CN109802233B - 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线 - Google Patents

基于谐振腔超表面的双波束双圆极化波导缝隙阵天线 Download PDF

Info

Publication number
CN109802233B
CN109802233B CN201910203178.9A CN201910203178A CN109802233B CN 109802233 B CN109802233 B CN 109802233B CN 201910203178 A CN201910203178 A CN 201910203178A CN 109802233 B CN109802233 B CN 109802233B
Authority
CN
China
Prior art keywords
waveguide
dual
square
metal patch
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910203178.9A
Other languages
English (en)
Other versions
CN109802233A (zh
Inventor
杨锐
阚尧
张澳芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Electronic Science and Technology
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201910203178.9A priority Critical patent/CN109802233B/zh
Publication of CN109802233A publication Critical patent/CN109802233A/zh
Application granted granted Critical
Publication of CN109802233B publication Critical patent/CN109802233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明提出了一种基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,用于解决现有波导缝隙阵无法实现双波束双圆极化的问题,包括矩形馈电波导、采用单侧E面开放的矩形辐射波导及固定在辐射波导开放E面位置的超表面,超表面包括介质基板,以及印制在该介质基板上下板面及沿长边方向两个侧面的金属贴片,印制在上板面的金属贴片蚀刻有方C形缝隙,下板面的金属贴片蚀刻有条形缝隙,且在每个方C型缝隙的两侧各设置多个金属化过孔,用于和介质基板两个侧面的金属贴片形成谐振腔。本发明实现了双圆极化双波束的波导缝隙阵天线,可用于雷达探测等无线通信系统。

Description

基于谐振腔超表面的双波束双圆极化波导缝隙阵天线
技术领域
本发明属于微波技术领域,涉及一种波导缝隙阵天线,具体涉及一种基于谐振腔超表面来实现双波束双圆极化特性的波导缝隙阵天线,可用于无线通信和雷达领域。
背景技术
波导缝隙天线是一种在波导边上开有多条缝隙的天线,天线通过缝隙向外空间辐射电磁波,常用的缝隙形式有宽边纵向、横向缝隙和窄边倾斜缝隙等。波导缝隙阵天线具有辐射效率高,结构紧凑,性能稳定可靠等诸多优点,在雷达等无线通信系统中获得了广泛的应用。极化方式是电磁波的最基本特征之一,常见的极化方式有线极化、圆极化和椭圆极化,其中圆极化又可分为左旋圆极化和右旋圆极化。在不同的无线通信系统中,对电磁波的极化方式要求是不同的。
随着科技的日益发展,无线通信系统朝着多功能化、小型化发展,对天线的要求越来越高,能够在同一频带同时实现多种圆极化状态的波导缝隙阵对雷达探测等无线通信系统具有重要的意义。现有的波导缝隙阵天线,通常仅能实现一种圆极化或者实现两种线极化。例如,授权公告号为CN 104332714 B,名称为“双极化斜波束波导缝隙阵列天线”的中国专利,公开了一种双极化斜波束波导缝隙阵列天线结构,该结构由水平极化线阵和垂直极化线阵组成,实现了圆极化与波束倾斜,但其仅能实现一种圆极化状态且波束倾斜角固定为45°。再如,授权公告号为CN 104577347 B,名称为“一种双频段多极化共口径波导缝隙天线”的中国专利,公开了一种双频段多极化共口径波导缝隙天线结构,该结构由长度相等的L波段垂直极化、C波段垂直极化和C波段水平极的波导缝隙天线组成,实现了C波段的双线极化以及L波段的垂直极化,但其仅能实现双线极化,不能实现双圆极化且结构比较复杂。
发明内容
本发明的目的在于针对上述现有技术存在的不足,提出一种基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,旨在实现波导缝隙阵天线的双波束双圆极化特性。
为实现上述目的,本发明采取的技术方案为:
一种基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,包括馈电波导1和辐射波导2,其中:
所述馈电波导1,采用一端封闭的矩形波导结构;
所述辐射波导2,采用一端封闭且单侧E面开放的矩形波导结构,该辐射波导2的开放端与馈电波导1的开放端相连;
所述辐射波导2开放的E面位置固定有长方形超表面3,所述长方形超表面3,包括介质基板31,该介质基板31的上板面印制有第一金属贴片32,下板面印制有第二金属贴片33,沿长边方向的两个侧面分别印制有第三金属贴片34;所述第一金属贴片32上蚀刻有沿该第一金属贴片32长边方向等距离排布的l个方C形缝隙321,l≥3,以距离馈电波导1最近的方C形缝隙321为起点,第c个方C形缝隙321的开口方向相对于起点位置的方C形缝隙的开口方向的旋转角度为βc,βc=(c-1)*δ,1≤c≤l,δ≥360°/l;在每个方C形缝隙321的两侧各设置有多个连接第一金属贴片32和第二金属贴片33的金属化过孔35;所述第二金属贴片33上蚀刻有沿该第二金属贴片33长边方向等距离排布的l个矩形缝隙331。
上述基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,所述方C形缝隙321,其几何中心位于介质基板31两个短边中点连线所在的法向平面上,且该方C形缝隙321的三边长度相等。
上述基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,所述方C形缝隙321,其两侧设置的多个金属化过孔35呈线性排列,且相邻金属化过孔中心之间的距离D满足:且D<4d,其中,d是金属化过孔的直径,λ0为电磁波在自由空间的波长,εr是介质基板的相对介电常数。
上述基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,所述l个方C形缝隙321,其相邻缝隙中心之间的距离为p1,p1=λg/2,λg为波导缝隙阵天线的波长。
上述基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,所述沿介质基板31的上板面印制的第一金属贴片32,下板面印制的第二金属贴片33,长边方向的两个侧面分别印制的第三金属贴片34,以及每个方C形缝隙321两侧各设置的多个金属化过孔35,形成l个谐振腔,各谐振腔的谐振模式均为TMmn0,m≥1,n≥1,各谐振腔的谐振频率均为fr
其中,c0是光速,d是金属化过孔的直径,D是每个方C形缝隙单侧设置的多个金属化过孔中相邻孔中心的距离,εr是介质基板的相对介电常数,p1为相邻方C形缝隙321中心之间的距离,p1=λg/2,λg为波导缝隙阵天线的波长,p2是长方形超表面短边的距离。
上述基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,所述l个矩形缝隙331,其长边与位于介质基板31两个短边中点连线所在的法向平面平行且相邻矩形缝隙331位于法向平面的同侧或异侧。
本发明与现有技术相比,具有以下优点:
本发明中采用金属化过孔,和超表面两侧的金属贴片形成谐振腔,用于产生谐振模式TM110,通过方C形缝隙开口方向不同使通过不同方C形缝隙电磁波的电场方向不同,并通过相邻方C形缝隙开口方向旋转且总旋转角度超过360°,使得左旋圆极化分量和右旋圆极化分量的相位梯度相反,解决了现有波导缝隙阵天线仅能实现一种圆极化或者实现两种线极化的问题,实现了波导缝隙阵的双波束双圆极化特性。
附图说明
图1是本发明实施例1的整体结构示意图;
图2是本发明实施例1的超表面示意图;
图3是本发明实施例1中矩形缝隙及方C形缝隙的两种排列方式示意图;
图4是本发明实施例1和实施例2在两种排列方式下的S11;
图5是本发明实施例1两种排列方式在15GHz时的增益和轴比;
图6是本发明实施例2两种排列方式在15GHz时的增益和轴比;
具体实施方式
以下结合附图和具体实施例,对本发明作进一步详细说明。
实施例1
参照图1,本发明包括馈电波导1和辐射波导2,其中:
所述馈电波导1,采用一端封闭的WR62矩形波导结构;
所述辐射波导2,采用一端封闭且单侧E面开放的WR62矩形波导结构,该辐射波导2的开放端与馈电波导1的开放端相连;
参照图2(a),所述辐射波导2开放的E面位置固定有长方形超表面3,包括介质基板31,该介质基板31的上板面印制有第一金属贴片32,下板面印制有第二金属贴片33,沿长边方向的两个侧面分别印制有第三金属贴片34;介质基板31厚度为3mm,相对介电常数εr=3.5,短边长度p2=7.9mm;所述第一金属贴片32上蚀刻有沿该第一金属贴片32长边方向等距离排布的12个方C形缝隙321,相邻方C形缝隙321缝隙中心之间的距离为p1=λg/2=12.915mm,以距离馈电波导1最近的方C形缝隙321为起点,第c个方C形缝隙321的开口方向相对于起点位置的方C形缝隙的开口方向的旋转角度为βc,βc=(c-1)*δ,1≤c≤12,δ=90°,每个方C形缝隙321用于控制通过该方C形缝隙321电磁波的电场方向,使电磁波的电场方向与方C形缝隙321的开口方向平行;在每个方C形缝隙321的两侧各设置有7个线性排列的连接第一金属贴片32和第二金属贴片33的金属化过孔35,且方C形缝隙321的两侧线性排列的金属化过孔35互相平行,用于和第一金属贴片32、第二金属贴片33及第三金属贴片34形成12个谐振腔,各谐振腔的谐振模式均为TM110,且各谐振腔的谐振频率均为15GHz。
参照图2(b),所述方C形缝隙321,其几何中心位于介质基板31两个短边中点连线所在的法向平面上,且该方C形缝隙321的三边长度均为a,宽度t=0.4mm;该方C形缝隙321的两侧设置的7个金属化过孔35呈线性排列,且相邻金属化过孔中心之间的距离D=1mm,金属化过孔的直径d=0.6mm,方C形缝隙321两侧的金属化过孔中心之间的距离p3=10mm。
参照图2(c),所述第二金属贴片33上蚀刻有沿该第二金属贴片33长边方向等距离排布的12个矩形缝隙331,所述矩形缝隙331的长度为b,宽度t=0.4mm,其长边与位于介质基板31两个短边中点连线所在的法向平面平行,相邻矩形缝隙331有位于法向平面的同侧或异侧两种排列方式且矩形缝隙331的几何中心到法向平面的距离为s=3mm。
所述方C形缝隙321的开口方向与x轴正向夹角发生变化时,为保证长方形超表面3的传输频率在15GHz,需要对尺寸a和b进行微调,且当夹角为0°时,a=2.60mm,b=4.7mm。
实施例2,本实施例的结构与实施例1中的结构相比,仅对如下结构作调整:
所述12个方C形缝隙321,相邻方C形缝隙开口方向的旋转角度不同,以距离馈电波导1最近的方C形缝隙321为起点,第c个方C形缝隙321的开口方向相对于起点位置的方C形缝隙的开口方向的旋转角度为βc,βc=(c-1)*δ,1≤c≤12,δ=45°;
本发明的工作原理是,在超表面3中,相邻方C形缝隙321的间距为半波导波长,导致其馈电相位差为180°,因此需要对这180°的馈电相位差进行补偿。参照图3,本发明提供了两种矩形缝隙及方C形缝隙的排列方式可以补偿相邻天线单元间的180°的馈电相位差,参照图3(a),以正y方向为排列方向,排列方式一把第偶数个方C形缝隙321的旋转角度多旋转180°来补偿这180°的馈电相位差,矩形缝隙331位置不变,这时方C形缝隙321的旋转角度δ'满足:
因此超表面的相位梯度dδ/dy保持不变。参照图3(b),排列方式二中方C形缝隙321的旋转角度不做额外的变化,矩形缝隙331的位置交替上下排列,矩形缝隙上下位置的变化相当于使馈电电磁波的电场方向相反,即相位差了180°,保持了超表面的相位梯度dδ/dy不变。
方C形缝隙321两侧的两组金属化过孔和第三金属贴片34形成谐振腔,矩形缝隙331用于将沿正z方向传播的x极化电磁波耦合进谐振腔形成谐振模式TM110,方C形缝隙321用于将TM110模式释放出来形成电场方向与该方C形缝隙321开口方向相同的透射波方C形缝隙321按照正y和负y方向为两种相反的旋向,因此透射波为左旋圆极化波和右旋圆极化波,而任何一种极化的电磁波都可以等效为两个正交圆极化电磁波的叠加,透射波的等效右旋相位和左旋等效相位满足其中为透射波的初始相位,因此长方形超表面3在y方向对左旋和右旋分量形成两种互为相反数的相位梯度,相位梯度为透射波的右旋圆极化和左旋圆极化分量的折射角分别为-θ和θ。因此,本发明中的辐射波导2可以将入射的线极化电磁波分成一个左旋圆极化波和一个右旋圆极化波,且这两个圆极化波传播的方向关于x轴对称,实现了双波束双圆极化波导缝隙阵天线。
以下通过仿真实验,对本发明的技术效果作进一步说明。
1、仿真条件和内容。
以下基于本发明实施例开展的仿真实验,均利用CST MICROWAVE STUDIO仿真软件完成。
仿真1,对本发明实施例1和实施例2两种排列方式下的S11进行仿真,仿真结果如图4(a)和图4(b)所示;
仿真2,对本发明实施例1两种排列方式在15GHz时的增益和轴比进行仿真,仿真结果如图5(a)、5(b)、5(c)和5(d)所示;
仿真3,对本发明实施例2两种排列方式在15GHz时的增益和轴比进行仿真,仿真结果如图6(a)、6(b)、6(c)和6(d)所示。
2、仿真结果分析
参照图4(a)和图4(b),实施例1和实施例2中两种方案的S11曲线接近,工作频率都在15GHz左右且在14.95GHz~15.08GHz范围内S11低于-10dB。
参照图5(a)和图5(b),本发明实施例1排列方式一中δ=90°,由此计算得到其相位梯度为因此设计异常折射角θ=-23°,仿真结果表明在-23°和23°分别实现左旋圆极化和右旋圆极化的最大增益,均为11.7dB,且在-23°和23°左旋圆极化和右旋圆极化的轴比分别为1.6dB和2.3dB,表明其圆极化特性良好,实现了双波束双圆极化。
参照图5(c)和图5(d),本发明实施例1排列方式二中δ=90°,由此计算得到其相位梯度为因此设计异常折射角θ=-23°,仿真结果表明在-23°和23°分别实现左旋圆极化和右旋圆极化的最大增益,分别为12.4dB和12.5dB,且在-23°和23°左旋圆极化和右旋圆极化的轴比分别为1.8dB和1.8dB,表明其圆极化特性良好,实现了双波束双圆极化。
参照图6(a)和图6(b),本发明实施例2排列方式一中δ=45°,由此计算得到其相位梯度为因此设计异常折射角θ=-11°,仿真结果表明在-11°和11°分别实现左旋圆极化和右旋圆极化的最大增益,分别为12.0dB和12.1dB,且在-11°和11°左旋圆极化和右旋圆极化的轴比分别为1.8dB和2.1dB,表明其圆极化特性良好,实现了双波束双圆极化。
参照图6(c)和图6(d),本发明实施例2排列方式二中δ=45°,由此计算得到其相位梯度为因此设计异常折射角θ=-11°,仿真结果表明在-11°和11°分别实现左旋圆极化和右旋圆极化的最大增益,分别为12.6dB和12.8dB,且在-11°和11°左旋圆极化和右旋圆极化的轴比分别为1.4dB和1.5dB,表明其圆极化特性良好,实现了双波束双圆极化。
以上描述仅是本发明的优选实施方式,并不对本发明构成限制,对于本领域的普通技术人员来说,均可在不脱离本发明创新构思的前提下所做出的若干变形和改进,但这些改变均属于本发明的保护范围。

Claims (6)

1.一种基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,包括馈电波导(1)和辐射波导(2),其中:
所述馈电波导(1),采用一端封闭的矩形波导结构;
所述辐射波导(2),采用一端封闭且单侧E面开放的矩形波导结构,该辐射波导(2)的开放端与馈电波导(1)的开放端相连;
所述辐射波导(2)开放的E面位置固定有长方形超表面(3),所述长方形超表面(3),包括介质基板(31),该介质基板(31)的上板面印制有第一金属贴片(32),下板面印制有第二金属贴片(33),沿长边方向的两个侧面分别印制有第三金属贴片(34);所述第一金属贴片(32)上蚀刻有沿该第一金属贴片(32)长边方向等距离排布的l个方C型缝隙(321),l≥3,以距离馈电波导(1)最近的方C型缝隙(321)为起点,第c个方C型缝隙(321)的开口方向相对于起点位置的方C型缝隙的开口方向的旋转角度为βc,βc=(c-1)*δ,1≤c≤l,δ≥360°/l;在每个方C型缝隙(321)的两侧各设置有多个连接第一金属贴片(32)和第二金属贴片(33)的金属化过孔(35);所述第二金属贴片(33)上蚀刻有沿该第二金属贴片(33)长边方向等距离排布的l个矩形缝隙(331)。
2.根据权利要求1所述的基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,所述方C型缝隙(321),其几何中心位于介质基板(31)两个短边中点连线所在的法向平面上,且该方C型缝隙(321)的三边长度相等。
3.根据权利要求1所述的基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,所述方C型缝隙(321),其两侧设置的多个金属化过孔(35)呈线性排列,且相邻金属化过孔中心之间的距离D满足:且D<4d,其中,d是金属化过孔的直径,λ0为电磁波在自由空间的波长,εr是介质基板的相对介电常数。
4.根据权利要求1所述的基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,所述l个方C型缝隙(321),其相邻缝隙中心之间的距离为p1,p1=λg/2,λg为波导缝隙阵天线的波长。
5.根据权利要求1所述的基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,所述介质基板(31)的上板面印制的第一金属贴片(32),下板面印制的第二金属贴片(33),沿长边方向的两个侧面分别印制的第三金属贴片(34),以及每个方C型缝隙(321)两侧各设置的多个金属化过孔(35),形成l个谐振腔,各谐振腔的谐振模式均为TMmn0,m≥1,n≥1,各谐振腔的谐振频率均为fr
其中,c0是光速,d是金属化过孔的直径,D是每个方C型缝隙单侧设置的多个金属化过孔中相邻孔中心的距离,εr是介质基板的相对介电常数,p1为相邻方C形缝隙(321)中心之间的距离,p1=λg/2,λg为波导缝隙阵天线的波长,p2是长方形超表面短边的距离。
6.根据权利要求1所述的基于谐振腔超表面的双波束双圆极化波导缝隙阵天线,其特征在于,所述l个矩形缝隙(331),其长边与位于介质基板(31)两个短边中点连线所在的法向平面平行且相邻矩形缝隙(331)位于法向平面的同侧或异侧。
CN201910203178.9A 2019-03-18 2019-03-18 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线 Active CN109802233B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910203178.9A CN109802233B (zh) 2019-03-18 2019-03-18 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910203178.9A CN109802233B (zh) 2019-03-18 2019-03-18 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线

Publications (2)

Publication Number Publication Date
CN109802233A CN109802233A (zh) 2019-05-24
CN109802233B true CN109802233B (zh) 2019-12-31

Family

ID=66563620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910203178.9A Active CN109802233B (zh) 2019-03-18 2019-03-18 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线

Country Status (1)

Country Link
CN (1) CN109802233B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867644B (zh) * 2019-11-11 2021-01-19 中国电子科技集团公司第十四研究所 一种双频段多极化共口径同轴波导缝隙天线
CN111129716B (zh) * 2020-01-15 2021-02-19 大连理工大学 一种5g移动终端天线系统及其应用
CN112332079B (zh) * 2020-03-13 2021-11-19 华南理工大学 一种基于超表面的双线极化双波束基站天线
CN113708073A (zh) * 2021-08-18 2021-11-26 西安电子科技大学 基于方形半环馈电的超表面天线

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470656A (zh) * 2015-12-07 2016-04-06 复旦大学 一种基于梯度超表面的可调线极化波束分离器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259099B (zh) * 2013-04-26 2015-04-15 哈尔滨工业大学 基于广义折射定律的电磁波调控透镜加工参数的获得方法
CN103647151B (zh) * 2013-12-25 2015-07-22 哈尔滨工业大学 基于广义折射定律的宽带电磁波异常折射透镜
CN107404008B (zh) * 2017-07-21 2021-06-01 中国人民解放军空军工程大学 高效圆极化波束分离器设计

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470656A (zh) * 2015-12-07 2016-04-06 复旦大学 一种基于梯度超表面的可调线极化波束分离器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase;Baoqin Lin等;《IEEE Access》;20190122;第7卷;13317-13325 *
Single-layer transmissive phase gradient metasurface with high-efficiency anomalous refraction;Yaqiang Zhuang等;《2016 IEEE International Conference on Microwave and Millimeter Wave Technology》;20160608;1-3 *
Wave front engineering from an array of thin aperture antennas;Ming Kang等;《Optics Express》;20120702;第20卷(第14期);15882-15890 *

Also Published As

Publication number Publication date
CN109802233A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN109802233B (zh) 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线
Cai et al. Compact wideband dual circularly polarized substrate integrated waveguide horn antenna
CN110224219B (zh) 一种圆极化基片集成腔天线
US7180457B2 (en) Wideband phased array radiator
CN110148838B (zh) 一种基于数字编码表征的方向图可重构平面阵列天线及其控制方法
CN209592305U (zh) 一种isgw圆极化缝隙行波阵列天线
CN112332079A (zh) 一种基于超表面的双线极化双波束基站天线
KR20070077464A (ko) 원형 도파관 안테나 및 원형 도파관 어레이 안테나
CN109411894B (zh) 一种双极化宽带外抑制三维频率选择表面
CN110854525A (zh) 基于谐振模腔辐射的Ka波段双极化天线单元结构
CN113193347B (zh) 基于人工电磁结构和腔体奇模激励的双波束背腔式天线
Sbarra et al. A novel Rotman lens in SIW technology
US20230378652A1 (en) Dual-frequency and dual-circularly-polarized transmit-array antenna with independently controllable beams
Cheng et al. Millimetre-wave monopulse antenna incorporating substrate integrated waveguide phase shifter
CN109560388B (zh) 基于基片集成波导喇叭的毫米波宽带圆极化天线
CN114335999A (zh) 一种基于间隙波导的K/Ka波段双频段双圆极化天线
Zhang et al. Circularly polarized endfire antenna based on sequentially rotated phase-transforming corrugated Goubau lines
CN117060090A (zh) 一种宽带圆极化平面集成馈源透射阵天线
CN116404414A (zh) 一种结构复用的微波/毫米波双频宽带共口径天线
CN110931968A (zh) 一种低交叉极化的毫米波微带平板阵列天线
CN113964536B (zh) 一种圆极化两维宽角相扫天线单元及相控阵天线阵列
CN115395217A (zh) 毫米波小型化圆极化反射阵天线
CN114843772A (zh) 一种双频、双圆极化、高隔离法布里-珀罗腔mimo天线及其加工方法
CN115133276A (zh) 一种基于超材料的双馈电低雷达散射截面的微带阵列天线
JP2007067581A (ja) 円偏波アレーアンテナ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant