CN112332079A - 一种基于超表面的双线极化双波束基站天线 - Google Patents

一种基于超表面的双线极化双波束基站天线 Download PDF

Info

Publication number
CN112332079A
CN112332079A CN202010177545.5A CN202010177545A CN112332079A CN 112332079 A CN112332079 A CN 112332079A CN 202010177545 A CN202010177545 A CN 202010177545A CN 112332079 A CN112332079 A CN 112332079A
Authority
CN
China
Prior art keywords
dual
super
layer
port
feed network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010177545.5A
Other languages
English (en)
Other versions
CN112332079B (zh
Inventor
车文荃
杨琬琛
谷礼政
薛泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010177545.5A priority Critical patent/CN112332079B/zh
Priority to PCT/CN2020/124569 priority patent/WO2021179627A1/zh
Publication of CN112332079A publication Critical patent/CN112332079A/zh
Application granted granted Critical
Publication of CN112332079B publication Critical patent/CN112332079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种基于超表面的双线极化双波束基站天线。所述天线包括辐射超表面天线层、刻蚀若干条十字缝隙的金属地板、四端口馈电网络层;辐射超表面天线层位于最上层,四端口馈电网络层位于最下层,辐射超表面天线层和四端口馈电网络层中间设置金属地板,金属地板上蚀刻若干条十字缝隙用于实现双线极化辐射特性;依次激励若干条十字缝隙,通过十字缝隙将四端口馈电网络层的能量耦合到辐射超表面天线层,从而实现双线极化波束。和传统的双线极化双波束阵列天线相比,本发明结构简单,减少了天线波束形成网络的损耗,而且实现工作频带内的波束一致性。又因本发明加工容易、成本低、体积小,更适合平面天线阵列设计,应用于大规模生产。

Description

一种基于超表面的双线极化双波束基站天线
技术领域
本发明涉及双线极化基站天线领域,具体涉及一种基于超表面的双线极化双波束基站天线。
背景技术
随着现代无线通信技术的发展,基站的通信容量面临严峻的挑战。双线极化双波束天线可以利用极化分集和波束分集进行数据传输,有效提高基站的通信容量。但是,传统的双线极化双波束天线(Zhang X Y , Xue D , Ye L , et al. Compact Dual-BandDual-Polarized Interleaved Two-Beam Array with Stable Radiation Pattern Basedon Filtering Elements[J]. IEEE Transactions on Antennas and Propagation,2017:4566–4575)需要分别设计天线阵列和波束形成网络。其中,采用波束形成网络会带来插损较大、体积庞大、设计复杂等诸多问题。特别是在工作带宽内确保波束偏转角的一致性,需要设计复杂的移相网络。这对天线阵列整体的设计带来很大的挑战,也不适合紧凑环境下的天线设计。
近年来倍受关注的超表面天线,采用周期性或非周期性的亚波长贴片单元,可以在实现低剖面的同时达到较宽的带宽和较好的辐射性能,在多频段和边射阵列应用中获得广泛研究,但是鲜有涉及双线极化双波束的研究。
发明内容
为了克服现有技术存在的缺点与不足,本发明提供一种基于超表面的双线极化双波束基站天线。本发明具有插损低、效率高、尺寸小和结构简单的特点,并且能确保波束在工作频带内和双线极化条件下均具有稳定可控的偏转角度。
本发明的目的至少通过如下技术方案之一实现。
一种基于超表面的双线极化双波束基站天线,包括辐射超表面天线层、刻蚀若干条十字缝隙的金属地板、四端口馈电网络层;辐射超表面天线层位于最上层,四端口馈电网络层位于最下层,辐射超表面天线层和四端口馈电网络层中间设置金属地板,金属地板上蚀刻若干条十字缝隙用于实现双线极化辐射特性;依次激励若干条十字缝隙,通过十字缝隙将四端口馈电网络层的能量耦合到辐射超表面天线层,从而实现双线极化波束。
进一步地,所述辐射超表面天线层上表面印制辐射贴片结构,所述辐射贴片结构由若干个超表面单元组成;所述超表面单元采用方形贴片、矩形贴片或者交叉贴片;所述超表面单元采用周期排布或者非周期排布。
进一步地,所述金属地板中,相邻十字缝隙的间距相等,每个十字缝隙的形状可以不同,根据需求选取十字缝隙的尺寸和形状,用以调节阻抗匹配和波束特性。
进一步地,所述四端口馈电网络层中间设置有四端口馈电网络;所述四端口馈电网络包括四个输入端口和相互交叉的传输线;第一输入端口和第二输入端口分别放置在四端口馈电网络的两端,分别对应一个极化的两个偏转波束,第三输入端口和第四输入端口分别放置在四端口馈电网络的两端,分别对应另一个正交极化的两个偏转波束;所述四端口馈电网络的传输线在缝隙之间部分设置弯折结构;所述弯折结构根据波束偏转角进行调节,所述四端口馈电网络在传输线相交处设置一个金属桥接,所述金属桥接关于传输线相交处旋转对称,并在金属桥接两端设置两个金属半通孔进行信号传输。
进一步地,所述十字缝隙周围设置对称分布的金属通孔,所述金属通孔连接金属地板下底面和四端口馈电网络层下底面。
进一步地,四端口馈电网络的传输线采用微带线、带状线、基片集成波导传输结构。
进一步地,四端口馈电网络设置的四个输入端对应的极化方式包括±45度线极化或者垂直/水平线极化。
进一步地,金属地板上的十字缝隙个数根据需求自由调整;当采用不多于5条缝隙时,该天线在保证双线极化双波束性能的情况下,具有小型化的优势;当采用多于5条缝隙或者阵列排布时,该天线在保证双线极化双波束性能的情况下,具有高隔离、窄波束、高增益的优势。
进一步地,所述辐射超表面天线层和四端口馈电网络层均采用PCB介质基板。
与现有技术相比,本发明的有益效果如下:
(1)本发明包括多个超表面单元、多条十字缝隙、四端口带状线馈电网络。由于采用简单的超表面单元和双线极化波束形成网络,可以实现工作频带内的波束偏转角度控制,并且实现了工作频带内的波束偏转角度的一致性,还具有紧凑的结构和简单的设计优势。
(2)本发明通过采用带状线馈电网络,具有高前后比的辐射特性。
(3)本发明通过采用旋转45度的超表面单元,实现了双线极化辐射特性。
(4)本发明通过采用平面螺旋的四端口带状线馈电网络和多条耦合十字缝隙,实现了双线极化激励的特性。
(5)本发明的馈电网络通过控制缝隙的周期和带状线折叠部分的长度,使得波束进行偏转,并且可以灵活实现波束前向或者后向辐射。
(6)本发明的馈电网络通过在十字缝隙周围加载金属通孔,实现了交叉极化电平较低的特性。
(7)本发明的馈电网络可以实现工作频带内的波束偏转角度一致性。
(8)本发明结构简单,加工容易,成本和重量都相对较小。因而可以大规模生产。
附图说明
图1a是本发明实施例1中双线极化双波束基站天线的结构三维示意图;
图1b是本发明实施例1中双线极化双波束基站天线的横截面示意图;
图2a是本发明实施例1中辐射超表面天线层上表面的俯视图;
图2b是本发明实施例1中辐射超表面天线层下表面仰视图;
图2c是本发明实施例1中金属地板的上表面俯视图;
图2d是本发明实施例1中四端口馈电网络的带状线层俯视图;
图2e是本发明实施例1中四端口馈电网络层的下表面仰视图;
图3是本发明实施例1中双线极化双波束基站天线的S参数示意图;
图4是本发明实施例1中双线极化双波束基站天线在4.9GHz的yoz面方向图;
图5是本发明实施例1中双线极化双波束基站天线的增益曲线和波束偏转角示意图。
图6a是本发明实施例2中双线极化双波束基站天线的结构三维示意图;
图6b是本发明实施例2中双线极化双波束基站天线的横截面示意图;
图7a是本发明实施例2中辐射超表面天线层上表面的俯视图;
图7b是本发明实施例2中辐射超表面天线层下表面仰视图;
图7c是本发明实施例2中金属地板的上表面俯视图;
图7d是本发明实施例2中四端口馈电网络的带状线层俯视图;
图7e是本发明实施例2中四端口馈电网络层的下表面仰视图;
图8是本发明实施例2中双线极化双波束基站天线的S参数示意图;
图9是本发明实施例2中双线极化双波束基站天线在4.9GHz的yoz面方向图;
图10是本发明实施例2中双线极化双波束基站天线的增益曲线和波束偏转角示意图。
具体实施方式
下面结合实施例及附图,对本发明的具体实施作进一步地详细说明,但本发明的实施方式不限于此。
实施例1:
一种基于超表面的小型化双线极化双波束基站天线,如图1a和图1b所示,包括辐射超表面天线层2、刻蚀若干条十字缝隙9的金属地板4、四端口馈电网络层3;辐射超表面天线层2位于最上层,四端口馈电网络层3位于最下层,辐射超表面天线层2和四端口馈电网络层3中间设置金属地板4,金属地板4上蚀刻若干条十字缝隙9用于实现双线极化辐射特性;依次激励若干条十字缝隙9,通过十字缝隙9将四端口馈电网络层3的能量耦合到辐射超表面天线层2,从而实现双线极化波束。
所述辐射超表面天线层2和四端口馈电网络层3均采用PCB介质基板。介质基板的X轴方向为竖直方向,Y轴方向为水平方向,原点为介质基板的中心点,本实施例中提到的XY坐标系方向,以附图为准。
所述PCB板的介电常数ε r 为[2.2,10.2],厚度均为[0.01λ,0.3λ],金属地板厚度为[0.005λ,0.1λ],其中λ为自由空间波长。
如图2a所示,本实施例中,所述辐射超表面天线层2上表面印制辐射贴片结构,所述辐射贴片结构由若干个周期排布的类型为方形贴片的超表面单元1组成。
如图2b所示,所述金属地板4中,相邻十字缝隙9的间距相等,每个十字缝隙9的形状可以不同,根据需求选取十字缝隙9的尺寸和形状,用以调节阻抗匹配和波束特性。
如图2c、图2d所示,所述四端口馈电网络层3中间设置有四端口馈电网络6;本实施例中,所述四端口馈电网络6包括四个输入端口和相互交叉的传输线;第一输入端口11和第二输入端口12分别放置在四端口馈电网络6的两端,分别对应45度极化的两个偏转波束,第三输入端口13和第四输入端口14分别放置在四端口馈电网络6的两端,分别对应-45度极化的两个偏转波束;所述四端口馈电网络6的传输线在缝隙之间部分设置弯折结构15;所述弯折结构15根据波束偏转角进行调节,所述四端口馈电网络6在传输线相交处设置一个金属桥接10,所述金属桥接10关于传输线相交处旋转对称,并在金属桥接10两端设置两个金属半通孔5进行信号传输。
如图2c、图2d、图2e所示,本实施例中,所述十字缝隙9周围设置4对对称分布的金属通孔7,所述金属通孔7连接金属地板4下底面和四端口馈电网络层3下底面。
本实施例中,四端口馈电网络6的传输线采用带状线的形式。
如图2a所示,超表面单元1的贴片尺寸l l 为[0.1λ, 0.25λ],周期l为[0.1λ, 0.35λ],缝隙宽度w c 为[0.001λ, 0.02λ],如图2b所示,金属地板4所刻蚀缝隙长度s l 为[0.1λ,0.7λ],金属地板4所刻蚀十字缝隙9宽度s w0 为[0.01λ, 0.1λ],金属地板所刻蚀缝隙内部金属桥接的长度s l1 为[0.05λ, 0.5λ],金属地板4所刻蚀十字缝隙9内部金属桥接的宽度s w1 为[0.01λ, 0.1λ],金属地板4所刻蚀十字缝隙9的周期P d 为[0.05λ, 1λ],金属地板4所刻蚀金属桥接10的长度s l2 为[0.05λ, 0.5λ],金属地板所刻蚀金属桥接10的宽度s w2 为[0.01λ,0.1λ],金属桥接10两端设置的金属半通孔5的直径d 2 为[0.001λ,0.1λ],金属地板4所刻蚀十字缝隙9周围的金属通孔7的直径d 1 为[0.001λ, 0.1λ],传输线的宽度f w0 为[0.001λ, 0.1λ],弯折型传输线15总长度(fl 0 +fl 1 +fl 2 )为[0.1λ, 1.5λ],其中λ为自由空间波长。
本实施例中,一种基于超表面的小型化双线极化双波束基站天线,具体尺寸如下:
辐射超表面天线层2的介电常数ε r 为4.4,厚度为2mm,四端口馈电网络层3的介电常数ε r 为2.2,厚度为1mm。超表面单元1的方形贴片尺寸l l 为8.5mm,方形贴片周期l为13.85mm,贴片之间的缝隙宽度w c 为1.25mm,五条十字缝隙9的长度s l 均为18mm,缝隙的宽度sw 0 为1.2mm,金属地板4所刻蚀十字缝隙9内部金属桥接的长度s l1 为4.5mm,金属地板4所刻蚀十字缝隙9内部金属桥接的宽度s w1 为0.5mm,金属地板4所刻蚀十字缝隙9的周期P d 为28mm,金属地板4所刻蚀金属桥接10的长度s l2 为4.5mm,金属地板4所刻蚀金属桥接10的宽度s w2 为0.5mm,金属桥接10设置的金属半通孔5直径d 2 为0.45mm,金属地板4所刻蚀十字缝隙9周围的金属通孔7直径d 1 为0.45mm,馈电的带状线宽度f w0 为0.7mm,弯折部分的总长度(fl 0 +fl 1 +fl 2 )为7mm。
如图3所示,一种基于超表面的小型化双线极化双波束基站天线,工作频带为:4.6-5.3GHz,带内S11低于-10dB,带内同极化隔离大于10dB,带内异极化隔离大于15dB。
如图4所示,选取频率4.9GHz,端口1的辐射方向图指向30deg,端口2的辐射方向图指向-30deg,两个端口对应的方向图沿着Z轴对称性较好,交叉极化电平低于-24dB,前后比大于25dB。
如图5所示,由于四个端口对称性较好,只需考察端口1的增益曲线和波束指向。在频带4.6-5.1GHz,带内增益大于9dBi,波束指向27.5至32.5deg,带内增益平坦,波束指向稳定。
由上可知,本实施例中的双线极化双波束基站天线可以有效地实现小型化、双线极化和双波束的特性,且在工作频带内波束偏转角一致性较好。
实施例2:
一种基于超表面的高增益双线极化双波束基站天线,基于实施案例1中的双极化单元,为了提高天线增益,在x轴方向实施二元阵列排布,将相同极化和相同波束的两个输入端口分别通过一分二功分器连接起来。如图6a和图6b所示,包括辐射超表面天线层2、刻蚀若干条十字缝隙9的金属地板4、四端口馈电网络层3;辐射超表面天线层2位于最上层,四端口馈电网络层3位于最下层,辐射超表面天线层2和四端口馈电网络层3中间设置金属地板4,金属地板4上蚀刻若干条十字缝隙9用于实现双线极化辐射特性;依次激励若干条十字缝隙9,通过十字缝隙9将四端口馈电网络层3的能量耦合到辐射超表面天线层2,从而实现双线极化波束。
所述辐射超表面天线层2和四端口馈电网络层3均采用PCB介质基板。介质基板的X轴方向为竖直方向,Y轴方向为水平方向,原点为介质基板的中心点,本实施例中提到的XY坐标系方向,以附图为准。
所述PCB板的介电常数ε r 为[2.2,10.2],厚度均为[0.01λ,0.3λ],金属地板厚度为[0.005λ,0.1λ],其中λ为自由空间波长。
如图7a所示,本实施例中,所述辐射超表面天线层2上表面印制辐射贴片结构,所述辐射贴片结构在x轴阵列排布。
如图7b所示,所述金属地板4中,相邻十字缝隙9的间距相等,每个十字缝隙9的形状可以不同,根据需求选取十字缝隙9的尺寸和形状,用以调节阻抗匹配和波束特性。
如图7c、图7d所示,所述四端口馈电网络层3中间设置有四端口馈电网络6;本实施例中,所述四端口馈电网络6包括四个输入端口和相互交叉的传输线;第一输入端口11和第二输入端口12分别放置在四端口馈电网络6的两端,分别对应45度极化的两个偏转波束,第三输入端口13和第四输入端口14分别放置在四端口馈电网络6的两端,分别对应-45度极化的两个偏转波束;所述四端口馈电网络6的传输线在缝隙之间部分设置弯折结构15;所述弯折结构15根据波束偏转角进行调节,所述四端口馈电网络6在传输线相交处设置一个金属桥接10,所述金属桥接10关于传输线相交处旋转对称,并在金属桥接10两端设置两个金属半通孔5进行信号传输。
如图7c、图7d、图7e所示,本实施例中,所述十字缝隙9周围设置4对对称分布的金属通孔7,所述金属通孔7连接金属地板4下底面和四端口馈电网络层3下底面。
本实施例中,四端口馈电网络6的传输线采用带状线的形式。
如图7a所示,双极化基站天线单元的周期ll为[0.4λ, 2λ],超表面单元1的贴片尺寸l l 为[0.1λ, 0.25λ],周期l为[0.1λ, 0.35λ],缝隙宽度w c 为[0.001λ, 0.02λ],如图2b所示,金属地板4所刻蚀缝隙长度s l 为[0.1λ, 0.7λ],金属地板4所刻蚀十字缝隙9宽度s w0 为[0.01λ, 0.1λ],金属地板所刻蚀十字缝隙9内部金属桥接的长度s l1 为[0.05λ, 0.5λ],金属地板4所刻蚀十字缝隙9内部金属桥接的宽度s w1 为[0.01λ, 0.1λ],金属地板4所刻蚀十字缝隙9的周期P d 为[0.05λ, 1λ],金属地板4所刻蚀金属桥接10的长度s l2 为[0.05λ, 0.5λ],金属地板所刻蚀金属桥接10的宽度s w2 为[0.01λ, 0.1λ],金属桥接10两端设置的金属半通孔5的直径d 2 为[0.001λ,0.1λ],金属地板4所刻蚀十字缝隙9周围的金属通孔7的直径d 1 为[0.001λ, 0.1λ],传输线的宽度f w0 为[0.001λ, 0.1λ],弯折型传输线15总长度(fl 0 +fl 1 +fl 2 )为[0.1λ, 1.5λ],其中λ为自由空间波长。
本实施例中,一种基于超表面的高增益双线极化双波束基站天线,具体尺寸如下:
辐射超表面天线层2的介电常数ε r 为4.4,厚度为2mm,四端口馈电网络层3的介电常数ε r 为2.2,厚度为1mm。双极化基站天线单元的周期ll为40.7mm,超表面单元1的方形贴片尺寸l l 为8.5mm,方形贴片周期l为13.85mm,贴片之间的缝隙宽度w c 为1.25mm;两对五条十字缝隙9的长度s l 均为18mm,十字缝隙9的宽度sw 0 为1.2mm,金属地板4所刻蚀十字缝隙9内部金属桥接的长度s l1 为4.5mm,金属地板4所刻蚀十字缝隙9内部金属桥接的宽度s w1 为0.5mm,金属地板4所刻蚀十字缝隙9的周期P d 为28mm,金属地板4所刻蚀金属桥接10的长度s l2 为4.5mm,金属地板4所刻蚀金属桥接10的宽度s w2 为0.5mm,金属桥接10设置的金属半通孔5直径d 2 为0.45mm,金属地板4所刻蚀十字缝隙9周围的金属通孔7直径d 1 为0.45mm;馈电的带状线宽度f w0 为0.7mm,弯折部分的总长度(fl 0 +fl 1 +fl 2 )为7mm。
如图8所示,一种基于超表面的高增益双线极化双波束基站天线,工作频带为:4.6-5.4GHz,带内S11低于-10dB,带内同极化隔离大于10dB,带内异极化隔离大于15dB。
如图9所示,选取频率4.9GHz,端口1的辐射方向图指向30deg,端口2的辐射方向图指向-30deg,两个端口对应的方向图沿着Z轴对称性较好,交叉极化电平低于-17dB,前后比大于25dB。
如图10所示,由于四个端口对称性较好,只需考察端口1的增益曲线和波束指向。在频带4.6-5.3GHz,带内增益大于12dBi,波束指向25.5至32.5deg,带内增益平坦,波束指向稳定。
由上可知,本实施例中的双线极化双波束基站天线可以有效地实现高增益、双线极化和双波束的特性,且在工作频带内波束偏转角一致性较好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种基于超表面的双线极化双波束基站天线,其特征在于,包括辐射超表面天线层(2)、刻蚀若干条十字缝隙(9)的金属地板(4)、四端口馈电网络层(3);辐射超表面天线层(2)位于最上层,四端口馈电网络层(3)位于最下层,辐射超表面天线层(2)和四端口馈电网络层(3)中间设置金属地板(4),金属地板(4)上蚀刻若干条十字缝隙(9)用于实现双线极化辐射特性;依次激励若干条十字缝隙(9),通过十字缝隙(9)将四端口馈电网络层(3)的能量耦合到辐射超表面天线层(2),从而实现双线极化波束。
2.根据权利要求1所述的一种基于超表面的双线极化双波束基站天线,其特征在于,所述辐射超表面天线层(2)上表面印制辐射贴片结构,所述辐射贴片结构由若干个超表面单元(1)组成;所述超表面单元(1)采用方形贴片、矩形贴片或者交叉贴片;所述超表面单元(1)采用周期排布或者非周期排布。
3.根据权利要求1所述的一种基于超表面的双线极化双波束基站天线,其特征在于,所述金属地板(4)中,相邻十字缝隙(9)的间距相等,根据需求选取十字缝隙(9)的尺寸和形状,用以调节阻抗匹配和波束特性。
4.根据权利要求1所述的一种基于超表面的双线极化双波束基站天线,其特征在于,所述四端口馈电网络层(3)中间设置有四端口馈电网络(6);所述四端口馈电网络(6)包括四个输入端口和相互交叉的传输线;第一输入端口(11)和第二输入端口(12)分别放置在四端口馈电网络(6)的两端,分别对应一个极化的两个偏转波束,第三输入端口(13)和第四输入端口(14)分别放置在四端口馈电网络(6)的两端,分别对应另一个正交极化的两个偏转波束;所述四端口馈电网络(6)的传输线在缝隙之间部分设置弯折结构(15);所述弯折结构(15)根据波束偏转角进行调节,所述四端口馈电网络(6)在传输线相交处设置一个金属桥接(10),所述金属桥接(10)关于传输线相交处旋转对称,并在金属桥接(10)两端设置两个金属半通孔(5)进行信号传输。
5.根据权利要求1所述的一种基于超表面的双线极化双波束基站天线,其特征在于,所述十字缝隙(9)周围设置对称分布的金属通孔(7),所述金属通孔(7)连接金属地板(4)下底面和四端口馈电网络层(3)下底面。
6.根据权利要求4所述的一种基于超表面的双线极化双波束基站天线,其特征在于,四端口馈电网络(6)的传输线采用微带线、带状线或基片集成波导传输结构。
7.根据权利要求4所述的一种基于超表面的双线极化双波束基站天线,其特征在于,四端口馈电网络(6)设置的四个输入端口对应的极化方式包括±45度线极化或者垂直/水平线极化。
8.根据权利要求1所述的一种基于超表面的双线极化双波束基站天线,其特征在于,金属地板(4)上的十字缝隙(9)个数根据需求自由调整;当采用不多于5条缝隙时,该天线在保证双线极化双波束性能的情况下,具有小型化的优势;当采用多于5条缝隙或者阵列排布时,该天线在保证双线极化双波束性能的情况下,具有高隔离、窄波束、高增益的优势。
9.根据权利要求1所述的一种基于超表面的双线极化双波束基站天线,其特征在于,所述辐射超表面天线层(2)和四端口馈电网络层(3)均采用PCB介质基板。
CN202010177545.5A 2020-03-13 2020-03-13 一种基于超表面的双线极化双波束基站天线 Active CN112332079B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010177545.5A CN112332079B (zh) 2020-03-13 2020-03-13 一种基于超表面的双线极化双波束基站天线
PCT/CN2020/124569 WO2021179627A1 (zh) 2020-03-13 2020-10-29 一种基于超表面的双线极化双波束基站天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010177545.5A CN112332079B (zh) 2020-03-13 2020-03-13 一种基于超表面的双线极化双波束基站天线

Publications (2)

Publication Number Publication Date
CN112332079A true CN112332079A (zh) 2021-02-05
CN112332079B CN112332079B (zh) 2021-11-19

Family

ID=74302832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010177545.5A Active CN112332079B (zh) 2020-03-13 2020-03-13 一种基于超表面的双线极化双波束基站天线

Country Status (2)

Country Link
CN (1) CN112332079B (zh)
WO (1) WO2021179627A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140904A (zh) * 2021-04-12 2021-07-20 西安天和防务技术股份有限公司 双极化天线
CN113224538A (zh) * 2021-03-12 2021-08-06 华南理工大学 一种基于超表面结构的宽带双极化天线单元及相控阵
CN113410628A (zh) * 2021-05-19 2021-09-17 华南理工大学 一种宽带高效率天线单元、串并馈子阵列及相控阵
CN113690621A (zh) * 2021-08-30 2021-11-23 杭州泛利科技有限公司 一种基于多层pcb板的小型化高效率蓝牙天线
CN113922075A (zh) * 2021-10-13 2022-01-11 西华大学 一种基于高阶模的慢波基片集成波导双工天线

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142244B (zh) * 2021-12-23 2023-05-30 上海大学 一种双频双圆极化共享口径宽带超表面微带天线
CN114665282B (zh) * 2022-03-11 2023-06-27 中国人民解放军空军工程大学 基于特征模理论的宽带高增益低rcs超构表面天线的设计方法
CN114597666B (zh) * 2022-03-28 2024-03-12 中国人民解放军空军工程大学 反射双面像多功能超表面及设计方法
CN114899621B (zh) * 2022-05-31 2024-02-23 中国人民解放军空军工程大学 解耦圆极化四涡旋波束天线及设计方法
CN115347376B (zh) * 2022-07-15 2024-05-28 山西大学 一种基于相位梯度超表面的小型化多源多波束天线
CN115377670B (zh) * 2022-07-26 2023-07-04 四川领航未来通信技术有限公司 一种移相错位的平板阵列天线
CN115347378A (zh) * 2022-09-05 2022-11-15 山西大学 一种产生双频oam涡旋波的反射型超表面装置
CN116315643B (zh) * 2023-04-20 2023-12-29 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130711Y (zh) * 2007-11-12 2008-10-08 杭州电子科技大学 一种基于金属化通孔微扰的低轮廓背腔圆极化天线
CN103620867A (zh) * 2011-07-18 2014-03-05 索尼爱立信移动通讯有限公司 具有金属背板和耦合馈电元件的多频带无线终端以及相关多频带天线系统
US20180287262A1 (en) * 2017-04-04 2018-10-04 The Research Foundation For Suny Devices, systems and methods for creating and demodulating orbital angular momentum in electromagnetic waves and signals
CN109088165A (zh) * 2018-07-30 2018-12-25 北京邮电大学 一种基于超表面的宽带双极化天线
CN208723089U (zh) * 2018-08-20 2019-04-09 华南理工大学 高增益缝隙阵列天线及移动通信设备
US10283876B1 (en) * 2016-07-28 2019-05-07 Rockwell Collins, Inc. Dual-polarized, planar slot-aperture antenna element
JP2019102823A (ja) * 2017-11-28 2019-06-24 株式会社Soken 指向性可変アンテナ
CN109994827A (zh) * 2017-12-30 2019-07-09 深圳市景程信息科技有限公司 基于超表面的缝隙耦合圆极化天线
CN110034413A (zh) * 2019-05-24 2019-07-19 电子科技大学 一种加载超表面的无遮挡波束偏转天线
CN110416746A (zh) * 2019-07-19 2019-11-05 深圳大学 一种宽频毫米波天线单元及天线阵列
CN110534890A (zh) * 2019-09-07 2019-12-03 电子科技大学 低剖面双极化超表面天线
CN110649391A (zh) * 2018-06-26 2020-01-03 苹果公司 具有可切换馈电端子的电子设备天线
CN110707439A (zh) * 2019-09-03 2020-01-17 江苏亨鑫科技有限公司 一种微带阵列天线
CN110854530A (zh) * 2019-11-15 2020-02-28 中国传媒大学 一种基于f-p腔的四极化mimo天线
CN110854527A (zh) * 2019-11-07 2020-02-28 电子科技大学 基于超表面的双极化高性能宽带天线及其阵列

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083359B (zh) * 2007-07-10 2012-05-09 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线制造方法
US9711853B2 (en) * 2013-08-07 2017-07-18 Huawei Technologies Co., Ltd. Broadband low-beam-coupling dual-beam phased array
US11227964B2 (en) * 2017-08-25 2022-01-18 California Institute Of Technology Luminescent solar concentrators and related methods of manufacturing
US10950940B2 (en) * 2018-07-19 2021-03-16 Huawei Technologies Co., Ltd. Electronically beam-steerable full-duplex phased array antenna
CN109802233B (zh) * 2019-03-18 2019-12-31 西安电子科技大学 基于谐振腔超表面的双波束双圆极化波导缝隙阵天线
CN110112573B (zh) * 2019-04-19 2021-02-05 电子科技大学 一种低剖面双频二维宽角扫描共口径相控阵天线

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130711Y (zh) * 2007-11-12 2008-10-08 杭州电子科技大学 一种基于金属化通孔微扰的低轮廓背腔圆极化天线
CN103620867A (zh) * 2011-07-18 2014-03-05 索尼爱立信移动通讯有限公司 具有金属背板和耦合馈电元件的多频带无线终端以及相关多频带天线系统
US10283876B1 (en) * 2016-07-28 2019-05-07 Rockwell Collins, Inc. Dual-polarized, planar slot-aperture antenna element
US20180287262A1 (en) * 2017-04-04 2018-10-04 The Research Foundation For Suny Devices, systems and methods for creating and demodulating orbital angular momentum in electromagnetic waves and signals
JP2019102823A (ja) * 2017-11-28 2019-06-24 株式会社Soken 指向性可変アンテナ
CN109994827A (zh) * 2017-12-30 2019-07-09 深圳市景程信息科技有限公司 基于超表面的缝隙耦合圆极化天线
CN110649391A (zh) * 2018-06-26 2020-01-03 苹果公司 具有可切换馈电端子的电子设备天线
CN109088165A (zh) * 2018-07-30 2018-12-25 北京邮电大学 一种基于超表面的宽带双极化天线
CN208723089U (zh) * 2018-08-20 2019-04-09 华南理工大学 高增益缝隙阵列天线及移动通信设备
CN110034413A (zh) * 2019-05-24 2019-07-19 电子科技大学 一种加载超表面的无遮挡波束偏转天线
CN110416746A (zh) * 2019-07-19 2019-11-05 深圳大学 一种宽频毫米波天线单元及天线阵列
CN110707439A (zh) * 2019-09-03 2020-01-17 江苏亨鑫科技有限公司 一种微带阵列天线
CN110534890A (zh) * 2019-09-07 2019-12-03 电子科技大学 低剖面双极化超表面天线
CN110854527A (zh) * 2019-11-07 2020-02-28 电子科技大学 基于超表面的双极化高性能宽带天线及其阵列
CN110854530A (zh) * 2019-11-15 2020-02-28 中国传媒大学 一种基于f-p腔的四极化mimo天线

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
W. YANG ET AL.: "A Novel Steerable Dual-Beam Metasurface Antenna Based on Controllable Feeding Mechanism", 《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》 *
孟倩: "宽带低剖面的圆极化超表面天线及阵列的研究", 《中国优秀硕士学位论文全文数据库》 *
陈思: "高性能超表面天线及阵列的研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224538A (zh) * 2021-03-12 2021-08-06 华南理工大学 一种基于超表面结构的宽带双极化天线单元及相控阵
CN113140904A (zh) * 2021-04-12 2021-07-20 西安天和防务技术股份有限公司 双极化天线
CN113410628A (zh) * 2021-05-19 2021-09-17 华南理工大学 一种宽带高效率天线单元、串并馈子阵列及相控阵
CN113690621A (zh) * 2021-08-30 2021-11-23 杭州泛利科技有限公司 一种基于多层pcb板的小型化高效率蓝牙天线
CN113690621B (zh) * 2021-08-30 2024-05-07 杭州泛利科技有限公司 一种基于多层pcb板的小型化高效率蓝牙天线
CN113922075A (zh) * 2021-10-13 2022-01-11 西华大学 一种基于高阶模的慢波基片集成波导双工天线
CN113922075B (zh) * 2021-10-13 2023-09-19 西华大学 一种基于高阶模的慢波基片集成波导双工天线

Also Published As

Publication number Publication date
CN112332079B (zh) 2021-11-19
WO2021179627A1 (zh) 2021-09-16

Similar Documents

Publication Publication Date Title
CN112332079B (zh) 一种基于超表面的双线极化双波束基站天线
Rafique et al. Dual-band microstrip patch antenna array for 5G mobile communications
CN112838361B (zh) 耦合抵消路径枝节及基于其的高隔离毫米波相控阵列天线
JP2014212562A (ja) アンテナ放射素子
CN209592305U (zh) 一种isgw圆极化缝隙行波阵列天线
CN110224219B (zh) 一种圆极化基片集成腔天线
CN112310663B (zh) 一种基于多模谐振的宽带低剖面双频多波束贴片天线
CN110112562B (zh) 一种小型宽带差分激励双模双极化基站天线
CN107978858B (zh) 一种工作于60GHz频段的方向图可重构天线
CN109301489B (zh) 一种应用于5g通信的低剖面高隔离度差分双极化缝隙天线
CN111430936A (zh) 一种基于超表面的5g mimo多波束天线
CN109950693A (zh) 集成基片间隙波导圆极化缝隙行波阵列天线
CN114336024B (zh) 一种应用于毫米波通信系统的宽带圆极化平面天线阵列
CN113506976B (zh) 高增益圆极化天线及无线通信设备
CN112886234B (zh) 一种基于嵌入式结构的微波毫米波共面共口径天线
CN108448256B (zh) 一种基于人工磁导体的宽频带波束可控缝隙天线
CN113258265A (zh) 一种基于超表面的双频段双波束基站天线
CN110444876B (zh) 高增益宽带圆极化天线及无线通信设备
CN117220032A (zh) 一种高选择性宽带圆极化介质谐振器滤波天线
CN111987442A (zh) 辐射贴片阵列及平面微带阵列天线
CN115313028B (zh) 应用于2g/3g/4g/5g频段的超宽带天线
CN101227028A (zh) 基片集成波导的双频缝隙天线
CN115939782A (zh) 一种w波段旋转式圆极化磁电偶极子天线阵列
CN113690636B (zh) 基于超表面的毫米波宽角扫描相控阵天线
CN109638443B (zh) 一种具有对称波束的平板宽带圆极化天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant