CN109842153A - 提高电网阻抗适应性的lcl参数和控制参数设计方法及装置 - Google Patents

提高电网阻抗适应性的lcl参数和控制参数设计方法及装置 Download PDF

Info

Publication number
CN109842153A
CN109842153A CN201910087912.XA CN201910087912A CN109842153A CN 109842153 A CN109842153 A CN 109842153A CN 201910087912 A CN201910087912 A CN 201910087912A CN 109842153 A CN109842153 A CN 109842153A
Authority
CN
China
Prior art keywords
parameter
inverter
formula
normalized
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910087912.XA
Other languages
English (en)
Inventor
郑晨
李琼林
张凌
潘勇
刘书铭
刘雅娟
代双寅
张博
唐钰政
王毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Henan Electric Power Co Ltd
Electric Power Research Institute of State Grid Henan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Henan Electric Power Co Ltd
Electric Power Research Institute of State Grid Henan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Henan Electric Power Co Ltd, Electric Power Research Institute of State Grid Henan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910087912.XA priority Critical patent/CN109842153A/zh
Publication of CN109842153A publication Critical patent/CN109842153A/zh
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

本申请涉及一种提高电网阻抗适应性的LCL参数和控制参数设计方法及装置,通过理论计算和实际需要,通过计算得到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1的具体值,从而可以实现对LCL参数和控制参数的综合设计,采用本发明设计的逆变器能够在无额外补偿环节或硬件设备的条件下获得对电网阻抗变化的适应性强的逆变器。

Description

提高电网阻抗适应性的LCL参数和控制参数设计方法及装置
技术领域
本发明属于新能源并网发电技术领域,具体涉及一种提高电网阻抗适 应性的LCL参数和控制参数设计方法及装置。
背景技术
随着光伏、风电等新能源的发展,越来越多的逆变器接入电网之 中,使得电网表现出越来越明显的弱电网特性。弱电网中电网阻抗的 存在及其不确定性导致LCL并网逆变器的控制性能降低,使得逆变器 入网的电能质量变差,甚至引发不稳定问题。针对该问题,目前已有 部分文献提出了增强LCL逆变器对电网阻抗适应能力的技术方案,主 要包含两大类。
第一类是在逆变器原有控制结构基础上添加补偿网络,或者在外 部添加硬件装置,该类方法属于二次设计,即首先保证逆变器出厂时 自身控制性能良好,当其在电网中出现谐振或者不稳定现象后,通过 在逆变器的控制器中额外添加一定的补偿控制器,或者在逆变器外部 添加一定的硬件装置来抑制谐振和不稳定现象。由于该类方法需要额 外添加补偿控制器或硬件设备,因此应用起来较为复杂。
如果在逆变器一次设计时就将电网阻抗考虑在内,设计出对电网 阻抗具有较强适应能力的逆变器,那么在逆变器接入电网之后就可以 避免谐振的发生,此即为第二类方法。该类方法是在逆变器一次设计 时就将电网阻抗考虑在内,使得逆变器对电网阻抗具有较强的适应能 力。
虽然第二类方法能够仅通过逆变器的一次设计来达到逆变器对 电网阻抗强鲁棒性的目的,但现有相关设计方法大都是将控制器参数 与LCL滤波参数分别单独设计,事实上逆变器的性能综合取决于控制 器参数和LCL滤波参数,因此现有逆变器设计方法很难在保证逆变器 自身稳定性的同时实现逆变器对电网阻抗的鲁棒性。
发明内容
本发明要解决的技术问题是:为解决现有技术中的不足,从而提 供一种提高电网阻抗适应性的LCL参数和控制参数设计方法及装置。
本发明解决其技术问题所采用的技术方案是:
一种提高电网阻抗适应性的LCL参数和控制参数设计方法,包括 以下步骤:
S1:根据逆变器输出导纳传递函数推导出其不包含右半平面极点 的电流控制器比例系数kp的解析范围;
S2:推导出保证逆变器电流开环传递函数不包含右半平面极点的 有源阻尼系数kd的解析范围;
S3:对有源阻尼系数kd、电流控制器比例系数kp、开环传递函数 截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1归一化处 理,归一化处理后的不包含右半平面极点的有源阻尼系数kd为λd,归 一化处理后的电流控制器比例系数kp为λp,归一化处理后的开环传 递函数截止频率ωc为δ,归一化处理后的谐振频率ωr为ξ和归一化 处理的逆变器侧LC的谐振频率ωr1为β;
S4:结合S3中的归一化参数取值范围,将S3中的归一化参数代 入电流开环传递函数得到简化的逆变器电流开环传递函数Go(s);
S5:根据电流开环传递函数的相位裕度、幅值裕度以及带宽的限 制条件推导归一化参数的范围;
S6:通过解析逆变器输出阻抗,推导出逆变器对电网阻抗鲁棒性 的关系函数,并结合归一化参数对关系函数进行简化;
S7:在简化逆变器电流开环传递函数求取模块和电网阻抗鲁棒性 关系函数简化模块中的简化模型基础上,根据对逆变器稳定性和鲁棒 性的要求确定有源阻尼系数kd、电流控制器比例系数kp、开环传递函 数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
本发明的提高电网阻抗适应性的LCL参数和控制参数设计方法,
保证逆变器输出导纳不包含右半平面极点的解析范围为:电流控 制器比例系数kp∈(kpt,kpcr),其中kpcr、kpt分别如式(1)、式(2) 所示:
式中:D=2ωiωt其中ω0为基波角频率,ωt为中间变量可由式(3)求出,ωi为电流 控制器的带宽系数,Ts为采样周期,ωs=2π/Ts为采样角频率, 为逆变器侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥 输出的传递函数,kr为电流控制器的谐振系数,L1为LCL滤波器逆变 器侧的电感;
保证逆变器开环传递函数不包含右半平面极点的kd的范围为kd∈(0,kdm),其中kdm如式(4)所示:
本发明的提高电网阻抗适应性的LCL参数和控制参数设计方法,
S3步骤中参数归一化的方法为:kd=λdkdm、kp=λpkpcr、ωc=ξω0、 ωr=δωcr和ωr1=βωcr,其中ωcr=ωs/6为一个中间角频率值。
本发明的提高电网阻抗适应性的LCL参数和控制参数设计方法, 将归一化参数代入电流环得到仅受δ、λd和ξ的影响的简化模型,简 化模型如式(5)所示:
式中:为非线性延时函数,e为自然常数。
本发明的提高电网阻抗适应性的LCL参数和控制参数设计方法,
以Go(s)的相位裕度、幅值裕度为限制条件,根据式(5)和各归一 化参数范围,当Go(s)的相位裕度取最大时,求取归一化参数δ的值, 再根据δ取值和需要的带宽选取ξ的值,然后在式(6)的基础上根 据需要的相位裕度PM和幅值裕度GM确定λd的值;
根据如式(7)所示的λp与β的关系,并结合归一化参数得到简化 的仅受归一化参数β影响的arg[Zc(jωr1)]函数,如式(7)所示,求 取λp与β的值;
结合限制条件L2/L1<2、0.5<λp<1和arg[Zc(jωr1)]>-60°得到β的 范围为如式(8)所示,式中βm1和βm2为保证arg[Zc(jωr1)]>-60°的上 下界值,βm3如式(9)所示;
根据求得的归一化参数按照S3步骤中参数归一化的方法运算得 到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率 ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
本发明还提供一种提高电网阻抗适应性的LCL参数和控制参数设 计装置,包括:
第一范围解析模块:用于根据逆变器输出导纳传递函数推导出其 不包含右半平面极点的电流控制器比例系数kp的解析范围;
第二范围解析模块:用于推导出保证逆变器电流开环传递函数不 包含右半平面极点的有源阻尼系数kd的解析范围;
参数归一化处理模块:对有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振 频率ωr1归一化处理,归一化处理后的不包含右半平面极点的有源阻 尼系数kd为λd,归一化处理后的电流控制器比例系数kp为λp,归一 化处理后的开环传递函数截止频率ωc为δ,归一化处理后的谐振频 率ωr为ξ和归一化处理的逆变器侧LC的谐振频率ωr1为β;
简化逆变器电流开环传递函数求取模块:用于结合第三范围解析 模块中的归一化参数取值范围,将归一化参数代入电流开环传递函数 得到简化的逆变器电流开环传递函数Go(s);
归一化参数范围求取模块:用于根据电流开环传递函数的相位裕 度、幅值裕度以及带宽的限制条件推导归一化参数的范围;
电网阻抗鲁棒性关系函数简化模块:用于通过解析逆变器输出阻 抗,推导出逆变器对电网阻抗鲁棒性的关系函数,并结合归一化参数 对关系函数进行简化;
结果输出模块:用于在简化逆变器电流开环传递函数求取模块和 电网阻抗鲁棒性关系函数简化模块中的简化模型基础上,根据对逆变 器稳定性和鲁棒性的要求确定不包含右半平面极点的有源阻尼系数 kd和电流控制器比例系数kp
本发明的提高电网阻抗适应性的LCL参数和控制参数设计装置,
第一范围解析模块中,保证逆变器输出导纳不包含右半平面极点 的解析范围为:电流控制器比例系数kp∈(kpt,kpcr),其中kpcr、kpt分别如式(1)、式(2)所示:
式中:ωt为中间变量可由式求出,ωi为电流控制器的带宽系数,Ts为采样 周期,ωs=2π/Ts为采样角频率,为逆变器侧LC滤波器的谐 振角频率,kpwm为调制波到逆变桥输出的传递函数,kr为电流控制器 的谐振系数,L1为LCL滤波器逆变器侧的电感;式中: D=2ωiωtωt为中间变量可由式 求出,Ts为采样周期,ωs=2π/Ts为采样角频率,为逆变器 侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥输出的传递函数, kr为电流控制器的谐振系数,L1为LCL滤波器逆变器侧的电感;
保证逆变器开环传递函数不包含右半平面极点的kd的范围为kd∈(0,kdm),其中kdm如式(4)所示:
本发明的提高电网阻抗适应性的LCL参数和控制参数设计装置,
参数归一化处理模块中,参数归一化的方法为:kd=λdkdm、kp=λpkpcr、 ωc=ξω0、ωr=δωcr和ωr1=βωcr,其中ωcr=ωs/6为一个中间角频率 值。
本发明的提高电网阻抗适应性的LCL参数和控制参数设计装置,
简化逆变器电流开环传递函数求取模块中,将归一化参数代入电 流环得到仅受δ、λd和ξ的影响的简化模型,简化模型如式(5)所示:
式中:为非线性延时函数,e为自然常数。
本发明的提高电网阻抗适应性的LCL参数和控制参数设计装置,
归一化参数范围求取模块中,归一化参数范围求取模块中,以 Go(s)的相位裕度、幅值裕度为限制条件,根据式(5)和各归一化参数 范围,当Go(s)的相位裕度取最大时,求取归一化参数δ的值,再根 据δ取值和需要的带宽选取ξ的值,然后在式(5)的基础上根据需要的相位裕度PM和幅值裕度GM确定λd的值;
根据如式(6)所示的λp与β的关系,并结合归一化参数得到简化 的仅受归一化参数β影响的arg[Zc(jωr1)]函数,如式(7)所示,求 取λp与β的值;
结合限制条件L2/L1<2、0.5<λp<1和arg[Zc(jωr1)]>-60°得到β的 范围为如式(8)所示,式中βm1和βm2为保证arg[Zc(jωr1)]>-60°的上 下界值,βm3如式(9)所示;
根据求得的归一化参数按照S3步骤中参数归一化的方法运算得 到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率 ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
本发明的有益效果是:
本发明提供一种提高电网阻抗适应性的LCL参数和控制参数设计 方法及装置,通过理论计算和实际需要,通过计算得到有源阻尼系数 kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率 ωr和逆变器侧LC的谐振频率ωr1的具体值,从而可以实现对LCL参 数和控制参数的综合设计,采用本发明设计的逆变器能够在无额外补 偿环节或硬件设备的条件下获得对电网阻抗变化的适应性强的逆变 器。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附 图对本发明作进一步的详细描述,其中:
图1为本发明方法流程图;
图2逆变器电流开环传递函数伯德图;
图3逆变器输出阻抗与电网阻抗交互作用伯德图;
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例 中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
实施例
一种提高电网阻抗适应性的LCL参数和控制参数设计方法,其特 征在于,包括以下步骤:
S1:根据欧拉公式分解非线性延时函数推导出保证逆变器输出导 纳不包含右半平面极点的电流控制器比例系数kp的解析范围;
S2:推导出保证逆变器电流开环传递函数不包含右半平面极点的 有源阻尼系数kd的解析范围;
S3:对有源阻尼系数kd、电流控制器比例系数kp、开环传递函数 截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1归一化处 理,归一化处理后的不包含右半平面极点的有源阻尼系数kd为λd,归 一化处理后的电流控制器比例系数kp为λp,归一化处理后的开环传 递函数截止频率ωc为δ,归一化处理后的谐振频率ωr为ξ和归一化 处理的逆变器侧LC的谐振频率ωr1为β;
S4:结合S3中的归一化参数取值范围,将S3中的归一化参数代 入电流开环传递函数得到简化的逆变器电流开环传递函数Go(s);
S5:根据电流开环传递函数的相位裕度、幅值裕度以及带宽的限 制条件推导归一化参数的范围,其中ω0为基波角频率;
S6:通过解析逆变器输出阻抗,推导出逆变器对电网阻抗鲁棒性 的关系函数,并结合归一化参数对关系函数进行简化;
S7:在简化逆变器电流开环传递函数求取模块和电网阻抗鲁棒性 关系函数简化模块中的简化模型基础上,根据对逆变器稳定性和鲁棒 性的要求确定有源阻尼系数kd、电流控制器比例系数kp、开环传递函 数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1,并根 据。
保证逆变器输出导纳不包含右半平面极点的解析范围为:电流控 制器比例系数kp∈(kpt,kpcr),其中kpcr、kpt分别如式(1)、式(2) 所示:
式中:D=2ωiωt其中ω0为基波角频率,ωt为中间变量可由式(3)求出,ωi为电流 控制器的带宽系数,Ts为采样周期,ωs=2π/Ts为采样角频率, 为逆变器侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥 输出的传递函数,kr为电流控制器的谐振系数,L1为LCL滤波器逆变 器侧的电感;
保证逆变器开环传递函数不包含右半平面极点的kd的范围为kd∈(0,kdm),其中kdm如式(4)所示:
有源阻尼系数kd应当将推导出保证逆变器输出导纳传递函数不 包含右半平面极点的有源阻尼系数的解析范围与推导出保证逆变器 电流开环传递函数不包含右半平面极点的的解析范围进行求交集(即 有源阻尼系数kd同时保证逆变器导纳与电流开环传递函数均不包含 右半平面极点)。
保证逆变器输出导纳不包含右半平面极点的限制条件为:有源阻 尼系数kd∈(0,kdcr)
由于kdm<kdcr,故直接选取kd∈(0,kdm)。
S3步骤中参数归一化的方法为:kd=λdkdm、kp=λpkpcr、ωc=ξω0、 ωr=δωcr和ωr1=βωcr,其中ωcr=ωs/6为一个中间角频率值。
S6步骤中,将归一化参数代入电流环得到仅受δ、λd和ξ的影响 的简化模型,简化模型如式(5)所示:
式中:为非线性延时函数,e为自然常数。
以Go(s)的相位裕度、幅值裕度为限制条件,根据式(5)和各归一 化参数范围,当Go(s)的相位裕度取最大时,求取归一化参数δ的值, 再根据δ取值和需要的带宽选取ξ的值,然后在式(5)的基础上根 据需要的相位裕度PM和幅值裕度GM确定λd的值;
根据如式(6)所示的λp与β的关系,并结合归一化参数得到简化 的仅受归一化参数β影响的arg[Zc(jωr1)]函数,如式(7)所示,求 取λp与β的值;
结合限制条件L2/L1<2、0.5<λp<1和arg[Zc(jωr1)]>-60°得到β的 范围为如式(8)所示,式中βm1和βm2为保证arg[Zc(jωr1)]>-60°的上 下界值,βm3如式(9)所示;
根据求得的归一化参数按照S3步骤中参数归一化的方法运算得 到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率 ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
本实施例还提供一种提高电网阻抗适应性的LCL参数和控制参数 设计装置,与提高电网阻抗适应性的LCL参数和控制参数设计方法对 应,包括:
第一范围解析模块:用于根据逆变器输出导纳传递函数推导出保 证其不包含右半平面极点的电流控制器比例系数kp的解析范围;
第二范围解析模块:用于推导出保证逆变器电流开环传递函数不 包含右半平面极点的有源阻尼系数kd的解析范围;
参数归一化处理模块:用于对有源阻尼系数kd、电流控制器比例 系数kp在各自的解析范围内进行归一化处理,并对开环传递函数截 止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1归一化处理, 归一化处理的不包含右半平面极点的有源阻尼系数kd为λd,归一化处 理的电流控制器比例系数kp为λp,归一化处理的开环传递函数截止 频率为δ,归一化处理的谐振频率为ξ和归一化处理的逆变器侧LC的 谐振频率为β;
简化逆变器电流开环传递函数求取模块:用于结合第三范围解析 模块中的归一化参数取值范围,将归一化参数代入电流开环传递函数 得到简化的逆变器电流开环传递函数Go(s);
归一化参数范围求取模块:用于根据电流开环传递函数的相位裕 度、幅值裕度以及带宽的限制条件推导归一化参数的范围;
电网阻抗鲁棒性关系函数简化模块:用于通过解析逆变器输出阻 抗,推导出逆变器对电网阻抗鲁棒性的关系函数,并结合归一化参数 对关系函数进行简化;
结果输出模块:用于在简化逆变器电流开环传递函数求取模块和 电网阻抗鲁棒性关系函数简化模块中的简化模型基础上,根据对逆变 器稳定性和鲁棒性的要求确定不包含右半平面极点的有源阻尼系数kd和电流控制器比例系数kp
第一范围解析模块中,保证逆变器输出导纳不包含右半平面极点 的解析范围为:电流控制器比例系数kp∈(kpt,kpcr),其中kpcr、kpt分别如式(1)、式(2)所示:
式中:D=2ωiωtωt为中间变量可由式(3)求出,ωi为电流控制器的带宽系数,Ts为采样周期,ωs=2π/Ts为采样角频率,为逆变器侧LC滤波 器的谐振角频率,kpwm为调制波到逆变桥输出的传递函数,kr为电流 控制器的谐振系数,L1为LCL滤波器逆变器侧的电感;式中: D=2ωiωtωt为中间变量可由式 (3)求出,Ts为采样周期,ωs=2π/Ts为采样角频率,为逆 变器侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥输出的传递函 数,kr为电流控制器的谐振系数,L1为LCL滤波器逆变器侧的电感;
保证逆变器开环传递函数不包含右半平面极点的kd的范围为kd∈(0,kdm),其中kdm如式(4)所示:
参数归一化处理模块中,参数归一化的方法为:kd=λdkdm、kp=λpkpcr、 ωc=ξω0、ωr=δωcr和ωr1=βωcr,其中ωcr=ωs/6为一个中间角频率 值。
简化逆变器电流开环传递函数求取模块中,将归一化参数代入电 流环得到仅受δ、λd和ξ的影响的简化模型,简化模型如式(5)所示:
式中:为非线性延时函数,e为自然常数。
归一化参数范围求取模块中,归一化参数范围求取模块中,以 Go(s)的相位裕度、幅值裕度为限制条件,根据式(5)和各归一化参数 范围,当Go(s)的相位裕度取最大时,求取归一化参数δ的值,再根 据δ取值和需要的带宽选取ξ的值,然后在式(5)的基础上根据需要的相位裕度PM和幅值裕度GM确定λd的值;
根据如式(6)所示的λp与β的关系,并结合归一化参数得到简化 的仅受归一化参数β影响的arg[Zc(jωr1)]函数,如式(7)所示,求 取λp与β的值;
结合限制条件L2/L1<2、0.5<λp<1和arg[Zc(jωr1)]>-60°得到β的 范围为如式(8)所示,式中βm1和βm2为保证arg[Zc(jωr1)]>-60°的上 下界值,βm3如式(9)所示;
根据求得的归一化参数按照S3步骤中参数归一化的方法运算得 到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率 ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
效果实施例
以一台额定功率为10kW的并网逆变器为例对本方案的实施过程 进行说明,逆变器基本参数为:采样频率20kHz,直流链电压Udc=700V, 电网电压Ug=220V,开关频率fsw=10kHz。Go(s)的相位裕度PM取大于 30°、幅值裕度GM取大于6dB,为了保证Go具有足够带宽和较大的 稳定裕度,取ξ=20。根据简化的电流开环传递函数模型,当δ在0.6 附近取值时Go具有最大的相位裕度,这里取δ=0.58、λd=0.94,此 时PM=40deg,GM=6.8dB。根据实施例计算得到0.39<β<0.47,最终取 β=0.43。根据实施例计算得到λp=0.6361。根据电感L1上的纹波电流 不超过基波额定电流的40%计算得到L1的下限值为1.4mH,最终取 L1=2mH。根据谐振频率的归一化参数计算得到滤波电容C的取值为6.2μF,网侧滤波电感L2的取值为2.4mH。将归一化参数还原到实际 参数得到电流控制器比例系数kp=0.0797,有源阻尼系数kd=0.0781。
综合上述可以看出,在采用本发明设计逆变器的过程中无需任何 复杂的迭代运算即可实现逆变器滤波参数和控制参数的综合设计。采 用本发明所设计的逆变器电流开环伯德图如图2所示,可以看出逆变 器开环传递函数具有大于30°的相位裕度和大于6dB的幅值裕度,且 开环截止频率足够高,能够保证逆变器具有良好的动态特性。逆变器 输出阻抗与电网阻抗交互作用的伯德图如图3所示,可以看出逆变器 输出阻抗的相位在一个较宽频率范围内高于-60°,随着电网阻抗的增 加,逆变器输出阻抗与电网阻抗在它们的交截频率处的相位始终低于 150°,说明系统始终具有高于30°的相位裕度。
以上述依据本申请的理想实施例为启示,通过上述的说明内容, 相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多 样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内 容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

1.一种提高电网阻抗适应性的LCL参数和控制参数设计方法,其特征在于,包括以下步骤:
S1:推导出保证逆变器输出导纳不包含右半平面极点的电流控制器比例系数kp的解析范围;
S2:推导出保证逆变器电流开环传递函数不包含右半平面极点的有源阻尼系数kd的解析范围;
S3:对有源阻尼系数kd和电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1归一化处理,归一化处理后的有源阻尼系数kd为λd,归一化处理后的电流控制器比例系数kp为λp,归一化处理后的开环传递函数截止频率ωc为δ,归一化处理后的谐振频率ωr为ξ和归一化处理的逆变器侧LC的谐振频率ωr1为β;
S4:将S3中的归一化参数代入电流开环传递函数得到简化的逆变器电流开环传递函数Go(s);
S5:根据电流开环传递函数的相位裕度、幅值裕度以及带宽的限制条件推导归一化参数的范围;
S6:通过解析逆变器输出阻抗,推导出逆变器对电网阻抗鲁棒性的关系函数,并结合归一化参数对关系函数进行简化;
S7:在简化逆变器电流开环传递函数求取模块和电网阻抗鲁棒性关系函数简化模块中的简化模型基础上,根据对逆变器稳定性和鲁棒性的要求确定有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
2.根据权利要求1所述的提高电网阻抗适应性的LCL参数和控制参数设计方法,其特征在于,
保证逆变器输出导纳不包含右半平面极点的解析范围为:电流控制器比例系数kp∈(kpt,kpcr),其中kpcr、kpt分别如式(1)、式(2)所示:
式中:D=2ωiωt其中ω0为基波角频率,ωt为中间变量可由式(3)求出,ωi为电流控制器的带宽系数,Ts为采样周期,ωs=2π/Ts为采样角频率,为逆变器侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥输出的传递函数,kr为电流控制器的谐振系数,L1为LCL滤波器逆变器侧的电感;
保证逆变器开环传递函数不包含右半平面极点的kd的范围为kd∈(0,kdm),其中kdm如式(4)所示:
3.根据权利要求1或2所述的提高电网阻抗适应性的LCL参数和控制参数设计方法,其特征在于,S3步骤中参数归一化的方法为:kd=λdkdm、kp=λpkpcr、ωc=ξω0、ωr=δωcr和ωr1=βωcr,其中ωcr=ωs/6为一个中间角频率值。
4.根据权利要求1-3任一项所述的提高电网阻抗适应性的LCL参数和控制参数设计方法,其特征在于,将归一化参数代入电流环得到仅受δ、λd和ξ的影响的简化模型,简化模型如式(5)所示:
式中:为非线性延时函数,e为自然常数。
5.根据权利要求4所述的提高电网阻抗适应性的LCL参数和控制参数设计方法,其特征在于,
以Go(s)的相位裕度、幅值裕度为限制条件,根据式(5)和各归一化参数范围,当Go(s)的相位裕度取最大时,求取归一化参数δ的值,再根据δ取值和需要的带宽选取ξ的值,然后在式(5)的基础上根据需要的相位裕度PM和幅值裕度GM确定λd的值;
根据如式(6)所示的λp与β的关系,并结合归一化参数得到简化的仅受归一化参数β影响的arg[Zc(jωr1)]函数,如式(7)所示,求取λp与β的值;
结合限制条件L2/L1<2、0.5<λp<1和arg[Zc(jωr1)]>-60°得到β的范围为如式(8)所示,式中βm1和βm2为保证arg[Zc(jωr1)]>-60°的上下界值,βm3如式(9)所示;
根据求得的归一化参数按照S3步骤中参数归一化的方法运算得到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
6.一种提高电网阻抗适应性的LCL参数和控制参数设计装置,其特征在于,包括:
第一范围解析模块:用于根据逆变器输出导纳传递函数推导出保证其不包含右半平面极点的电流控制器比例系数kp的解析范围;
第二范围解析模块:用于推导出保证逆变器电流开环传递函数不包含右半平面极点的有源阻尼系数kd的解析范围;
参数归一化处理模块:对有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1归一化处理,归一化处理后的有源阻尼系数kd为λd,归一化处理后的电流控制器比例系数kp为λp,归一化处理后的开环传递函数截止频率ωc为δ,归一化处理后的谐振频率ωr为ξ和归一化处理的逆变器侧LC的谐振频率ωr1为β;
简化逆变器电流开环传递函数求取模块:用于结合第三范围解析模块中的归一化参数取值范围,将归一化参数代入电流开环传递函数得到简化的逆变器电流开环传递函数Go(s);
归一化参数范围求取模块:用于根据电流开环传递函数的相位裕度、幅值裕度以及带宽的限制条件推导归一化参数的范围;
电网阻抗鲁棒性关系函数简化模块:用于通过解析逆变器输出阻抗,推导出逆变器对电网阻抗鲁棒性的关系函数,并结合归一化参数对关系函数进行简化;
结果输出模块:用于在简化逆变器电流开环传递函数求取模块和电网阻抗鲁棒性关系函数简化模块中的简化模型基础上,根据对逆变器稳定性和鲁棒性的要求确定不包含右半平面极点的有源阻尼系数kd和电流控制器比例系数kp
7.根据权利要求6所述的提高电网阻抗适应性的LCL参数和控制参数设计装置,其特征在于,
第一范围解析模块中,保证逆变器输出导纳不包含右半平面极点的解析范围为:电流控制器比例系数kp∈(kpt,kpcr),其中kpcr、kpt分别如式(1)、式(2)所示:
式中:D=2ωiωtωt为中间变量可由式(3)求出,ωi为电流控制器的带宽系数,Ts为采样周期,ωs=2π/Ts为采样角频率,为逆变器侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥输出的传递函数,kr为电流控制器的谐振系数,L1为LCL滤波器逆变器侧的电感;式中:D=2ωiωtωt为中间变量可由式(3)求出,Ts为采样周期,ωs=2π/Ts为采样角频率,为逆变器侧LC滤波器的谐振角频率,kpwm为调制波到逆变桥输出的传递函数,kr为电流控制器的谐振系数,L1为LCL滤波器逆变器侧的电感;
保证逆变器开环传递函数不包含右半平面极点的kd的范围为kd∈(0,kdm),其中kdm如式(4)所示:
8.根据权利要求1或2所述的提高电网阻抗适应性的LCL参数和控制参数设计装置,其特征在于,参数归一化处理模块中,参数归一化的方法为:kd=λdkdm、kp=λpkpcr、ωc=ξω0、ωr=δωcr和ωr1=βωcr,其中ωcr=ωs/6为一个中间角频率值。
9.根据权利要求1-3任一项所述的提高电网阻抗适应性的LCL参数和控制参数设计装置,其特征在于,简化逆变器电流开环传递函数求取模块中,将归一化参数代入电流环得到仅受δ、λd和ξ的影响的简化模型,简化模型如式(5)所示:
式中:为非线性延时函数,e为自然常数。
10.根据权利要求1-4任一项所述的提高电网阻抗适应性的LCL参数和控制参数设计装置,其特征在于,
归一化参数范围求取模块中,以Go(s)的相位裕度、幅值裕度为限制条件,根据式(5)和各归一化参数范围,当Go(s)的相位裕度取最大时,求取归一化参数δ的值,再根据δ取值和需要的带宽选取ξ的值,然后在式(5)的基础上根据需要的相位裕度PM和幅值裕度GM确定λd的值;
根据如式(6)所示的λp与β的关系,并结合归一化参数得到简化的仅受归一化参数β影响的arg[Zc(jωr1)]函数,如式(7)所示,求取λp与β的值;
结合限制条件L2/L1<2、0.5<λp<1和arg[Zc(jωr1)]>-60°得到β的范围为如式(8)所示,式中βm1和βm2为保证arg[Zc(jωr1)]>-60°的上下界值,βm3如式(9)所示;
根据求得的归一化参数按照S3步骤中参数归一化的方法运算得到有源阻尼系数kd、电流控制器比例系数kp、开环传递函数截止频率ωc、谐振频率ωr和逆变器侧LC的谐振频率ωr1
CN201910087912.XA 2019-01-29 2019-01-29 提高电网阻抗适应性的lcl参数和控制参数设计方法及装置 Withdrawn CN109842153A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910087912.XA CN109842153A (zh) 2019-01-29 2019-01-29 提高电网阻抗适应性的lcl参数和控制参数设计方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910087912.XA CN109842153A (zh) 2019-01-29 2019-01-29 提高电网阻抗适应性的lcl参数和控制参数设计方法及装置

Publications (1)

Publication Number Publication Date
CN109842153A true CN109842153A (zh) 2019-06-04

Family

ID=66884325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910087912.XA Withdrawn CN109842153A (zh) 2019-01-29 2019-01-29 提高电网阻抗适应性的lcl参数和控制参数设计方法及装置

Country Status (1)

Country Link
CN (1) CN109842153A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472188A (zh) * 2021-07-05 2021-10-01 西北工业大学 一种基于全通滤波器的lcl滤波器自适应方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259477A1 (en) * 2011-04-05 2012-10-11 King Fahd University Of Petroleum And Minerals Particle swarm optimization system and method for microgrids
CN105743123A (zh) * 2016-04-07 2016-07-06 电子科技大学 一种基于lcl-lc的并网系统有源阻尼参数设计方法
CN105870960A (zh) * 2016-03-06 2016-08-17 广东工业大学 一种单相并网逆变器的控制方法及其控制参数获得方法
CN106253646A (zh) * 2016-08-23 2016-12-21 合肥工业大学 提高弱电网适应能力的并网逆变器lcl滤波器参数设计方法
CN106712099A (zh) * 2017-02-27 2017-05-24 重庆大学 一种多并联光伏并网逆变器设计方法
KR20180112596A (ko) * 2017-04-04 2018-10-12 서울과학기술대학교 산학협력단 Lcl 필터 적용 계통연계 인버터의 제어 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259477A1 (en) * 2011-04-05 2012-10-11 King Fahd University Of Petroleum And Minerals Particle swarm optimization system and method for microgrids
CN105870960A (zh) * 2016-03-06 2016-08-17 广东工业大学 一种单相并网逆变器的控制方法及其控制参数获得方法
CN105743123A (zh) * 2016-04-07 2016-07-06 电子科技大学 一种基于lcl-lc的并网系统有源阻尼参数设计方法
CN106253646A (zh) * 2016-08-23 2016-12-21 合肥工业大学 提高弱电网适应能力的并网逆变器lcl滤波器参数设计方法
CN106712099A (zh) * 2017-02-27 2017-05-24 重庆大学 一种多并联光伏并网逆变器设计方法
KR20180112596A (ko) * 2017-04-04 2018-10-12 서울과학기술대학교 산학협력단 Lcl 필터 적용 계통연계 인버터의 제어 시스템

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN ZHENG ET AL.: "Inverter Admittance Phase-Reshaping Strategy for Enhancing Its Robustness to Grid Impedance", 《IEEE》 *
郑晨: "集中式大型光伏并网系统谐振机理及谐振抑制策略研究", 《万方》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472188A (zh) * 2021-07-05 2021-10-01 西北工业大学 一种基于全通滤波器的lcl滤波器自适应方法
CN113472188B (zh) * 2021-07-05 2023-12-05 西北工业大学 一种基于全通滤波器的lcl滤波器自适应方法

Similar Documents

Publication Publication Date Title
CN109193767A (zh) 一种基于bp神经网络和双模结构重复控制的新型光伏逆变器控制方法
CN107070270B (zh) 一种提高lcl型并网逆变器稳定性的输出阻抗校正方法
CN107994606A (zh) 一种多频率耦合因素共存情况下并网逆变器系统稳定性分析方法
CN102904568B (zh) 一种自适应并网变流器单相软锁相环
CN110138253A (zh) 一种多谐振pr和pi联合控制的光伏并网逆变器控制方法
CN111355362B (zh) 一种电容电流fopi正反馈有源阻尼策略的fopi参数设计方法
CN108418253A (zh) 电流控制型虚拟同步发电机的阻抗建模与稳定性分析方法
CN105720856B (zh) 基于电容电压单传感器的lcl型并网逆变器控制方法
CN105006825A (zh) 一种高电能质量输出的电力电子变压器及其控制方法
CN105790306B (zh) 基于逆变器电流单传感器的lcl型并网逆变器控制方法
CN106532770A (zh) 基于模糊pci和pr并联复合控制的逆变器控制方法
CN108964040A (zh) 电网不平衡下虚拟同步发电机功率-电流协调控制方法
CN104600703B (zh) 一种基于相位裕度补偿的并网逆变器谐波谐振抑制方法
CN105406477B (zh) 一种三相并网系统lcl滤波器参数设计的方法
CN108847670A (zh) 一种双馈风机网侧变换器的谐波不稳定分析方法
CN108390394A (zh) 消除并网逆变器-弱电网振荡的控制方法
CN109659939A (zh) 一种光伏系统三相变流器的pwm控制方法
CN112532096A (zh) 一种适应弱电网的lcl型逆变器并网装置及方法
CN109524992A (zh) 弱电网下并网变流器自适应控制方法及控制系统
CN107887910B (zh) 一种改善分布式光伏并网性能的超前滞后补偿方法
CN109742795A (zh) 基于sogi的虚拟坐标系下单相并网控制方法
Zhu et al. Stability assessment of modular multilevel converters based on linear time-periodic theory: Time-domain vs. frequency-domain
CN104753058A (zh) 一种直流母线电压谐波抑制计算方法
CN109842153A (zh) 提高电网阻抗适应性的lcl参数和控制参数设计方法及装置
CN111786407B (zh) 基于电流型并网系统的宽范围频率自适应控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190604