CN109830347A - 高压直流gil用表面功能梯度绝缘子快速工业处理方法 - Google Patents

高压直流gil用表面功能梯度绝缘子快速工业处理方法 Download PDF

Info

Publication number
CN109830347A
CN109830347A CN201910087792.3A CN201910087792A CN109830347A CN 109830347 A CN109830347 A CN 109830347A CN 201910087792 A CN201910087792 A CN 201910087792A CN 109830347 A CN109830347 A CN 109830347A
Authority
CN
China
Prior art keywords
high voltage
direct current
voltage direct
insulator
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910087792.3A
Other languages
English (en)
Inventor
杜伯学
刘浩梁
李进
梁虎成
冉昭玉
王泽华
侯兆豪
姚航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910087792.3A priority Critical patent/CN109830347A/zh
Publication of CN109830347A publication Critical patent/CN109830347A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开一种高压直流GIS/GIL功能梯度盆式绝缘子快速工业化表面处理方法,通过等离子体射流对高压直流GIS/GIL绝缘子进行快速工业化功能梯度表面处理,通过等离子体射流方法,将TEOS混合气体电离形成等离子体改变盆式绝缘子表面电导率;在高压直流盆式绝缘子表面进行等离子体射流处理,形成一定表面电导率的高压直流盆式绝缘子;控制处理时间对高压直流盆式绝缘子进行梯度时间处理,得到功能梯度电导率的高压直流盆式绝缘子。将等离子体射流应用于环氧树脂基表面改性,通过控制处理时间构造二维FGM绝缘子,具有操作简便、易于控制等优点,为高压直流GIS/GIL盆式绝缘子快速工业化表面处理提供了全新的方法。

Description

高压直流GIL用表面功能梯度绝缘子快速工业处理方法
技术领域
本发明属于高电压设备绝缘制备领域,并涉及一种高压直流GIL用表面功能梯度绝缘子快速工业处理方法。
背景技术
近年来,随着电力系统高电压、大容量输电的发展需求,气体绝缘金属封闭开关设备(GIS)及气体绝缘金属封闭输电线路(GIL)因其传输容量大、占地面积小、可靠性高等优点,得到了广泛的关注与应用。其中,盆式绝缘子既起到机械支撑的作用,又作为电气绝缘体,对整个GIS、GIL的安全稳定运行起着决定性的关键作用。然而,即使在质量严苛的±800kV直流特高压工程中,环氧浇注类绝缘子依旧故障频发。
一般认为,GIS/GIL长期运行在直流电压下,盆式绝缘子表面会在高压导杆和接地金属外壳之间极大的场强下积聚大量的电荷,造成盆式绝缘子沿面的局部场强畸变严重,从而增大沿面闪络发生的概率。
而目前现有的对于高压直流盆式绝缘子的表面处理方法操作相对复杂,难以实现工业化快速大规模表面改性处理。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高压直流GIL用表面功能梯度绝缘子快速工业处理方法。
本发明为解决技术问题,采用的技术方案是:一种高压直流GIS/GIL功能梯度盆式绝缘子快速工业化表面处理方法,通过等离子体射流对高压直流GIS/GIL绝缘子进行快速工业化功能梯度表面处理,通过等离子体射流方法,将TEOS混合气体电离形成等离子体改变盆式绝缘子表面电导率;在高压直流盆式绝缘子表面进行等离子体射流处理,形成一定表面电导率的高压直流盆式绝缘子;控制处理时间对高压直流盆式绝缘子进行梯度时间处理,得到功能梯度电导率的高压直流盆式绝缘子,该方法具体包括以下步骤:
1)将缩水甘油醚类的环氧树脂和固化剂按照质量比3:1进行混合,并使用磁力搅拌器搅拌均匀;
2)将环氧树脂混合液体放入真空箱中,使用抽气泵进行脱气处理40~60min;
3)将脱气后的环氧树脂混合液体倒入涂有脱模剂的模具中固化、冷却、脱模;
4)环氧树脂采用梯度温度固化法处理,固化过程分为两步:
先将模具及基料加热至70℃下固化4小时,然后再加热至130℃固化4小时,完全固化后,冷却、脱模即可得到环氧树脂绝缘试样;
5)双介质射流管使用石英玻璃管作为射流管主体,高压电极和地电极采用针环电极结构:使用一根长20mm、直径4mm的圆形实心铜棒作为内部高压电极,距离射流管出口20mm;
使用宽度10mm的铜箔贴在射流管外,距离射流管管口5mm;
6)采用等离子体电源作为激励源,该电源放电重复频率30kHz,输出电压幅值6kV,电流200mA;
7)将装有前驱体TEOS液体的洗气瓶在70℃水浴下加热;
8)将一路200sccm氩气通入洗气瓶中,将前驱体TEOS分子带出至射流管中,与另一路6slm氩气充分混合后,通入射流管中,电离形成等离子体;
9)采用机械臂夹住射流管,准确控制射流管的角度与运动轨迹,对改性对象环氧树脂进行等离子体处理;
所述步骤10)二维梯度分布的样式为条形梯度,具体为:对环氧树脂试样片按照条形样式进行梯度设计,即将试样片从左至右分为若干个紧密相连的矩形区域,并对每个矩形区域处理,使得电导率依次增大;
环氧树脂试样片的射流处理区域分为5个,处理时间分别为0.5min、1min、3min、5min、10min。所述步骤10)二维梯度分布的样式为环形梯度,具体为:对环氧树脂按照环形样式进行梯度设计,即将绝缘子从内向外分为若干个紧密相连的环形区域,并对每个环形区域处理,使得电导率依次增大;
优选的,绝缘子的射流处理区域分为5个,处理时间分别为0.5min、1min、3min、5min、10min。
所述步骤1)中环氧树脂基为缩水甘油醚类的双酚A环氧树脂;固化剂为低分子量聚酰胺树脂HY-651。
所述步骤6)通过等离子体射流方法实现绝缘子的表面处理,且配套装置为CTP-2000K型等离子体实验电源。
有益效果:将材料学领域的功能梯度材料(FunctionallyGradedMaterial,FGM)概念应用于电气绝缘领域,通过构建相对介电常数非均匀分布的绝缘结构,进而均化高压直流GIS/GIL绝缘子表面电场,提高绝缘子的绝缘性能。将等离子体射流应用于环氧树脂基表面改性,通过控制处理时间构造二维FGM绝缘子,具有操作简便、易于控制等优点,为高压直流GIS/GIL盆式绝缘子快速工业化表面处理提供了全新的方法。
1.通过等离子体射流对高压直流GIS/GIL绝缘子进行功能梯度处理,均化了绝缘子表面电场,提高环氧树脂材料的绝缘性能。
2.本发明使得环氧树脂表面改性更加快速、精确、便于操作,从而便于应用于工业化生产。3.本发明通过等离子体射流对绝缘子进行功能梯度表面改性处理,均化绝缘子表面电场,进而提高高压直流盆式绝缘子的绝缘性能,提高运行稳定性和电力系统的安全性。将等离子体射流应用于高压盆式绝缘子表面改性,具有操作简便、易于控制、处理时间短、处理精确度高的优点。
附图说明
图1是条形样式的二维介电常数线性梯度分布示意图;
图2是环形样式的二维介电常数线性梯度分布示意图。
具体实施方式
下面通过具体实施例和附图对本发明作进一步的说明。本发明的实施例是为了更好地使本领域的技术人员更好地理解本发明,并不对本发明作任何的限制。
本发明提供一种高压直流GIS/GIL功能梯度电导率盆式绝缘子快速工业化表面处理方法。通过等离子体射流对高压直流GIS/GIL绝缘子进行快速工业化功能梯度表面处理,提升绝缘子耐电性能。
通过等离子体射流方法,将TEOS混合气体电离形成等离子体改变盆式绝缘子表面电导率。在高压直流盆式绝缘子表面进行一定时间的等离子体射流处理,形成一定表面电导率的高压直流盆式绝缘子。控制处理时间对高压直流盆式绝缘子进行梯度时间处理,得到功能梯度电导率的高压直流盆式绝缘子。
该方法具体包括以下步骤:
1)将缩水甘油醚类的环氧树脂和固化剂按照质量比3:1进行混合,并使用磁力搅拌器搅拌均匀;环氧树脂基为缩水甘油醚类的双酚A环氧树脂;固化剂为低分子量聚酰胺树脂HY-651;
2)将环氧树脂混合液体放入真空箱中,使用抽气泵进行脱气处理40~60min。
3)将脱气后的环氧树脂混合液体倒入涂有脱模剂的模具中固化、冷却、脱模;
4)环氧树脂采用梯度温度固化法处理,固化过程分为两步:
先将模具及基料加热至70℃下固化4小时,然后再加热至130℃固化4小时,完全固化后,冷却、脱模即可得到环氧树脂绝缘试样;
5)双介质射流管使用石英玻璃管作为射流管主体,高压电极和地电极采用针环电极结构:使用一根长20mm、直径4mm的圆形实心铜棒作为内部高压电极,距离射流管出口20mm;
使用宽度10mm的铜箔贴在射流管外,距离射流管管口5mm;
6)采用等离子体电源作为激励源,CTP-2000K型等离子体实验电源,该电源放电重复频率30kHz,输出电压幅值6kV,电流200mA;
7)将装有前驱体TEOS液体的洗气瓶在70℃水浴下加热;
8)将一路200sccm氩气通入洗气瓶中,将前驱体TEOS分子带出至射流管中,与另一路6slm氩气充分混合后,通入射流管中,电离形成等离子体;
9)采用机械臂夹住射流管,准确控制射流管的角度与运动轨迹,对改性对象环氧树脂进行等离子体处理;
10)对环氧树脂进行梯度设计,为以下两种形式:
如图1所示,二维梯度分布的样式为条形梯度,具体为:对环氧树脂试样片按照条形样式进行梯度设计,即将试样片从左至右分为若干个紧密相连的矩形区域,并对每个矩形区域处理,使得电导率依次增大;
环氧树脂试样片的射流处理区域分为5个,处理时间分别为0.5min、1min、3min、5min、10min。
如图2所示,二维梯度分布的样式为环形梯度,具体为:对环氧树脂按照环形样式进行梯度设计,即将绝缘子从内向外分为若干个紧密相连的环形区域,并对每个环形区域处理,使得电导率依次增大;优选的,绝缘子的射流处理区域分为5个,处理时间分别为0.5min、1min、3min、5min、10min。
尽管上面对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (5)

1.高压直流GIL用表面功能梯度绝缘子快速工业处理方法,其特征在于,通过等离子体射流对高压直流GIS/GIL绝缘子进行快速工业化功能梯度表面处理,通过等离子体射流方法,将TEOS混合气体电离形成等离子体改变盆式绝缘子表面电导率;在高压直流盆式绝缘子表面进行等离子体射流处理,形成一定表面电导率的高压直流盆式绝缘子;控制处理时间对高压直流盆式绝缘子进行梯度时间处理,得到功能梯度电导率的高压直流盆式绝缘子,该方法具体包括以下步骤:
1)将缩水甘油醚类的环氧树脂和固化剂按照质量比3:1进行混合,使用磁力搅拌器搅拌均匀;
2)将环氧树脂混合液体放入真空箱中,使用抽气泵进行脱气处理40~60min;
3)将脱气后的环氧树脂混合液体倒入涂有脱模剂的模具中固化、冷却、脱模;
4)环氧树脂采用梯度温度固化法处理,固化过程分为两步:
先将模具及基料加热至70℃下固化4小时,然后再加热至130℃固化4小时,完全固化后,冷却、脱模即可得到环氧树脂绝缘试样;
5)双介质射流管使用石英玻璃管作为射流管主体,高压电极和地电极采用针环电极结构:使用一根长20mm、直径4mm的圆形实心铜棒作为内部高压电极,距离射流管出口20mm;
使用宽度10mm的铜箔贴在射流管外,距离射流管管口5mm;
6)采用等离子体电源作为激励源,该电源放电重复频率30kHz,输出电压幅值6kV,电流200mA;
7)将装有前驱体TEOS液体的洗气瓶在70℃水浴下加热;
8)将一路200sccm氩气通入洗气瓶中,将前驱体TEOS分子带出至射流管中,与另一路6slm氩气充分混合后,通入射流管中,电离形成等离子体;
9)采用机械臂夹住射流管,准确控制射流管的角度与运动轨迹,对改性对象环氧树脂进行等离子体处理;
10)对环氧树脂进行梯度设计。
2.根据权利要求1所述的高压直流GIL用表面功能梯度绝缘子快速工业处理方法,其特征在于,所述步骤10)二维梯度分布的样式为条形梯度,具体为:对环氧树脂试样片按照条形样式进行梯度设计,即将试样片从左至右分为若干个紧密相连的矩形区域,并对每个矩形区域处理,使得电导率依次增大;
环氧树脂试样片的射流处理区域分为5个,处理时间分别为0.5min、1min、3min、5min、10min。
3.根据权利要求1所述的高压直流GIL用表面功能梯度绝缘子快速工业处理方法,其特征在于,所述步骤10)二维梯度分布的样式为环形梯度,具体为:对环氧树脂按照环形样式进行梯度设计,即将绝缘子从内向外分为若干个紧密相连的环形区域,并对每个环形区域处理,使得电导率依次增大;
优选的,绝缘子的射流处理区域分为5个,处理时间分别为0.5min、1min、3min、5min、10min。
4.根据权利要求1所述的高压直流GIL用表面功能梯度绝缘子快速工业处理方法,其特征在于,所述步骤1)中环氧树脂基为缩水甘油醚类的双酚A环氧树脂;固化剂为低分子量聚酰胺树脂HY-651。
5.根据权利要求1所述的高压直流GIL用表面功能梯度绝缘子快速工业处理方法,其特征在于,所述步骤6)通过等离子体射流方法实现绝缘子的表面处理,且配套装置为CTP-2000K型等离子体实验电源。
CN201910087792.3A 2019-01-29 2019-01-29 高压直流gil用表面功能梯度绝缘子快速工业处理方法 Pending CN109830347A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910087792.3A CN109830347A (zh) 2019-01-29 2019-01-29 高压直流gil用表面功能梯度绝缘子快速工业处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910087792.3A CN109830347A (zh) 2019-01-29 2019-01-29 高压直流gil用表面功能梯度绝缘子快速工业处理方法

Publications (1)

Publication Number Publication Date
CN109830347A true CN109830347A (zh) 2019-05-31

Family

ID=66862990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910087792.3A Pending CN109830347A (zh) 2019-01-29 2019-01-29 高压直流gil用表面功能梯度绝缘子快速工业处理方法

Country Status (1)

Country Link
CN (1) CN109830347A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331373A (zh) * 2019-07-04 2019-10-15 国家电网有限公司 一种实现固体绝缘件表面电导率调控的装置及方法
CN110828080A (zh) * 2019-11-18 2020-02-21 中国南方电网有限责任公司电网技术研究中心 等离子体射流对绝缘子进行表面改性处理方法及用途
CN110853848A (zh) * 2019-11-18 2020-02-28 天津大学 一种大气压等离子体射流法提高绝缘子闪络电压处理方法
CN111261347A (zh) * 2020-01-21 2020-06-09 天津大学 高压直流盆式绝缘子表面粗糙度功能梯度电场均化方法
CN113628816A (zh) * 2021-08-18 2021-11-09 天津大学 基于绝缘子表层功能梯度改性的gil/gis金属微粒启举抑制方法
CN117116576A (zh) * 2023-06-06 2023-11-24 武汉大学 原位电场诱导的高电导率非线性系数涂层制备方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132056A (zh) * 2016-07-01 2016-11-16 中国科学院电工研究所 等离子体射流装置及抑制环氧树脂表面电荷积聚的方法
CN106935333A (zh) * 2017-04-06 2017-07-07 南京工业大学 一种绝缘子憎水性改性处理装置
CN108130524A (zh) * 2017-12-22 2018-06-08 中国科学院电工研究所 等离子体射流沉积薄膜装置及浅化表面陷阱能级的方法
CN108695030A (zh) * 2018-03-16 2018-10-23 天津大学 基于u型梯度处理的抑制gis绝缘子表面电荷积聚的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132056A (zh) * 2016-07-01 2016-11-16 中国科学院电工研究所 等离子体射流装置及抑制环氧树脂表面电荷积聚的方法
CN106935333A (zh) * 2017-04-06 2017-07-07 南京工业大学 一种绝缘子憎水性改性处理装置
CN108130524A (zh) * 2017-12-22 2018-06-08 中国科学院电工研究所 等离子体射流沉积薄膜装置及浅化表面陷阱能级的方法
CN108695030A (zh) * 2018-03-16 2018-10-23 天津大学 基于u型梯度处理的抑制gis绝缘子表面电荷积聚的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331373A (zh) * 2019-07-04 2019-10-15 国家电网有限公司 一种实现固体绝缘件表面电导率调控的装置及方法
CN110828080A (zh) * 2019-11-18 2020-02-21 中国南方电网有限责任公司电网技术研究中心 等离子体射流对绝缘子进行表面改性处理方法及用途
CN110853848A (zh) * 2019-11-18 2020-02-28 天津大学 一种大气压等离子体射流法提高绝缘子闪络电压处理方法
CN111261347A (zh) * 2020-01-21 2020-06-09 天津大学 高压直流盆式绝缘子表面粗糙度功能梯度电场均化方法
CN113628816A (zh) * 2021-08-18 2021-11-09 天津大学 基于绝缘子表层功能梯度改性的gil/gis金属微粒启举抑制方法
CN113628816B (zh) * 2021-08-18 2022-12-20 天津大学 基于绝缘子表层功能梯度改性的gil/gis金属微粒启举抑制方法
CN117116576A (zh) * 2023-06-06 2023-11-24 武汉大学 原位电场诱导的高电导率非线性系数涂层制备方法及装置
CN117116576B (zh) * 2023-06-06 2024-03-22 武汉大学 原位电场诱导的高电导率非线性系数涂层制备方法及装置

Similar Documents

Publication Publication Date Title
CN109830347A (zh) 高压直流gil用表面功能梯度绝缘子快速工业处理方法
CN109830348A (zh) 一种高压直流盆式绝缘子快速工业化表面电导率处理方法
CN108320874A (zh) 基于线性梯度处理的抑制gis绝缘子表面电荷积聚的方法
EP3886127A1 (en) Device and method for improving coercivity of ring-shaped ndfeb magnets
CN108428523B (zh) 具有二维介电常数线性梯度分布的gis绝缘子设计方法
CN105679473A (zh) 介电功能梯度绝缘子的叠层制造方法
CN103862048B (zh) 一种通过热压制备软磁性复合材料的方法
CN111599555A (zh) 特高压直流gil用柔性表面功能梯度盆式绝缘子制作方法
CN110828080A (zh) 等离子体射流对绝缘子进行表面改性处理方法及用途
CN102408680A (zh) 一种在高频磁场中实现中高温加热并固化的热固性树脂及制备方法
CN108929521B (zh) 一种高导热高导电石墨烯基复合材料及其制备方法
CN203224594U (zh) 针板放电试样的制作模具
CN101827489B (zh) 用于加速负氢、h2+的紧凑型回旋加速器
CN206574627U (zh) 一种用于真空断路器的真空管精准胶注装置
CN103351042B (zh) 一种小分子团水制备方法及应用该方法的小分子团水制备装置
CN203569181U (zh) 一种旋转横向磁场耦合轴向磁场辅助电弧离子镀装置
CN108424068B (zh) 一种导电混凝土材料及其制备方法
CN110903503B (zh) 一种基于磁化改性制备导热绝缘材料的装置及方法
CN108695030B (zh) 基于u型梯度处理的抑制gis绝缘子表面电荷积聚的方法
CN111599556A (zh) 特高压交流gil用柔性表面功能梯度支柱绝缘子制作方法
CN106607323A (zh) 一种铝基石墨烯复合材料的制备工艺
CN111599549A (zh) 特高压直流gil用支柱绝缘子柔性梯度表面处理方法
CN109705531A (zh) 一种环氧树脂浇注绝缘材料及其制备方法和使用方法
CN106676491A (zh) 圆柱面磁控溅射装置
CN110372996A (zh) 一种基于石墨烯颗粒改性环氧树脂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190531

WD01 Invention patent application deemed withdrawn after publication