CN109855875B - 一种滚动轴承运行可靠度预测方法 - Google Patents

一种滚动轴承运行可靠度预测方法 Download PDF

Info

Publication number
CN109855875B
CN109855875B CN201910036750.7A CN201910036750A CN109855875B CN 109855875 B CN109855875 B CN 109855875B CN 201910036750 A CN201910036750 A CN 201910036750A CN 109855875 B CN109855875 B CN 109855875B
Authority
CN
China
Prior art keywords
reliability
bearing
model
frequency domain
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910036750.7A
Other languages
English (en)
Other versions
CN109855875A (zh
Inventor
张义民
高淑芝
张思选
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Chemical Technology
Original Assignee
Shenyang University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Chemical Technology filed Critical Shenyang University of Chemical Technology
Priority to CN201910036750.7A priority Critical patent/CN109855875B/zh
Publication of CN109855875A publication Critical patent/CN109855875A/zh
Application granted granted Critical
Publication of CN109855875B publication Critical patent/CN109855875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种滚动轴承运行可靠度预测方法,涉及一种轴承运行可靠度的预测方法,本发明基于流形学习和非齐次布谷鸟搜索‑最小二乘支持向量机(NoCuSa‑LSSVM)的滚动轴承运行可靠度预测。首先利用等距映射(ISOMAP)算法对轴承振动信号的时域、频域、时频域特征组成的高维特征集进行维数约减,将融合的特征指标作为轴承的性能退化状态特征输入到逻辑回归模型,建立滚动轴承的可靠度模型。然后将轴承的性能退化状态特征作为非齐次布谷鸟搜索‑最小二乘支持向量机模型的输入,获取特征预测结果,并将该结果嵌入到已建立的可靠度模型中,从而预测出轴承运行可靠度。

Description

一种滚动轴承运行可靠度预测方法
技术领域
本发明涉及一种轴承运行的预测方法,特别是涉及一种滚动轴承运行可靠度预测方法。
背景技术
滚动轴承是关键的机械基础件之一,是旋转机械必不可少的一部分,其可靠性直接影响设备的安全稳定运行。滚动轴承传统的可靠度计算基于轴承的寿命分布函数,需要大样本失效数据和失效分布。对于实时运行的轴承采用这种方法是不适宜的,从现场获得很难获得大量轴承失效寿命数据,失效寿命数据一般来自寿命试验,而轴承实际运行时的载荷、转速等往往是多变且不确定的,实际工况与实验条件差异较大。传统的依赖大样本和概率统计的可靠度计算,得到的是一批设备的平均可靠度,对单个具体设备的指导意义不强。因此为避免因轴承失效引起的机械设备故障,预测滚动轴承在下一阶段的运行可靠度就十分重要。
发明内容
本发明的目的在于提供一种滚动轴承运行可靠度预测方法,该方法为基于流行学习和非齐次布谷鸟搜索-最小二乘支持向量机(NoCuSa -LSSVM)的滚动轴承运行可靠度预测方法。
本发明的目的是通过以下技术方案实现的:
本发明是一种滚动轴承运行可靠度预测方法,采用流行学习和NoCuSa-LSSVM相结合的方法来实现滚动轴承的运行可靠度预测,首先利用等距映射算法对轴承振动信号的时域、频域、时频域特征组成的高维特征集进行维数约减,将融合的特征指标作为轴承的性能退化状态特征输入到逻辑回归模型,建立滚动轴承的可靠度模型。然后将轴承的性能退化状态特征作为NoCuSa-LSSVM模型的输入,获取特征预测结果,并将该结果嵌入到已建立的可靠度模型中,从而预测出轴承运行可靠度。
一种滚动轴承运行可靠度预测方法,所述方法包括以下步骤:
步骤一:特征提取,从滚动轴承振动数据中提取时域特征,时频域特征,以及频域特征,构成高维的特征向量集;
步骤二:等距映射(ISOMAP)降维,采用ISOMAP算法对高维特征向量集进行降维处理,将降维结果作为轴承退化趋势特征向量;
步骤三:可靠性模型,将趋势特征向量作为逻辑回归模型的输入,输出为可靠度。通过极大似然法求解回归系数,建立可靠度模型;
步骤四:趋势特征向量预测,选取趋势特征向量作为LSSVM的训练样本,并通过NoCuSa算法优化LSSVM的参数选取,建立预测模型,预测出一定步长的趋势特征向量;
步骤五:可靠度预测,趋势特征向量预测结果嵌入到可靠度模型中,得到一定步长的可靠度预测结果。
本发明的优点与效果是:
1.本发明通过对滚动轴承振动信号进行多域的特征提取,得到的高维特征向量集更准确的反映的轴承当前的运行状态。
2.本发明采用一种流形学习的方法—等距映射(ISOMAP) 利用其非线性和考虑全局的特性,对滚动轴承的高维特征集进行降维处理,再输入到逻辑回归模型中,更准确地建立了轴承的运行可靠度模型。
3.本发明在可靠度预测过程中,采用NoCuSa算法优化LSSVM的参数选取,得到了更高的预测精度。
具体实施方式
下面结合实施例对本发明进行详细说明。
一、本发明首先对轴承振动信号进行多域的特征提取。本文共提取九个时域特征分别为,峰峰值、整流平均值、标准差、峭度、方差、均方根、波形因子、脉冲因子、裕度因子。通过傅里叶变换后对信号进行频域上的特征提取,提取十个频域特征,特征计算公式如表1。结合小波包分解与信息熵理论得到小波包能谱熵和小波包奇异值熵,利用db5小波对原始振动信号进行三层分解,提取出振动信号的时频域特征。
Figure 640645DEST_PATH_IMAGE001
二、本发明通过ISOMAP对多域的高维特征向量集降维,将融合的特征向量作为逻辑回归模型的输入,建立可靠度模型。ISOMAP降维算法与可靠度模型描述如下:
ISOMAP降维算法:
(1)构造近邻图G。对于高维空间数据集X的所有采样点
Figure 35855DEST_PATH_IMAGE002
Figure 787910DEST_PATH_IMAGE003
,n为采样点个数),计算采样点
Figure 610372DEST_PATH_IMAGE004
Figure 877406DEST_PATH_IMAGE005
的欧式距离记为
Figure 764721DEST_PATH_IMAGE006
。选取每个样本点距离最近的K个点为该样本点的近邻点,将各近邻点连接起来,边长赋值为
Figure 433600DEST_PATH_IMAGE007
。对所有采样点执行上述步骤,即可得到一个以采样点为节点、以欧氏距离为边的邻域图G。
(2)计算所有点对之间的测地距离矩阵D。任意两采样点
Figure DEST_PATH_IMAGE008
Figure 364647DEST_PATH_IMAGE009
的测地距离为
Figure DEST_PATH_IMAGE010
,在邻域图G中采用两采样点间的最短路径
Figure 243610DEST_PATH_IMAGE011
来近似测地距离。最短路径的以Floyd算法实现。如果两个采样点
Figure DEST_PATH_IMAGE012
Figure 669038DEST_PATH_IMAGE013
在邻域图G有边,那么距离
Figure DEST_PATH_IMAGE014
,否则,
Figure 130106DEST_PATH_IMAGE015
,然后设置i为1,2,3...,n,任意两个点之间的最短路为
Figure DEST_PATH_IMAGE016
。得到测地距离矩阵D。
(3)用MDS算法构建d维向量。将测地距离矩阵D带入MDS算法计算
Figure 746901DEST_PATH_IMAGE017
,其中H为中心化矩阵,
Figure DEST_PATH_IMAGE018
,S为平方距离矩阵,
Figure 926210DEST_PATH_IMAGE019
。对矩阵
Figure DEST_PATH_IMAGE020
进行特征值分解,设
Figure 713967DEST_PATH_IMAGE021
为特征值构成的对角矩阵,其中
Figure DEST_PATH_IMAGE022
。对应的特征向量矩阵为
Figure 295121DEST_PATH_IMAGE023
。则降维后的数据
Figure DEST_PATH_IMAGE024
可靠度模型:
通过对滚动轴承的特征提取以及降维,最终得到可以反映滚动轴承运行状态的特征向量集。设t时刻i维特征向量集
Figure 817238DEST_PATH_IMAGE025
,轴承在t时刻正常运行表示为
Figure DEST_PATH_IMAGE026
,失效表示为
Figure 483843DEST_PATH_IMAGE027
。根据可靠性定义,将
Figure DEST_PATH_IMAGE028
作为因变量输入到sigmoid函数,轴承可靠度函数表示为:
Figure 251073DEST_PATH_IMAGE029
(1)
式中
Figure DEST_PATH_IMAGE030
为模型回归系数。设
Figure 686734DEST_PATH_IMAGE031
为sigmoid函数的对数变换式,可表示为:
Figure DEST_PATH_IMAGE032
(2)
逻辑回归模型为非线性模型,回归系数可通过极大似然估计求得,设
Figure 458381DEST_PATH_IMAGE033
,对数似然方程如下:
Figure DEST_PATH_IMAGE034
(3)
通过梯度下降法求解似然方程即可得到回归系数,建立可靠度模型。
三、本发明的可靠度预测过程:
采用最小二乘支持向量机(LSSVM)进行预测。在LSSVM模型中,正则化参数
Figure 595970DEST_PATH_IMAGE035
,径向基核函数宽度
Figure DEST_PATH_IMAGE036
、嵌入维数m的选择都对预测效果有很大影响,参数选取常用的交叉验证法需要大量的试验,粒子群算法容易陷入局部最优,导致模型参数选取不准确。本文采用NoCuSa算法同时对lssvm的三个参数
Figure 416158DEST_PATH_IMAGE037
、m进行寻优。选用均方根误差来评价预测效果,并作为NoCuSa算法的适应度函数,表达式函数为
Figure DEST_PATH_IMAGE038
(4)
NoCuSa算法步骤如下:
(1)随机生成初始宿主巢。设置最大迭代次数K。在D维空间生成N个个体,其矢量形式为
Figure 457058DEST_PATH_IMAGE039
,个体生成规则如下:
Figure DEST_PATH_IMAGE040
(5)
(2)计算适应度值。根据适应度函数
Figure 337289DEST_PATH_IMAGE041
计算每个巢的适应度值
Figure DEST_PATH_IMAGE042
,确定全局最优的巢g。
(3)更新巢。根据莱维飞行和量子机制定义更新规则,由式(6)产生新的巢,并计算每个巢的适应度值
Figure 962174DEST_PATH_IMAGE043
Figure DEST_PATH_IMAGE044
(6)
式中k表示当前迭代次数,
Figure 320474DEST_PATH_IMAGE045
是一个常数。U和v是服从期望为0,标准差分别为
Figure DEST_PATH_IMAGE046
Figure 481460DEST_PATH_IMAGE047
的正态分布随机数,其中
Figure DEST_PATH_IMAGE048
由式(7)定义。
Figure 532592DEST_PATH_IMAGE049
(7)
式中
Figure DEST_PATH_IMAGE050
是一个常数,
Figure 644774DEST_PATH_IMAGE051
是gamma函数。在式(6)中,
Figure DEST_PATH_IMAGE052
是当前迭代过程中所有巢
Figure 806765DEST_PATH_IMAGE053
位置的平均值,
Figure DEST_PATH_IMAGE054
其中
Figure 868262DEST_PATH_IMAGE055
是一个定值,
Figure DEST_PATH_IMAGE056
和sr是服从区间为[0,1]均匀分布的随机数。
(4)选择被抛弃的巢。通过发现概率
Figure 841028DEST_PATH_IMAGE057
代替被主鸟遗弃的巢,更新规则如式(8)。
Figure DEST_PATH_IMAGE058
(8)
式中
Figure 191238DEST_PATH_IMAGE059
是从当前代中随机选择的巢,P和r都是区间[0,1]中的随机数。计算被发现巢的适应度值
Figure DEST_PATH_IMAGE060
,若新的适应度值
Figure 406187DEST_PATH_IMAGE061
则用
Figure DEST_PATH_IMAGE062
代替
Figure 525453DEST_PATH_IMAGE063
。确定当前迭代过程中全局最优的巢g。
(5)进入迭代过程,重复执行步骤(3)~(4),直至达到最大迭代次数。
通过NoCuSa算法的到LSSVM的最优模型参数,完成可靠度预测。

Claims (1)

1.一种滚动轴承运行可靠度预测方法,所述的方法包括:特征提取,从滚动轴承振动数据中提取时域特征,时频域特征,以及频域特征,构成高维的特征向量集;其特征在于,所述方法为一种基于流行学习和NoCuSa-LSSVM的滚动轴承运行可靠度预测方法,包括以下步骤:
步骤一: 等距映射ISOMAP降维,采用ISOMAP算法对高维特征向量集进行降维处理,将降维结果作为轴承退化趋势特征向量;
步骤二:可靠性模型,将趋势特征向量作为逻辑回归模型的输入,输出为可靠度;
通过极大似然法求解回归系数,建立可靠度模型;
步骤三:趋势特征向量预测,选取趋势特征向量作为LSSVM的训练样本,并通过NoCuSa算法优化LSSVM的参数选取,建立预测模型,预测出一定步长的趋势特征向量;
步骤四:可靠度预测,趋势特征向量预测结果嵌入到可靠度模型中,得到一定步长的可靠度预测结果;
所述的提取时域特征为九个,分别为,峰峰值、整流平均值、标准差、峭度、方差、均方根、波形因子、脉冲因子、裕度因子,通过傅里叶变换后对信号进行频域上的特征提取,提取十个频域特征,结合小波包分解与信息熵理论得到小波包能谱熵和小波包奇异值熵,利用db5小波对原始振动信号进行三层分解,提取出振动信号的时频域特征。
CN201910036750.7A 2019-01-15 2019-01-15 一种滚动轴承运行可靠度预测方法 Active CN109855875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910036750.7A CN109855875B (zh) 2019-01-15 2019-01-15 一种滚动轴承运行可靠度预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910036750.7A CN109855875B (zh) 2019-01-15 2019-01-15 一种滚动轴承运行可靠度预测方法

Publications (2)

Publication Number Publication Date
CN109855875A CN109855875A (zh) 2019-06-07
CN109855875B true CN109855875B (zh) 2020-12-22

Family

ID=66894838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910036750.7A Active CN109855875B (zh) 2019-01-15 2019-01-15 一种滚动轴承运行可靠度预测方法

Country Status (1)

Country Link
CN (1) CN109855875B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451395B (zh) * 2019-07-19 2021-01-05 广东寰球智能科技有限公司 一种扶梯故障监测方法
CN111397896B (zh) * 2020-03-08 2020-12-18 华中科技大学 一种旋转机械故障诊断方法、系统及存储介质
CN111896254A (zh) * 2020-08-10 2020-11-06 山东大学 一种变速变载大型滚动轴承故障预测系统及方法
CN113642779A (zh) * 2021-07-22 2021-11-12 西安理工大学 基于特征融合的ResNet50网络关键设备剩余寿命预测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778355B (zh) * 2012-08-07 2015-05-20 北京交通大学 一种基于emd和pca的滚动轴承状态辨识方法
CN104166691A (zh) * 2014-07-29 2014-11-26 桂林电子科技大学 基于波形叠加布谷鸟优化的极限学习机分类方法
CN105224792B (zh) * 2015-09-21 2018-04-06 河南科技大学 一种滚动轴承性能保持可靠性的预测方法
EP3246689B1 (en) * 2016-05-20 2019-08-21 ABB Schweiz AG Method and system for monitoring mechanical bearing
CN106384122A (zh) * 2016-09-05 2017-02-08 江苏科技大学 一种基于改进cs‑lssvm的设备故障模式识别方法
CN106644481B (zh) * 2016-12-27 2018-10-30 哈尔滨理工大学 基于数学形态学和ifoa-svr的滚动轴承可靠度预测方法
CN106980761A (zh) * 2017-03-29 2017-07-25 电子科技大学 一种滚动轴承运行状态退化趋势预测方法

Also Published As

Publication number Publication date
CN109855875A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109855875B (zh) 一种滚动轴承运行可靠度预测方法
US10387768B2 (en) Enhanced restricted boltzmann machine with prognosibility regularization for prognostics and health assessment
CN110175386B (zh) 变电站电气设备温度预测方法
US20210326728A1 (en) Anomaly detection apparatus, anomaly detection method, and program
JP6965690B2 (ja) ニューラルネットワークの処理速度を向上させるための装置及び方法、並びにその応用
CN112417028B (zh) 一种风速时序特征挖掘方法及短期风电功率预测方法
CN115018021B (zh) 基于图结构与异常注意力机制的机房异常检测方法及装置
CN114169110B (zh) 基于特征优选和GWOA-XGBoost的电机轴承故障诊断方法
US11842250B2 (en) Quantum error correction decoding system and method, fault-tolerant quantum error correction system, and chip
CN113705793B (zh) 决策变量确定方法及装置、电子设备和介质
US8995074B1 (en) Read channel optimization using evolutionary algorithms
CN111564179B (zh) 一种基于三元组神经网络的物种生物学分类方法及系统
CN112861066A (zh) 基于机器学习和fft的盲源分离信源数目并行估计方法
Srimani et al. Adaptive data mining approach for PCB defect detection and classification
CN116051911B (zh) 基于不确定性学习的小样本轴承振动图像数据故障诊断方法
CN110941542A (zh) 基于弹性网络的序列集成高维数据异常检测系统及方法
Carannante et al. Self-compression in bayesian neural networks
CN114186518A (zh) 一种集成电路良率估算方法及存储器
Gong et al. Research on data filling algorithm based on improved k-means and information entropy
CN112380041B (zh) 一种基于xgboost的指控通信装备故障预测方法
CN111077493B (zh) 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法
CN110971321B (zh) 数据的干扰类型的确定方法、装置及设备
CN116402147A (zh) 量子设备性能比较方法及装置、电子设备和介质
CN116663659A (zh) 基于遗传算法的自适应vmd参数寻优方法
CN113435113A (zh) 一种电力系统暂态稳定评估方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Gao Shuzhi

Inventor after: Zhang Yimin

Inventor after: Zhang Sixuan

Inventor before: Zhang Yimin

Inventor before: Gao Shuzhi

Inventor before: Zhang Sixuan