CN109828421B - 一种基于强度调节和差分编码技术的光子模数转换方法及系统 - Google Patents

一种基于强度调节和差分编码技术的光子模数转换方法及系统 Download PDF

Info

Publication number
CN109828421B
CN109828421B CN201910243149.5A CN201910243149A CN109828421B CN 109828421 B CN109828421 B CN 109828421B CN 201910243149 A CN201910243149 A CN 201910243149A CN 109828421 B CN109828421 B CN 109828421B
Authority
CN
China
Prior art keywords
paths
array
beam splitter
signals
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910243149.5A
Other languages
English (en)
Other versions
CN109828421A (zh
Inventor
杨淑娜
刘志伟
曾然
池灏
李齐良
胡淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Lizhuan Technology Transfer Center Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910243149.5A priority Critical patent/CN109828421B/zh
Publication of CN109828421A publication Critical patent/CN109828421A/zh
Application granted granted Critical
Publication of CN109828421B publication Critical patent/CN109828421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于强度调节和差分编码技术的光子模数转换方法及系统,采用两个同步飞秒脉冲激光器提供不同中心频率的脉冲光源,脉冲信号经波分复用后作为采样脉冲源,后经电光调制器对模拟射频信号采样,经延时后,光信号经解复用器分为两路不同波长的光信号,并分别经分束器分为n路信号,其中一个分束器经衰减器阵列改变输出信号强度。输出光信号经耦合器阵列处理后由光电探测器作光电转换,最终经比较器阵列进行阈值判决,判决结果即为模拟信号量化后的输出。避免了调制器级联结构中存在的信号同步和响应一致性问题,简化了系统结构和对光电器件的依赖性;利用光强度调节来实现系统传递函数的相移,避免了传统相移操作的不稳定性。

Description

一种基于强度调节和差分编码技术的光子模数转换方法及 系统
技术领域
本发明涉及光通信的信号处理领域,具体涉及一种基于强度调节和差分编码技术的光子模数转换方法及系统。
背景技术
模数转换(ADC)是连接客观世界模拟信号和现代高速数字处理系统之间不可或缺的桥梁。随着数据传输容量的不断增加,在通信系统链路的发射机、接收机以及各个网关节点中,对数字信号与模拟信号之间快速转换的需求急速增加。同时ADC在宽带雷达、电子侦察、核武器监控和飞行器导航等国防领域,以及民用的超宽带通信、软件无线电、实时测量等领域都有着广泛的应用。近年来,随着数据采集、无线通信和国防领域所需处理信号带宽的要求不断提高,对ADC的性能包括采样率、系统带宽、比特精度等提出了更高的要求。目前,基于半导体技术的电子A/D转换已经取得巨大成功,尤其是微电子技术的广泛应用使得电子方案处理速度、可靠性和集成化程度得到巨大提升,但在高频范围,由于受孔径时间抖动、判决准确度以及系统噪声等因素的影响,很难将采样速率提高到10GS/s以上,对于有效位数为4位的电子ADC,采样速率达到8GS/s几乎已经达到极限。事实上,电子A/D转换的发展步伐已经很难赶上高速发展中的数字集成电路和数字信号处理技术。
相对于电子ADC,光子ADC具有诸多优越性。首先,光子A/D转换能够实现更高的采样率。随着光子技术的迅速发展,利用成熟的光时分复用(OTDM)、波分复用(WDM)等复用技术可以获得100GS/s以上的采样速率。其次,由于作为信号采集器件的新型材料电光调制器不仅可以直接获取超过100GHz的采样信号带宽,还可以有效的对输入、输出信号进行隔离,屏蔽外界的电磁干扰,因此由光子技术实现的光子A/D转换,可以取得更为优越的抗电磁干扰性能。另外,光子ADC还可以直接生成格雷码(Graycodes),无需格外的编码器,使得光子技术的使用极大降低了A/D及D/A转换系统对电子器件的依赖和制约。
早在1975年,Taylor就设计出了基于马赫曾德尔调制器(MZM)阵列的世界上首个光子ADC方案,但是由于该系统结构复杂精度有限等,并未能获得任何实际应用。在Taylor方案中,调制器阵列中各调制器的半波电压呈几何级数减小,若系统的信道数达到3以上,则要求其中的调制器最小的半波电压小于1V左右,这样的高速电光调制器至今还难以实现。为了避免这一问题,Stigwall提出一种基于空间光干涉的移相光量化方案。该方案通过多个光探测器按一定的空间位置集成于一个芯片上,从而实现移相光量化,但结构操作需要复杂的器件工艺,技术上难于实现。为改进此结构加州大学Dagli教授提出了利用多波长脉冲源通过非等臂长度的MZM干涉仪实现移相光量化的效果,该结构避免了空间光量化的不稳定性,系统易于集成,但该方案中干涉仪两臂长度不一致,其导致的脉冲走离会严重影响系统的转换精度。浙江大学的微波光子学团队提出了调整MZM调制器的静态偏置电压实现移相光量化的方案,该方案由等半波电压的MZM级联阵列实现,避免了Taylor方案中,经典的光子A/D转换结构中电光调制器电极长度的几何级数增加,使得普通电光调制器就可用于ADC中,但该方案采用并联结构,不可避免的存在信号同步和调制器响应一致性的问题。该团队还提出了基于相位调制器和延迟线干涉仪的差分编码方案,该方案基于单一的相位调制器实现模数转换,简化了系统结构,避免了信号同步的问题,但该方案基于多个相位调制器实现相移量化,势必存在调制器对环境、温度较为敏感,量化曲线相移控制精度不高的问题。
发明内容
本发明的出发点在于解决传统移相光量化方案中相移量控制不精确和信号同步的问题,提供一种基于强度调节和差分编码技术的光子模数转换方法及系统。
本发明解决其技术问题所采用的方案如下:
一种基于强度调节和差分编码技术的光子模数转换方法,其特征在于:包括以下步骤:
步骤一、第一飞秒脉冲激光器和第二飞秒脉冲激光器同步发出的两路不同波长的光脉冲,经波分复用器复用后作为采样脉冲源;
步骤二、复用后的采样光脉冲通过电光调制器对模拟射频信号进行采样,使采样光脉冲携带模拟信号的信息;
步骤三、已采样光脉冲经过延迟线干涉仪,输出差分光信号,然后经波长解复用器将已采样光脉冲分离为两路具有不同波长的差分光信号;
步骤四、两路差分信号分别经过第一分束器、第二分束器分别分成n路信号,其中第二分束器输出端的每一通道都连接衰减器,用以改变信号功率;
步骤五、所述步骤四输出的差分光信号经耦合器阵列强度叠加,叠加后的光信号再经过光电探测器阵列作光电转换,最后由比较器阵列作阈值判决,判决得到的n路数字信号即为模拟信号数字化的输出。
进一步的,所述步骤二中的模拟射频信号由信号发生器产生并输入到电光调制器中。
进一步的,所述步骤三中的波长解复用器输出的两路具有不同波长的差分光信号的光强I1、I2的表达式分别为:
Figure BDA0002010290960000031
Figure BDA0002010290960000032
其中,g(t)表示重复周期为τ且满足g(t)=g(t-τ)的脉冲序列;
Figure BDA0002010290960000033
表示相位差,其中
Figure BDA0002010290960000034
表示模拟射频信号引起的相移;
Figure BDA0002010290960000035
分别表示第一飞秒脉冲激光器和第二飞秒脉冲激光器发出的两路的光脉冲经过延时线干涉仪产生的相移,其中c是光速,λ12分别为第一飞秒脉冲激光器和第二飞秒脉冲激光器发出的两路的光脉冲的波长,通过调整第一飞秒脉冲激光器和第二飞秒脉冲激光器发出的两路的光脉冲的波长间隔实现
Figure BDA0002010290960000041
进一步的,所述步骤五中的输出的差分光信号在耦合器阵列中进行强度叠加,叠加后的光信号光强为:
Figure BDA0002010290960000042
其中,
Figure BDA0002010290960000043
代表比较器判决阈值,
Figure BDA0002010290960000044
表示一常数;
Figure BDA0002010290960000045
是输出信号的静态相位,
Figure BDA0002010290960000046
表示衰减器的衰减系数;因此调整γ值的大小可以改变
Figure BDA0002010290960000047
从而实现系统传递函数的相移,完成任意比特精度的模数转换。
进一步的,一种基于强度调节和差分编码技术的光子模数转换系统,包括第一飞秒脉冲激光器、第二飞秒脉冲激光器、波分复用器、电光调制器、信号发生器、延迟线干涉仪、波长解复用器、第一分束器、第二分束器、衰减器阵列、耦合器阵列、光电探测器阵列、比较器阵列;所述第一飞秒脉冲激光器、第二飞秒脉冲激光器与波分复用器相连;波分复用器的输出端与电光调制器相连;电光调制器的输出端和延迟线干涉仪相连;电光调制器的射频口与信号发生器相连;波长解复用器的两个输出端分别与第一分束器、第二分束器相连;第二分束器的每一路输出都与衰减器阵列相连;第一分束器的每一路输出、衰减器阵列的每一路输出都与耦合器阵列的输入端相连;耦合器阵列的输出端与光电探测器阵列相连;光电探测器阵列与比较器阵列相连。
由于采用上述技术方案,本发明的有益效果为:本发明提出的一种基于强度调节和差分编码技术的光子模数转换方法及系统,和传统光子模数转换系统相比,该系统采用光强度的衰减来实现量化曲线的相移,避免了传统移相光量化方案中由于相位不稳定导致相移量控制精度不高的问题;同时采用差分编码技术大大简化了系统结构,避免了级联结构中的信号同步和调制器响应一致性的问题;此外该系统基于单一的电光调制器完成模数转换,简化了系统结构,提高了系统的可扩展性和集成度。
附图说明
图1是本发明提出的一种基于强度调节和差分编码技术的光子模数转换系统结构示意图;
图2是本发明提出的一种基于强度调节和差分编码技术的光子模数转换量化编码原理图;
图中:1.第一飞秒脉冲激光器;2.第二飞秒脉冲激光器;3.波分复用器,4.电光调制器;5.信号发生器;6.延迟线干涉仪;7.波长解复用器;8.第一分束器;9.第二分束器;10.衰减器阵列;11.耦合器阵列;12.光电探测器阵列;13.比较器阵列。
具体实施方式
为了更清楚地说明本发明实施例,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
如图1所示,本发明实施例提出的一种基于强度调节和差分编码技术的光子模数转换系统,包括第一飞秒脉冲激光器1、第二飞秒脉冲激光器2、波分复用器3、电光调制器4、信号发生器5、延迟线干涉仪6、波长解复用器7、第一分束器8、第二分束器9、衰减器阵列10、耦合器阵列11、光电探测器阵列12、比较器阵列13;所述第一飞秒脉冲激光器1、第二飞秒脉冲激光器2与波分复用器3相连;波分复用器3的输出端与电光调制器4相连;电光调制器4的输出端和延迟线干涉仪6相连;电光调制器4的射频口与信号发生器5相连;波长解复用器7的两个输出端分别与第一分束器8、第二分束器9相连;第二分束器9的每一路输出都与衰减器阵列10相连;第一分束器8的每一路输出、衰减器阵列10的每一路输出都与耦合器阵列11的输入端相连;耦合器阵列11的输出端与光电探测器阵列12相连;光电探测器阵列12与比较器阵列13相连。
本发明实施例所涉及的基于强度调节和差分编码技术的光子模数转换系统的方法,以3比特转换精度为例,具体如下:
步骤一、第一飞秒激光器和第二飞秒激光器同步发出的两路不同波长的光脉冲,经波长复用器复用后作为系统的采样脉冲源;
步骤二、复用后的采样光脉冲通过电光调制器对模拟射频信号进行采样,使采样光脉冲携带模拟信号的信息;
步骤三、已采样光脉冲经过延迟线干涉仪6,输出差分光信号,然后经波长解复用器7将已采样光脉冲分离为两路具有不同波长的差分光信号,波长解复用器7输出端的两路输出光强I1、I2分别为:
Figure BDA0002010290960000061
Figure BDA0002010290960000062
其中,g(t)表示重复周期为τ且满足g(t)=g(t-τ)的脉冲序列;
Figure BDA0002010290960000063
表示相位差,其中
Figure BDA0002010290960000064
表示模拟射频信号引起的相移;
Figure BDA0002010290960000065
表示静态相位,分别表示第一飞秒脉冲激光器1和第二飞秒脉冲激光器2发出的两路的光脉冲经过延时线干涉仪6产生的相移,其中c是光速,λ12为分别为第一飞秒脉冲激光器1和第二飞秒脉冲激光器2发出的两路的光脉冲的波长,通过调整第一飞秒脉冲激光器1和第二飞秒脉冲激光器2发出的两路的光脉冲的波长间隔实现
Figure BDA0002010290960000071
步骤四、两路差分信号分别经过第一分束器8、第二分束器9分别分成n路信号,其中第二分束器9输出端的每一通道都连接衰减器10,用以改变信号功率;
步骤五、步骤四输出的差分光信号经耦合器阵列11强度叠加,叠加后的光信号再经过光电转换器阵列12光电转换,最后由比较器阵列13阈值判决,判决得到的n路数字信号即为模拟信号数字化的输出。其中两路光信号在耦合器阵列11中进行叠加处理后,输出光强I为:
Figure BDA0002010290960000072
其中,
Figure BDA0002010290960000073
代表比较器判决阈值,
Figure BDA0002010290960000074
表示一常数。
通过调整每一个衰减器γ值的大小可以实现
Figure BDA0002010290960000075
分别为
Figure BDA0002010290960000076
耦合器阵列输出的光信号经光电探测器阵列转换为电信号,后由比较器阵列13进行阈值判决,每路信号的判决阈值分别为Ith 1,Ith 2,Ith 3,Ith 4,判决完成后得到的4路数字信号即为模拟信号数字化后的信号,从而实现3比特的系统转换精度。
如图2所示,输出的四路电流信号之间存在π4的相移,后经过比较器阵列进行阈值判决。当输出信号强度归一化处理后,比较器阈值依次设为0.5,0.5,0.47和0.5。当归一化信号强度大于对应的阈值时,比较器输出“1”;否则输出“0”。判决完成后得到的就是模拟信号数字化后的信号。由图2可知,该系统输出为格雷码,极大减小了误码发生的概率。
本发明提出的一种基于强度调节和差分编码技术的光子模数转换方法及系统,和传统光子模数转换系统相比,该系统采用光强度的衰减来实现量化曲线的相移,避免了传统移相光量化方案中由于相位不稳定导致相移量控制精度不高的问题;同时采用差分编码技术大大简化了系统结构,避免了级联结构中的信号同步和调制器响应一致性的问题;此外该系统基于单一的电光调制器完成模数转换,简化了系统结构,提高了系统的可扩展性和集成度。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

Claims (5)

1.一种基于强度调节和差分编码技术的光子模数转换方法,其特征在于:包括以下步骤:
步骤一、第一飞秒脉冲激光器(1)和第二飞秒脉冲激光器(2)同步发出的两路不同波长的光脉冲,经波分复用器(3)复用后作为采样脉冲源;
步骤二、复用后的采样光脉冲通过电光调制器(4)对模拟射频信号进行采样,使采样光脉冲携带模拟信号的信息;
步骤三、已采样光脉冲经过延迟线干涉仪(6),输出差分光信号,然后经波长解复用器(7)将已采样光脉冲分离为两路具有不同波长的差分光信号;
步骤四、两路差分光信号分别经过第一分束器(8)、第二分束器(9)分别分成n路信号,其中第二分束器(9)输出端的每一通道都连接衰减器(10),用以改变信号功率;
步骤五、所述步骤四输出的差分光信号经耦合器阵列(11)强度叠加即耦合器阵列(11)将经过第一分束器的n路信号和经过第二分束器的n路信号两两耦合,叠加后的光信号再经过光电探测器阵列(12)作光电转换,最后由比较器阵列(13)作阈值判决,判决得到的n路数字信号即为模拟信号数字化的输出。
2.根据权利要求1所述的一种基于强度调节和差分编码技术的光子模数转换方法,其特征在于:所述步骤二中的模拟射频信号由信号发生器(5)产生并输入到电光调制器(4)中。
3.根据权利要求1所述的一种基于强度调节和差分编码技术的光子模数转换方法,其特征在于:所述步骤三中的波长解复用器(7)输出的两路具有不同波长的差分光信号的光强I1、I2的表达式分别为:
Figure FDA0003226505250000011
Figure FDA0003226505250000021
其中,g(t)表示重复周期为τ且满足g(t)=g(t-τ)的脉冲序列;
Figure FDA0003226505250000022
表示相位差,其中
Figure FDA0003226505250000023
表示模拟射频信号引起的相移;
Figure FDA0003226505250000024
分别表示第一飞秒脉冲激光器(1)和第二飞秒脉冲激光器(2)发出的两路的光脉冲经过延迟线干涉仪(6)产生的相移,其中c是光速,λ12分别为第一飞秒脉冲激光器(1)和第二飞秒脉冲激光器(2)发出的两路的光脉冲的波长,通过调整第一飞秒脉冲激光器(1)和第二飞秒脉冲激光器(2)发出的两路的光脉冲的波长间隔实现
Figure FDA0003226505250000025
4.根据权利要求1所述的一种基于强度调节和差分编码技术的光子模数转换方法,其特征在于:所述步骤五中的输出的差分光信号在耦合器阵列(11)中进行强度叠加,叠加后的光信号光强为:
Figure FDA0003226505250000026
其中,
Figure FDA0003226505250000027
代表比较器判决阈值,
Figure FDA0003226505250000028
表示一常数;
Figure FDA0003226505250000029
是输出信号的静态相位,
Figure FDA00032265052500000210
表示衰减器的衰减系数。
5.一种基于强度调节和差分编码技术的光子模数转换系统,其特征在于:包括第一飞秒脉冲激光器(1)、第二飞秒脉冲激光器(2)、波分复用器(3)、电光调制器(4)、信号发生器(5)、延迟线干涉仪(6)、波长解复用器(7)、第一分束器(8)、第二分束器(9)、衰减器阵列(10)、耦合器阵列(11)、光电探测器阵列(12)、比较器阵列(13);所述第一飞秒脉冲激光器(1)、第二飞秒脉冲激光器(2)与波分复用器(3)相连;波分复用器(3)的输出端与电光调制器(4)相连;电光调制器(4)的输出端和延迟线干涉仪(6)相连;电光调制器(4)的射频口与信号发生器(5)相连;延迟线干涉仪(6)输出差分光信号,经波长解复用器(7)将已采样光脉冲分离为两路具有不同波长的差分光信号;波长解复用器(7)的两个输出端分别与第一分束器(8)、第二分束器(9)相连;第二分束器(9)的每一路输出都与衰减器阵列(10)相连;第一分束器(8)的每一路输出、衰减器阵列(10)的每一路输出都与耦合器阵列(11)的输入端相连;耦合器阵列(11)的输出端与光电探测器阵列(12)相连;光电探测器阵列(12)与比较器阵列(13)相连;两路差分光信号分别经过第一分束器(8)、第二分束器(9)分别分成n路信号;差分光信号经耦合器阵列(11)强度叠加即耦合器阵列(11)将经过第一分束器的n路信号和经过第二分束器的n路信号两两耦合,叠加后的光信号再经过光电探测器阵列(12)作光电转换,最后由比较器阵列(13)作阈值判决,判决得到的n路数字信号即为模拟信号数字化的输出。
CN201910243149.5A 2019-03-28 2019-03-28 一种基于强度调节和差分编码技术的光子模数转换方法及系统 Active CN109828421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910243149.5A CN109828421B (zh) 2019-03-28 2019-03-28 一种基于强度调节和差分编码技术的光子模数转换方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910243149.5A CN109828421B (zh) 2019-03-28 2019-03-28 一种基于强度调节和差分编码技术的光子模数转换方法及系统

Publications (2)

Publication Number Publication Date
CN109828421A CN109828421A (zh) 2019-05-31
CN109828421B true CN109828421B (zh) 2021-12-10

Family

ID=66873056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910243149.5A Active CN109828421B (zh) 2019-03-28 2019-03-28 一种基于强度调节和差分编码技术的光子模数转换方法及系统

Country Status (1)

Country Link
CN (1) CN109828421B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023111518A1 (en) * 2021-12-17 2023-06-22 Bae Systems Plc Analogue to digital converter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431531A (zh) * 2020-03-24 2020-07-17 中科启迪光电子科技(广州)有限公司 一种基于锁模激光器的高速模数转换系统及方法
CN111884727B (zh) * 2020-07-15 2021-11-16 杭州电子科技大学 一种基于数字映射的高速光子数模转换方法及系统
CN111740778B (zh) * 2020-08-25 2020-12-04 北京中创为南京量子通信技术有限公司 一种光源相位差测试系统及方法
CN113238428B (zh) * 2021-04-28 2022-08-23 杭州电子科技大学 一种基于双驱动电光调制器阵列的高速光子数模转换方法
GB2613855A (en) * 2021-12-17 2023-06-21 Bae Systems Plc Analogue to digital converter
CN115913322A (zh) * 2022-10-09 2023-04-04 中国电子科技集团公司第十研究所 星载一体化应用的光采样宽带射频信号处理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392042A (en) * 1993-08-05 1995-02-21 Martin Marietta Corporation Sigma-delta analog-to-digital converter with filtration having controlled pole-zero locations, and apparatus therefor
US6326910B1 (en) * 2000-11-06 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Photonic analog-to-digital conversion using light absorbers
CN101021666A (zh) * 2007-03-02 2007-08-22 清华大学 基于非对称马赫-曾德型调制器的光模数转换器
CN103455306A (zh) * 2013-09-12 2013-12-18 西南交通大学 一种基于半导体环形激光器的双路并行高速随机数产生装置
CN103780307A (zh) * 2012-10-19 2014-05-07 清华大学 一种产生光采样脉冲序列的系统及方法
CN106647103A (zh) * 2017-03-09 2017-05-10 电子科技大学 一种用于孤子自频移全光模数转换的编码装置及方法
CN109254471A (zh) * 2018-12-03 2019-01-22 杭州电子科技大学 一种比特精度改善的光子模数转换方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187757A (ja) * 2006-01-11 2007-07-26 Toshiba Corp 光量子化装置及び光アナログデジタル変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392042A (en) * 1993-08-05 1995-02-21 Martin Marietta Corporation Sigma-delta analog-to-digital converter with filtration having controlled pole-zero locations, and apparatus therefor
US6326910B1 (en) * 2000-11-06 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Photonic analog-to-digital conversion using light absorbers
CN101021666A (zh) * 2007-03-02 2007-08-22 清华大学 基于非对称马赫-曾德型调制器的光模数转换器
CN103780307A (zh) * 2012-10-19 2014-05-07 清华大学 一种产生光采样脉冲序列的系统及方法
CN103455306A (zh) * 2013-09-12 2013-12-18 西南交通大学 一种基于半导体环形激光器的双路并行高速随机数产生装置
CN106647103A (zh) * 2017-03-09 2017-05-10 电子科技大学 一种用于孤子自频移全光模数转换的编码装置及方法
CN109254471A (zh) * 2018-12-03 2019-01-22 杭州电子科技大学 一种比特精度改善的光子模数转换方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion;Takema Satoh等;《IEEE PHOTONICS TECHNOLOGY LETTERS》;20120220;全文 *
Photonic analog-to-digital converter using Mach–Zehnder modulators having identical half-wave voltages with improved bit resolution;Shuna Yang等;《APPLIED OPTICS》;20090727;全文 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023111518A1 (en) * 2021-12-17 2023-06-22 Bae Systems Plc Analogue to digital converter

Also Published As

Publication number Publication date
CN109828421A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN109828421B (zh) 一种基于强度调节和差分编码技术的光子模数转换方法及系统
US8928510B1 (en) Photonic analog to digital conversion method
CN106990642B (zh) 基于调制器多通道解复用的光模数转换装置
CN111884727B (zh) 一种基于数字映射的高速光子数模转换方法及系统
CN109254471B (zh) 一种比特精度改善的光子模数转换方法及系统
CN100428043C (zh) 基于非对称马赫-曾德型调制器的光模数转换器
CN102799045A (zh) 基于双驱m-z型调制器的全光模数转换结构及实现方法
CN109116660A (zh) 基于耦合光电振荡器的高速光采样模数转换方法及装置
CN105372902A (zh) 高速率可重构光学模数转换装置
CN105319798A (zh) 采样率按2的任意幂次可重构的光学模数转换装置
EP3196694B1 (en) Optically sampled analog-to-digital converter and method for using the analog-to-digital converter
CN106647103B (zh) 一种用于孤子自频移全光模数转换的编码装置及方法
KR102038879B1 (ko) 아날로그-디지털 컨버터
CN111458953A (zh) 基于光子并行采样的光模数转换架构及其实现方法
CN110995270A (zh) 分段式光子数模转换器及其波形产生方法
CN108259090B (zh) 一种基于数字逻辑运算的射频任意波形光生成方法及系统
CN112684650A (zh) 一种基于加权调制曲线的光子模数转换方法及系统
CN111679530B (zh) 一种基于射频信号延迟光子时间拉伸模数转换方法及系统
CN113238428B (zh) 一种基于双驱动电光调制器阵列的高速光子数模转换方法
Zhang et al. Optical assisted digital-to-analog conversion using dispersion-based wavelength multiplexing
Chen et al. Differentially encoded photonic analog-to-digital conversion based on phase modulation and interferometric demodulation
CN109884839B (zh) 一种基于非对称数字编码方案的光子模数转换系统及方法
Williamson et al. Precision calibration of an optically sampled analog-to-digital converter
He et al. Photonic quantization using dual-output Mach–Zehnder modulators and balanced photodetectors
CN114265261B (zh) 一种基于脉冲处理的高速光子模数转换方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230516

Address after: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000

Patentee after: Shenzhen lizhuan Technology Transfer Center Co.,Ltd.

Address before: 310018 no.1158, No.2 street, Baiyang street, Hangzhou Economic and Technological Development Zone, Hangzhou, Zhejiang Province

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right