CN109802296B - Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip - Google Patents

Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip Download PDF

Info

Publication number
CN109802296B
CN109802296B CN201910156461.0A CN201910156461A CN109802296B CN 109802296 B CN109802296 B CN 109802296B CN 201910156461 A CN201910156461 A CN 201910156461A CN 109802296 B CN109802296 B CN 109802296B
Authority
CN
China
Prior art keywords
layer
laser chip
type doped
electrode
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910156461.0A
Other languages
Chinese (zh)
Other versions
CN109802296A (en
Inventor
董海亮
许并社
贾志刚
张爱琴
屈凯
李天保
梁建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910156461.0A priority Critical patent/CN109802296B/en
Publication of CN109802296A publication Critical patent/CN109802296A/en
Application granted granted Critical
Publication of CN109802296B publication Critical patent/CN109802296B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

The invention relates to a beam shaping structure of an edge-emitting laser, a laser chip and a preparation method thereof, belonging to the technical field of semiconductor materials; the edge-emitting laser beam shaping structure, the laser chip and the preparation method thereof are provided, wherein the power density of laser spots is improved, and the beam divergence angle is reduced; the technical proposal is as follows: the beam shaping structure of the edge-emitting laser is a trapezoid table which is sunken in the N-type doped waveguide layer, the active layer and the P-type doped waveguide layer inside the edge-emitting laser chip, the upper bottom surface of the trapezoid table is positioned on the front output cavity surface of the edge-emitting laser chip, and the surface surrounded by the trapezoid table is plated with a Si passivation film and an antireflection film in sequence.

Description

Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip
Technical Field
The invention relates to a beam shaping structure of an edge-emitting laser, a laser chip and a preparation method thereof, belonging to the technical field of semiconductor materials.
Background
In terms of improvement of beam quality of semiconductor lasers, the conventional methods mainly include a geometric optical shaping method and a diffractive optical shaping method. At present, the beam shaping method reported at home and abroad mainly comprises the following steps: a cylindrical mirror collimation method, a plane mirror shaping technology, an aspheric micro lens shaping technology, a microchip prism stack shaping method, a diffraction element shaping method and the like. The methods can realize beam shaping, but the methods are all used for carrying out beam shaping on the external design light path of the laser chip, and the external light path shaping method has the advantages of complex light path structure, poor device stability and no increase of the power density of the shaped light beam.
Disclosure of Invention
The invention provides a beam shaping structure of an edge-emitting laser, a laser chip and a preparation method thereof, overcomes the defects existing in the prior art, and provides the beam shaping structure of the edge-emitting laser, the laser chip and the preparation method thereof, wherein the power density of laser spots is improved, and the beam divergence angle is reduced.
In order to solve the technical problems, the invention adopts the following technical scheme: an edge-emitting laser beam shaping structure, characterized in that: the beam shaping structure is a trapezoid table, the trapezoid table is sunken in an N-type doped waveguide layer, an active layer and a P-type doped waveguide layer in the edge-emitting laser chip, the upper bottom surface of the trapezoid table is located on the front output cavity surface of the edge-emitting laser chip, and a Si passivation film and an antireflection film are plated on the surface surrounded by the trapezoid table in sequence.
Further, the length of the upper bottom surface of the trapezoid table is 80-120 μm, the width of the upper bottom surface of the trapezoid table is 1000-1500A, and the depth of the trapezoid table is 1000-5000A.
Further, the thickness of the Si passivation film is 100-200A, and the material of the anti-reflection film is Si/ZnSe or Si/SiO 2 The transmittance is 90 to 95 percent.
The laser chip comprises the beam shaping structure, a substrate, a buffer layer, an N-type doped limiting layer, an N-type doped waveguide layer, an active layer, a P-type doped waveguide layer, a P-type doped limiting layer, a P-type doped top layer and a P-type highly doped electrode contact layer which are sequentially grown on the substrate.
The preparation method of the laser chip comprises the following steps:
s1, cleaning an epitaxial wafer, and sequentially growing a buffer layer, an N-type doped limiting layer, an N-type doped waveguide layer, an active layer, a P-type doped waveguide layer, a P-type doped limiting layer, a P-type doped top layer and a P-type highly doped electrode contact layer on a substrate;
s2, performing photoetching on an epitaxial wafer to form a periodically distributed platform pattern, forming the size and shape of a laser chip, and then etching two sides of a P-type highly-doped electrode contact layer through a photoetching process, wherein an unetched area in the middle forms a P electrode;
s3, performing deep trench etching from etching areas at two sides of the P electrode by adopting inductively coupled plasma dry etching until the depth of the buffer layer is about 40000-50000A, and forming a deep trench;
s4, depositing a layer of SiO (silicon dioxide) in the deep channel by inductively coupled plasma-chemical vapor deposition 2 A dielectric film;
s5, etching a cutting channel with the depth of 55000-60000A on one side of the two deep channels away from the P electrode to the surface of the substrate;
s6, covering a layer of Ti/Pt/Au on the P electrode, taking the Ti/Pt/Au as a P electrode ohmic contact electrode, thinning the thickness of the substrate to 1000000 ~ 1300000A, preparing an N-face electrode material, and evaporating a layer of Au/Ge/Ni and Au with the thickness of 3000-5000A on the N face to form an N electrode ohmic contact electrode;
s7, cleaving the epitaxial wafer into required bars;
s8, coating photoresist on the front cavity surface of the laser chip, and etching a rectangular cavity surface pattern by adopting a nano imprinting technology, wherein the center of a rectangle is positioned on the active layer, and the length and width dimensions of the rectangle are respectively 80-120 mu m and 1000-1500A;
s9, carrying out dry etching along the rectangle by adopting an inductive coupling plasma, wherein the etching depth is about 1000-5000A, and etching the trapezoid table;
s10, cleaning photoresist and SiO in the trapezoid table by adopting photoresist removing liquid and buffer oxide etching liquid 2 A dielectric film;
s11, evaporating a layer of Si passivation film of about 100-200A on the front cavity surface and the rear cavity surface of the laser chip at the temperature of 150-300 ℃ and the growth speed of 1-2A/s;
s12, plating an antireflection film on the front cavity surface of the laser chip, and plating a high reflection film on the rear cavity surface.
Further, in the step S12, the material of the high reflection film is Si/SiO 2 Or Si/Al 2 O 3 The number of the periods is 2-4,the reflectivity is 94-98%.
Compared with the prior art, the invention has the following beneficial effects.
The beam shaping structure of the edge-emitting laser can adjust the propagation direction of the beam in the fast axis direction, so that photons with large divergence angles are reflected on the trapezoid inclined edge, thereby realizing the effect of photon collection of the laser chip, and leading the quality of the laser beam to be higher, the divergence angle to be smaller and the power density to be higher. By adopting the structure, the problems of large divergence angle, large light spot and low power density of the manufactured chip are solved, and the optical path structural design of the external beam shaping of the chip is simplified, so that the divergence angle of the laser chip is improved, the power density of the beam is improved, and the laser chip is suitable for manufacturing high-power and long-service-life laser chips.
Drawings
Fig. 1 is a schematic structural diagram of a laser chip provided by the present invention.
In the figure, a 1-substrate, a 2-buffer layer, a 3-N type doped confinement layer, a 4-N type doped waveguide layer, a 5-active layer, a 6-P type doped waveguide layer, a 7-P type doped confinement layer, an 8-P type doped top layer, a 9-P type highly doped electrode contact layer, a 10-highly reflective film, an 11-Si passivation film, a 12-P electrode, a 13-antireflection film and a 14-trapezoid table.
Detailed Description
The invention is further described below with reference to the accompanying drawings.
As shown in fig. 1, in the beam shaping structure of the edge-emitting laser according to the present invention, the beam shaping structure is a trapezoid table 14, the trapezoid table 14 is recessed in the N-type doped waveguide layer 4, the active layer 5 and the P-type doped waveguide layer 6 inside the edge-emitting laser chip, the upper bottom surface of the trapezoid table 14 is located on the front output cavity surface of the edge-emitting laser chip, and the surface surrounded by the trapezoid table 14 is sequentially plated with a Si passivation film 11 and an antireflection film 13.
The upper bottom surface of the trapezoid table 14 has a length of 80-120 μm, a width of 1000-1500 a, and a depth of 1000-5000 a. The thickness of the Si passivation film 11 is 100-200A, and the material of the anti-reflection film 13 is Si/ZnSe or Si/SiO 2 The transmittance is 90% -95%.
The laser chip comprises the beam shaping structure, a substrate 1, a buffer layer 2, an N-type doped limiting layer 3, an N-type doped waveguide layer 4, an active layer 5, a P-type doped waveguide layer 6, a P-type doped limiting layer 7, a P-type doped top layer 8 and a P-type highly doped electrode contact layer 9 which are sequentially grown on the substrate 1, wherein a Si passivation film 11 and an antireflection film 13 are sequentially plated on the front cavity surface of the laser chip, and a Si passivation film 11 and a high reflection film 10 are sequentially plated on the rear cavity surface of the laser chip.
The N-type doped confinement layer 3 provides electrons and limits light field distribution, the N-type doped waveguide layer 4 and the P-type doped waveguide layer 6 provide photon reflection propagation, the active layer 5 is a light emitting layer, the P-type doped confinement layer 7 provides holes and limits photons to enter epitaxial layers outside the confinement layer, and light loss is reduced. The p-GaAs top layer serves as a current diffusion. The P-type highly doped electrode contact layer 9 is used to form an ohmic contact with the P-electrode 12.
The substrate 1 is made of GaAs, the buffer layer 2, the N-type doped confinement layer 3 and the N-type doped waveguide layer 4 are made of N-GaAs, the P-type doped waveguide layer 6 and the P-type doped confinement layer 7 are made of P-AlGaAs, the P-type doped top layer 8 is made of P-GaAs, and the P-type highly doped electrode contact layer 9 is made of P+ -GaAs.
The preparation method of the laser chip comprises the following steps:
s1, cleaning an epitaxial wafer, and sequentially growing a buffer layer 2, an N-type doped limiting layer 3, an N-type doped waveguide layer 4, an active layer 5, a P-type doped waveguide layer 6, a P-type doped limiting layer 7, a P-type doped top layer 8 and a P-type highly doped electrode contact layer 9 on a substrate 1.
S2, performing photoetching on the epitaxial wafer to form a periodically distributed platform pattern, forming the size and shape of a laser chip, and then etching two sides of the P-type highly-doped electrode contact layer 9 through a photoetching process, wherein the unetched area in the middle forms a P electrode 12.
The etching depth ranges from 1000 a to 13000 a. 1150 a is preferred. The etched area depends on the duty cycle of the laser chip.
S3, performing deep trench etching from the etching areas at two sides of the P electrode 12 by adopting inductively coupled plasma dry etching until the depth of the buffer layer 2 is about 40000-50000A, and forming a deep trench.
S4, depositing a layer of SiO in the deep channel by inductively coupled plasma-chemical vapor deposition (ICP-CVD) 2 A dielectric film.
SiO 2 The dielectric film plays roles of protection and current limiting, and can effectively improve the characteristic parameters of the tube core.
S5, cutting the cutting channel with the depth of 55000-60000A on one side of the two deep channels far away from the P electrode 12 to the surface of the substrate;
the cutting path is plated with passivation layer SiO 2 And the formation of leakage channels after flip-chip packaging is avoided.
S6, covering a layer of Ti/Pt/Au on the P electrode 12 to serve as a P electrode ohmic contact electrode, thinning the thickness of the substrate 1 to 1000000 ~ 1300000A, preparing an N-face electrode material, and evaporating a layer of Au/Ge/Ni and Au with the thickness of 3000-5000A on the N face to form an N electrode ohmic contact electrode.
S7, cleaving the epitaxial wafer into required bars.
A laser bar is a number of chips that are juxtaposed together. To prevent electrical and optical interactions between the chips, for optical and electrical isolation.
S8, coating photoresist on the front cavity surface of the laser chip, and etching a rectangular cavity surface pattern by adopting a nano imprinting technology, wherein the center of the rectangle is positioned on the active layer 5, and the length and width dimensions of the rectangle are respectively 80-120 mu m and 1000-1500A.
S9, carrying out dry etching along the rectangle by adopting an inductive coupling plasma, wherein the etching depth is about 1000-5000A, and etching the trapezoid table 14. The configuration of the trapezoidal stage 14 can change the direction of propagation of the light.
S10, photoresist and SiO in the trapezoid table 14 are cleaned by adopting photoresist removing liquid and buffer oxide etching liquid 2 A dielectric film.
S11, evaporating a layer of Si passivation film 11 with the thickness of about 100-200A on the front cavity surface and the back cavity surface of the laser chip at the temperature of 150-300 ℃ and the growth speed of 1-2A/s;
s12, plating an antireflection film 13 on the front cavity surface of the laser chip and plating a high layer on the rear cavity surfaceA reflective film 10. The material of the high reflection film 10 is Si/SiO 2 Or Si/Al 2 O 3 The cycle number is 2-4, and the reflectivity is 94-98%.
And finally, after the bar preparation is finished, carrying out data testing.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims (5)

1. An edge-emitting laser beam shaping structure, characterized in that: the beam shaping structure of the edge-emitting laser adjusts the propagation direction of a beam in the fast axis direction, so that photons with large divergence angles are reflected on trapezoid inclined edges, thereby realizing the effect of photon collection of a laser chip, the beam shaping structure is a trapezoid table (14), the trapezoid table (14) is sunken in an N-type doped waveguide layer (4), an active layer (5) and a P-type doped waveguide layer (6) in the edge-emitting laser chip, the upper bottom surface of the trapezoid table (14) is positioned on the front output cavity surface of the edge-emitting laser chip, and a Si passivation film (11) and an antireflection film (13) are plated on the surface surrounded by the trapezoid table (14) in sequence;
the upper bottom surface of the trapezoid table (14) has a length of 80-120 μm and a width ofThe depth of the trapezoid table (14) is +.>
2. The edge-emitting laser beam shaping structure according to claim 1, the method is characterized in that: the thickness of the Si passivation film (11) isThe material of the anti-reflection film (13) is Si/ZnSe or Si/SiO 2 The transmittance is 90 to the whole95%。
3. A laser chip characterized by comprising the beam shaping structure according to any one of claims 1-2, a substrate (1), a buffer layer (2), an N-type doped confinement layer (3), an N-type doped waveguide layer (4), an active layer (5), a P-type doped waveguide layer (6), a P-type doped confinement layer (7), a P-type doped top layer (8) and a P-type highly doped electrode contact layer (9) which are sequentially grown on the substrate (1), wherein the front cavity surface of the laser chip is sequentially plated with a Si passivation film (11) and an antireflection film (13), and the rear cavity surface is sequentially plated with a Si passivation film (11) and a highly reflective film (10).
4. A method of manufacturing a laser chip according to claim 3, characterized by comprising the steps of:
s1, cleaning an epitaxial wafer, and sequentially growing a buffer layer (2), an N-type doped limiting layer (3), an N-type doped waveguide layer (4), an active layer (5), a P-type doped waveguide layer (6), a P-type doped limiting layer (7), a P-type doped top layer (8) and a P-type highly doped electrode contact layer (9) on a substrate (1);
s2, forming a periodically distributed platform pattern by photoetching an epitaxial wafer to form the size and shape of a laser chip, and then etching two sides of a P-type highly-doped electrode contact layer (9) through a photoetching process, wherein a P electrode (12) is formed in an unetched area in the middle;
s3, performing deep trench etching from etching areas at two sides of the P electrode (12) to the buffer layer (2) by adopting inductively coupled plasma dry etching, wherein the depth is aboutForming a deep channel;
s4, depositing a layer of SiO (silicon dioxide) in the deep channel by inductively coupled plasma-chemical vapor deposition 2 A dielectric film;
s5, etching depth at one side of the two deep channels away from the P electrode (12)To the surface of the substrate;
S6, covering a layer of Ti/Pt/Au on the P electrode (12) as a P electrode ohmic contact electrode, and thinning the thickness of the substrate (1) to be Preparing N-side electrode material, evaporating a layer of material with thickness of +.>And Au, forming an N-pole ohmic contact electrode;
s7, cleaving the epitaxial wafer into required bars;
s8, coating photoresist on the front cavity surface of the laser chip, etching a rectangular cavity surface pattern by adopting a nanoimprint technology, wherein the rectangular center is positioned on the active layer (5), and the length and width dimensions of the rectangular are respectively 80-120 mu m and the width dimension of the rectangular are respectively
S9, adopting inductive coupling plasma dry etching along the rectangle to etch the substrate inwards to the depth of aboutEtching the trapezoid (14);
s10, cleaning photoresist and SiO in the trapezoid table (14) by adopting photoresist removing liquid and buffer oxide etching liquid 2 A dielectric film;
s11, when the temperature is 150-300 ℃, the growth speed isEvaporating a layer of about +_ on the front and back facet of the laser chip>A Si passivation film (11);
s12, plating an antireflection film (13) on the front cavity surface of the laser chip, and plating a high reflection film (10) on the rear cavity surface.
5. The method for manufacturing a laser chip according to claim 4, wherein in the step S12, the highly reflective film (10) is made of Si/SiO 2 Or Si/Al 2 O 3 The cycle number is 2-4, and the reflectivity is 94-98%.
CN201910156461.0A 2019-03-01 2019-03-01 Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip Active CN109802296B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910156461.0A CN109802296B (en) 2019-03-01 2019-03-01 Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910156461.0A CN109802296B (en) 2019-03-01 2019-03-01 Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip

Publications (2)

Publication Number Publication Date
CN109802296A CN109802296A (en) 2019-05-24
CN109802296B true CN109802296B (en) 2024-04-09

Family

ID=66561482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910156461.0A Active CN109802296B (en) 2019-03-01 2019-03-01 Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip

Country Status (1)

Country Link
CN (1) CN109802296B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732650A (en) * 2017-11-08 2018-02-23 山西飞虹微纳米光电科技有限公司 Gallium arsenide laser bar bar and preparation method thereof
CN110694184A (en) * 2019-10-14 2020-01-17 深圳大学 Laser power density adjusting method and device and storage medium
CN111146688A (en) * 2019-12-24 2020-05-12 江西德瑞光电技术有限责任公司 Electric pump vertical external cavity surface emitting laser chip and preparation method thereof
CN111082311B (en) * 2019-12-31 2022-04-01 中国科学院半导体研究所 Monolithic manufacturing structure of monolithic photonic integrated device
CN111262126B (en) * 2020-01-21 2021-02-26 中国科学院理化技术研究所 Semiconductor laser based on coating-free chip
CN111181000B (en) * 2020-01-21 2021-02-26 中国科学院理化技术研究所 Semiconductor chip and semiconductor laser
CN113572004B (en) * 2021-07-27 2022-07-12 广东国志激光技术有限公司 Edge-emitting semiconductor laser coupling optical fiber with specific structure
CN115693403A (en) * 2023-01-05 2023-02-03 深圳市星汉激光科技股份有限公司 GaAs FP laser chip and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033077A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Semiconductor laser apparatus
CN1716720A (en) * 2004-06-29 2006-01-04 富士施乐株式会社 Surface emitting laser diode and process for producing the same
CN101039015A (en) * 2006-03-14 2007-09-19 昂科公司 Vcsel semiconductor devices with mode control
CN107732650A (en) * 2017-11-08 2018-02-23 山西飞虹微纳米光电科技有限公司 Gallium arsenide laser bar bar and preparation method thereof
CN108573591A (en) * 2018-07-18 2018-09-25 中国科学技术大学 A kind of scatter-type fire smog detector and its light absorber
CN108879323A (en) * 2018-06-26 2018-11-23 扬州乾照光电有限公司 VCSEL chip of single beam laser and preparation method thereof
CN209561860U (en) * 2019-03-01 2019-10-29 太原理工大学 Edge-emitting laser light beam reshaping structure and chip of laser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061122B1 (en) * 2007-11-16 2014-07-02 Fraunhofer USA, Inc. A high power laser diode array comprising at least one high power diode laser, laser light source comprising the same and method for production thereof
WO2012021187A2 (en) * 2010-05-07 2012-02-16 President And Fellows Of Harvard College Methods and apparatuses for engineering electromagnetic radiation
DE102011079782A1 (en) * 2011-07-26 2013-01-31 Osram Ag Semiconductor emitter and method for generating useful light from laser light

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033077A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Semiconductor laser apparatus
CN1716720A (en) * 2004-06-29 2006-01-04 富士施乐株式会社 Surface emitting laser diode and process for producing the same
CN101039015A (en) * 2006-03-14 2007-09-19 昂科公司 Vcsel semiconductor devices with mode control
CN107732650A (en) * 2017-11-08 2018-02-23 山西飞虹微纳米光电科技有限公司 Gallium arsenide laser bar bar and preparation method thereof
CN108879323A (en) * 2018-06-26 2018-11-23 扬州乾照光电有限公司 VCSEL chip of single beam laser and preparation method thereof
CN108573591A (en) * 2018-07-18 2018-09-25 中国科学技术大学 A kind of scatter-type fire smog detector and its light absorber
CN209561860U (en) * 2019-03-01 2019-10-29 太原理工大学 Edge-emitting laser light beam reshaping structure and chip of laser

Also Published As

Publication number Publication date
CN109802296A (en) 2019-05-24

Similar Documents

Publication Publication Date Title
CN109802296B (en) Beam shaping structure of edge-emitting laser, laser chip and preparation method of laser chip
WO2018184288A1 (en) Porous dbr- and gan-based vcsel chip, and manufacturing method
CN101667715B (en) Single-mode high-power vertical cavity surface emitting laser and manufacturing method thereof
JP5006876B2 (en) Quantum dot based optoelectronic device and method of making the same
CN101471534B (en) Method for making high brightness semiconductor conical laser/amplifier
CN103474532B (en) The preparation method of light-emitting diode
CN111682402B (en) Surface-emitting semiconductor laser chip with symmetrical DBR structure and preparation method thereof
CN115868090A (en) Photonic crystal surface emitting laser element
WO2020151290A1 (en) On-chip integrated semiconductor laser structure and manufacturing method thereof
CN209561860U (en) Edge-emitting laser light beam reshaping structure and chip of laser
JPS5940592A (en) Semiconductor laser element
CN107732650A (en) Gallium arsenide laser bar bar and preparation method thereof
CN115764553B (en) Two-dimensional addressable VCSEL and preparation method thereof
CN114336287A (en) Evanescent wave coupling silicon-based laser based on coplanar electrode configuration and preparation method thereof
TW200412001A (en) Oxide-confined type vertical cavity surface emitting laser and fabrication method thereof
CN116526291A (en) Preparation method and structure of long wavelength VCSEL
CN113471814A (en) Nitride semiconductor vertical cavity surface emitting laser, and manufacturing method and application thereof
CN110048305B (en) Graphene-dielectric DBR single-mode vertical cavity surface emitting laser and preparation method thereof
CN207588214U (en) Gallium arsenide laser bar item
JP3554163B2 (en) Method for manufacturing group III nitride semiconductor laser diode
CN215896963U (en) Groove structure of single longitudinal mode F-P laser
CN215896964U (en) Single longitudinal mode groove F-P laser with power amplifier
CN104466674B (en) Integrated conjunction beam laser and preparation method thereof on piece based on photonic crystal Y waveguide
CN217427326U (en) High-speed chip with high reliability
CN111740312B (en) Dual-wavelength monolithic integrated surface emitting semiconductor laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant