流模型修正方法
CN111414720B (zh) * 2020-02-17 2023-01-20 中国空气动力研究与发展中心计算空气动力研究所 一种基于神经网络的流场旋涡检测方法
CN111400946B (zh) * 2020-03-10 2022-03-22 中国农业大学 用于涡流场自适应网格细化的需求驱动型特征识别方法
CN111931365B (zh) * 2020-07-31 2023-07-14 上海交通大学四川研究院 涡旋流动中最优混合位置识别方法和系统
CN111931306A (zh) * 2020-07-31 2020-11-13 上海交通大学四川研究院 基于辅助涡对影响主涡对相互作用进程的调控方法及系统
CN112163289B (zh) * 2020-09-07 2022-08-30 三峡大学 基于延迟型分离涡模拟的轴流叶轮空化特性计算方法
CN113283188B (zh) * 2021-04-27 2023-08-11 福建省中科生物股份有限公司 一种在扰流风扇作用下的植物工厂的流场计算方法
CN113536709A (zh) * 2021-07-26 2021-10-22 厦门大学 一种基于湍流建模机器学习的湍流模型修正方法
CN113588208A (zh) * 2021-07-30 2021-11-02 上海理工大学 基于图像法的Liutex积分定量流场测量方法
CN113569503B (zh) * 2021-08-08 2022-10-14 东北大学 一种螺旋溜槽断面几何分段优化与组合设计方法
CN113626955B (zh) * 2021-08-17 2022-09-20 中国人民解放军海军工程大学 一种柴油机整机水套空化数据获取方法
CN113887047B (zh) * 2021-09-30 2023-02-28 天津大学 衰减螺旋环状流气核速度建模方法
CN114169267B (zh) * 2022-02-11 2022-04-19 中国空气动力研究与发展中心计算空气动力研究所 一种熵层特征值的快速查找方法
CN114444417B (zh) * 2022-04-11 2022-06-10 中国空气动力研究与发展中心计算空气动力研究所 一种适用于曲线涡轴的旋涡流动形态判别方法和存储介质
CN115828678B (zh) * 2022-11-22 2023-09-22 北醒(北京)光子科技有限公司 风阻力矩仿真方法、装置、存储介质及模拟设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020841A1 (de) * 2002-08-14 2004-03-11 Siemens Aktiengesellschaft Vorrichtung zum erzeugen von wirbeln sowie verfahren zum betreiben der vorrichtung
CN108763800A (zh) * 2018-06-04 2018-11-06 北京理工大学 一种空化可压缩流动激波动力学数值模拟方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020841A1 (de) * 2002-08-14 2004-03-11 Siemens Aktiengesellschaft Vorrichtung zum erzeugen von wirbeln sowie verfahren zum betreiben der vorrichtung
CN108763800A (zh) * 2018-06-04 2018-11-06 北京理工大学 一种空化可压缩流动激波动力学数值模拟方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
《Determination of epsilon for Omega vortex identification method》;Xiang-rui Dong等;《Springer》;20180723;第541-548页 *
《New omega vortex identification method》;Liu ChaoQun 等;《Science China Physics, Mechanics & Astronomy》;20160831;第684711-1至684711-9页 *
《Rortex – A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions》;Chaoqun Liu等;《Physics of Fluids》;20181231;第1-25页 *
《Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications》;F. R. Menter;《AIAAPaper》;19940831;第1598-1605页 *
《基于空化流动计算的混流式水轮机尾水管的压力脉动》;周凌九等;《清华大学学报(自然科学版)》;20080630;第972-973页 *
《轴流泵失速和空化流动特性及其性能改善研究》;张睿;《中国博士学位论文全文数据库》;20150215;第19-21,33-34,65-69,84-87页 *

Also Published As

Publication number Publication date
CN109859311A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109859311B (zh) 基于Liutex-Omega涡识别理论的模拟方法
CN109977345B (zh) 一种轴流泵叶顶间隙泄漏涡空化的数值模拟方法
Gibson et al. Assessment of turbulence model predictions for a centrifugal compressor simulation
Guo et al. Numerical simulation for the tip leakage vortex cavitation
Ji et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil
de Vito et al. A novel two-dimensional viscous inverse design method for turbomachinery blading
Xu et al. Vortex dynamic characteristics of unsteady tip clearance cavitation in a waterjet pump determined with different vortex identification methods
Eric Lyall et al. Endwall loss reduction of high lift low pressure turbine airfoils using profile contouring—Part I: Airfoil design
Wheeler et al. The effect of nonequilibrium boundary layers on compressor performance
Campos–Amezcua et al. Numerical analysis of unsteady cavitating flow in an axial inducer
Roidl et al. Redesign of a low speed turbine stage using a new viscous inverse design method
Nouroozi et al. A reliable simulation for hydrodynamic performance prediction of surface-piercing propellers using URANS method
Sun et al. Detached-eddy simulation applied to aeroelastic stability analysis in a last-stage steam turbine blade
Yin et al. Large eddy simulation of cloud cavitation and wake vortex cavitation around a trailing-truncated hydrofoil
Carloni et al. Validation and analysis of turbulence modeling in pipe elbow under secondary flow conditions
Foroutan et al. Simulation of flow in a simplified draft tube: turbulence closure considerations
Harwood et al. A physics-based gap-flow model for potential flow solvers
Apte et al. A comparative evaluation of turbulence models for simulation of unsteady cavitating flows
Liu et al. Redesign of axial fan using viscous inverse design method based on boundary vorticity flux diagnosis
Smirnov et al. Towards DES in CFD-based optimization: The case of a sharp U-bend with/without rotation
Viitanen et al. Numerical Viscous Flow Simulations of Cavitating Propeller Flows at Different Reynolds Numbers
Sun Two-phase Eulerian averaged formulation of entropy production for cavitation flow
Hasuike et al. Numerical and experimental investigation into propulsion and cavitation performance of marine propeller
Pang et al. A cavitation model considering thermodynamic and viscosity effects
Dutta et al. Evaluation of turbulence models in rough wall-boundary layers for hydroelectric applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant