CN109778077A - 一种核主泵泵壳材料的冶炼方法 - Google Patents

一种核主泵泵壳材料的冶炼方法 Download PDF

Info

Publication number
CN109778077A
CN109778077A CN201711106937.7A CN201711106937A CN109778077A CN 109778077 A CN109778077 A CN 109778077A CN 201711106937 A CN201711106937 A CN 201711106937A CN 109778077 A CN109778077 A CN 109778077A
Authority
CN
China
Prior art keywords
case material
pump case
smelting process
furnace
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711106937.7A
Other languages
English (en)
Other versions
CN109778077B (zh
Inventor
杨继伟
刘宏伟
刘宝惜
王军
印波
康秀红
胡小强
夏立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Dalian Huarui Heavy Industry Group Co Ltd
Original Assignee
Institute of Metal Research of CAS
Dalian Huarui Heavy Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS, Dalian Huarui Heavy Industry Group Co Ltd filed Critical Institute of Metal Research of CAS
Priority to CN201711106937.7A priority Critical patent/CN109778077B/zh
Publication of CN109778077A publication Critical patent/CN109778077A/zh
Application granted granted Critical
Publication of CN109778077B publication Critical patent/CN109778077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明涉及钢水冶炼领域,具体为一种核主泵泵壳材料的冶炼方法。该方法基于材料未固溶基体中铁素体含量比例控制在8~20%设计目的,采用电炉+LF+VOD的冶炼工艺对CAP1400核主泵泵壳材料成分进行稳定控制,最终实现铁素体15~20%的控制,并且将通过熔炼方式将成分中N含量控制在0.015~0.025%,满足核主泵泵壳材料成分要求:按重量百分比计,泵壳材料的化学成分范围如下:C≤0.08%、Mn≤1.5%、Si≤2.0%、P≤0.04%、S≤0.005%、Ni8.0~11%、Cr18~21%、Mo≤0.5%、Al≤0.05%,余量为Fe;同时,也满足基于赫尔等值方程计算结果的铁素体含量要求。

Description

一种核主泵泵壳材料的冶炼方法
技术领域
本发明涉及钢水冶炼领域,具体为一种核主泵泵壳材料的冶炼方法。
背景技术
CAP1400核主泵泵壳是CAP1400核电机组中核岛内的核一级铸件,材质为ASME SA-351CF8A奥氏体不锈钢(含铁素体8~20%),属于高温耐腐蚀承压部件。作为核电用关键件,为保证其性能稳定,必须在冶炼过程中对其成分进行稳定控制,因此有必要形成稳定的此钢种的冶炼方式。
发明内容
本发明的目的在于提供一种核主泵泵壳材料的冶炼方法,通过采用电炉+LF+VOD的冶炼工艺,能够稳定满足化学成分范围,也满足基于赫尔等值方程计算结果的铁素体含量要求。
本发明的技术方案是:
一种核主泵泵壳材料的冶炼方法,该冶炼方法采用电炉+LF炉+VOD炉的冶炼工艺,能够稳定满足化学成分范围,按重量百分含量计:C≤0.08%、Mn≤1.5%、Si≤2.0%、P≤0.04%、S≤0.005%、Ni 8.0~11%、Cr 18~21%、Mo≤0.5%、Al≤0.05%,余量为Fe;同时,满足基于赫尔等值方程计算结果的铁素体含量要求;其中,电炉采用双电炉熔炼;LF炉进行脱硫操作,调合金成分;VOD炉进行脱碳操作、控温操作;在VOD炉之后还进行还原操作,控制钢水的纯净度。
所述的核主泵泵壳材料的冶炼方法,电炉熔炼中选择两个电炉,一个电炉采用返回法,将需要的合金Cr、Ni、Mo基本在此炉中熔化;另一个电炉采用氧化法,主要控制钢水中磷的含量,将钢水中的磷含量控制在0.005wt%以下。
所述的核主泵泵壳材料的冶炼方法,第一个电炉钢水量与第二个电炉钢水重量比为2.5~3:1。
所述的核主泵泵壳材料的冶炼方法,电炉出钢后进行铝脱氧,返回法加铝量0.4~0.6kg/t,氧化法出钢时加铝量0.8~1.2kg/t;然后到LF炉进行扩散脱氧,其中SiC与硅铁粉按照1:1.5~2.5的重量比例混合添加,总加入量1.0~2.0kg/t;白渣时间高于20min,然后添加Mn及微调其它合金;钢水温度1610~1630℃、硫含量为0.005wt%以下,其关键成分碳控制在0.2~0.4wt%,硅控制在0.2~0.4wt%后出钢。
所述的核主泵泵壳材料的冶炼方法,LF炉精炼后,钢水进入VOD炉工位时,钢水温度控制在1570~1590℃,吹氧真空度控制在5~30KPa之间,氧枪高度1400~1700mm,底吹氩量保证钢液面翻开直径控制在400~700mm之间,通过实时观察系统微调;吹氧时间控制在20min之内,采用微氧分析仪对VOD中废气进行监控,确保仪器中废气二次峰完毕。
所述的核主泵泵壳材料的冶炼方法,VOD后钢水温度控制到1610~1640℃,利用钢水热量,采用直接添加石灰、硅铁粉、铝块的方式进行还原处理,真空处理时间为10~12min,碳含量≤0.04wt%,N含量0.015~0.025wt%;之后进行钢水软吹,浇注温度控制在1520~1540℃。
所述的核主泵泵壳材料的冶炼方法,经此冶炼方法能够准确将材料所需的冶炼关键成分最佳控制范围为:C 0.03~0.05wt%,Cr 19.5~20.5wt%,Ni 8.6~9.0wt%,满足铁素体含量要求。
所述的核主泵泵壳材料的冶炼方法,核主泵泵壳材料的未固溶基体中,铁素体含量比例控制在8~20wt%,最终实现铁素体含量比例15~20wt%的控制。
本发明的优点及有益效果是:
1、本发明通过双电炉熔炼的方式及配料的方法,既能够保证材料低磷含量要求,又能够节约成品。此外,配合后续精炼及VOD等工艺,保证钢水中氮含量控制在0.015~0.025%范围,保证基体具有良好的组织(未固溶基体中铁素体含量比例控制在8~20%),满足材料性能要求。
2、本发明采用LF出钢温度、成分控制,结合后续VOD吹氧、吹氩工艺,保证整个过程中,包括后续还原操作过程都没有进行二次加热,避免碳成分出格,具有较好的工艺稳定性。
3、本发明热处理方法可广泛应用在其它不锈钢钢种的生产。
具体实施方式
在具体实施过程中,本发明核主泵泵壳材料的冶炼方法,采用电炉+LF+VOD的冶炼工艺,能够稳定满足化学成分范围,按重量百分含量计:C≤0.08%、Mn≤1.5%(优选为1.2~1.3%)、Si≤2.0%(优选为1.6~1.8%)、P≤0.04%、S≤0.005%、Ni 8.0~11%、Cr 18~21%、Mo≤0.5%(优选为0.25~0.4%)、Al≤0.05%(优选为0.020~0.04%),余量为Fe;同时,满足基于赫尔等值方程计算结果的铁素体含量要求;其中,电炉采用双电炉熔炼;LF进行脱硫操作,调合金成分;VOD进行脱碳操作、控温操作;在VOD之后还进行还原操作,控制钢水的纯净度。
电炉熔炼中选择两个电炉,一个电炉采用返回法,将总需要的合金Cr、Ni、Mo在此炉中熔化;另一个电炉采用氧化法,主要控制钢水中磷的含量,将钢水中的磷含量控制在0.005%以下;通过这种方法,可以保证钢水中磷含量要求,又降低生产成本;同时,返回法中Cr含量高,钢水中的N含量吸收率高,经VOD合理工艺处理可使最终N含量达到0.015~0.025%。电炉出钢后进行铝脱氧,返回法加铝量0.4~0.6kg/t,氧化法出钢时加铝量0.8~1.2kg/t;然后到LF进行扩散脱氧,其中SiC与硅铁粉按照1:1.5~2.5的重量比例混合添加,总加入量1.0~2.0kg/t;白渣时间高于20min(优选为20~30min),然后添加Mn及微调其它合金;钢水温度1610~1630℃、硫含量为0.005%以下,其关键成分碳控制在0.2~0.4%,硅控制在0.2~0.4%后出钢。LF炉精炼后,钢水进入VOD工位时,钢水温度控制在1570~1590℃,吹氧真空度控制在5~30KPa之间,氧枪高度1400~1700mm,底吹氩量保证钢液面翻开直径控制在400~700mm之间,通过实时观察系统微调;吹氧时间控制在20min之内(优选为17~20min),采用微氧分析仪对VOD中废气进行监控,确保仪器中废气二次峰完毕。VOD后钢水温度控制到1610~1640℃,不需要采用二次电极加热的方式,利用钢水热量,采用直接添加石灰、硅铁粉、铝块的方式进行还原处理,真空处理时间为10~12min,这时的碳含量≤0.04%,N含量0.015~0.025%;之后进行钢水软吹,浇注温度控制在1520~1540℃。
下面,通过实施例对本发明作进一步详细说明。
实施例1
本实施例中,根据以上冶炼方法所获得的核主泵泵壳材料成分如下:
根据ASME标准,铁素体含量应为8~20%,根据前面测定的化学成分,按照下列赫尔等值方程,计算铁素体含量为17.61%。
赫尔等值方程:
Creq=Cr+1.21(Mo)+0.48(Si)-4.99
Nieq=Ni+0.11(Mn)-0.0086(Mn)2+18.4(N)+24.5(C)+2.77
其中,Creq为铬当量,Nieq为铬当量,表示铁素体含量(wt%)。
采用双电炉熔炼:第一个电炉为返回法熔炼,将采用低磷高Cr优质返回料,其它Cr、Ni、Mo合金也在此炉熔化,熔化后的钢水中的磷含量为0.03%;第二个电炉为氧化法熔炼,采用优质低磷废钢,熔炼后的钢水中的磷含量为0.005%。第一个电炉钢水量与第二个电炉钢水重量比约为2.85:1。
电炉出钢及LF精炼操作:电炉出钢后进行铝脱氧,返回法加铝量0.5kg/t,氧化法出钢时加铝量1kg/t。然后到LF进行扩散脱氧,其中SiC与硅铁粉按照1:2重量比例混合添加,总加入量1.5kg/t。白渣时间25min,然后添加Mn及微调其它合金。钢水温度1630℃、硫含量为0.003%,其关键成分碳控制在0.3%,硅含量控制在0.28%。
VOD工位操作:入VOD工位时钢水温度控制在1585℃,吹氧真空度初期控制在20~30KPa,后期控制在5~20KPa之间,氧枪高度初期在1500~1700mm,后期调整到1400~1500mm。底吹氩量保证钢液面翻开直径约控制在650mm,通过实时观察系统微调。吹氧时间控制在18min,采用微氧分析仪对VOD中废气进行监控,确保仪器中废气二次峰完毕。
VOD后处理操作:钢水温度达到1630℃,不需要采用二次电极加热的方式,利用钢水热量,采用直接添加石灰、硅铁粉、铝块的方式进行还原处理,真空处理时间为10min,这时的碳含量0.04%,N含量0.018%。之后进行钢水软吹,浇注温度达到1530℃,铝含量为0.03%。
实施例结果表明,材料经热处理后,满足材料性能要求。
实施例2
本实施例中,根据以上冶炼方法所获得的核主泵泵壳材料成分如下:
元素 含量(wt%)
C 0.043
Mn 1.22
Si 1.71
P 0.024
S 0.002
Ni 8.94
Cr 19.77
Mo 0.33
Al 0.025
Fe 余量
根据ASME标准,铁素体含量应为8~20%,根据前面测定的化学成分,按照下列赫尔等值方程,计算铁素体含量为19.77%。
赫尔等值方程:
Creq=Cr+1.21(Mo)+0.48(Si)-4.99
Nieq=Ni+0.11(Mn)-0.0086(Mn)2+18.4(N)+24.5(C)+2.77
其中,Creq为铬当量,Nieq为铬当量,表示铁素体含量(wt%)。
采用双电炉熔炼:第一个电炉为返回法熔炼,将采用低磷高Cr优质返回料,其它Cr、Ni、Mo合金也在此炉熔化,熔化后的钢水中的磷含量为0.03%;第二个电炉为氧化法熔炼,采用优质低磷废钢,熔炼后的钢水中的磷含量为0.003%。第一个电炉钢水量与第二个电炉钢水重量比约为2.8:1。
电炉出钢及LF精炼操作:电炉出钢后进行铝脱氧,返回法加铝量0.5kg/t,氧化法出钢时加铝量1kg/t。然后到LF进行扩散脱氧,其中SiC与硅铁粉按照1:2重量比例混合添加,总加入量1.5kg/t。白渣时间35min,然后添加Mn及微调其它合金。钢水温度1630℃、硫含量为0.003%,其关键成分碳控制在0.35%,硅含量控制在0.35%。
VOD工位操作:入VOD工位时钢水温度控制在1575℃,吹氧真空度初期控制在20~30KPa,后期控制在5~20KPa之间,氧枪高度初期在1500~1700mm,后期调整到1400~1500mm。底吹氩量保证钢液面翻开直径约控制在450mm,通过实时观察系统微调。吹氧时间控制在19min,采用微氧分析仪对VOD中废气进行监控,确保仪器中废气二次峰完毕。
VOD后处理操作:钢水温度达到1635℃,不需要采用二次电极加热的方式,利用钢水热量,采用直接添加石灰、硅铁粉、铝块的方式进行还原处理,真空处理时间为12min,这时的碳含量0.043%,N含量0.022%。之后进行钢水软吹,浇注温度达到1525℃,铝含量为0.025%。
实施例结果表明,材料经热处理后,满足材料性能要求。
实施例3
本实施例中,根据以上冶炼方法所获得的核主泵泵壳材料成分如下:
元素 含量(wt%)
C 0.031
Mn 1.16
Si 1.71
P 0.025
S 0.001
Ni 8.86
Cr 19.97
Mo 0.33
Al 0.02
Fe 余量
根据ASME标准,铁素体含量应为8~20%,根据前面测定的化学成分,按照下列赫尔等值方程,计算铁素体含量为18.51%。
赫尔等值方程:
Creq=Cr+1.21(Mo)+0.48(Si)-4.99
Nieq=Ni+0.11(Mn)-0.0086(Mn)2+18.4(N)+24.5(C)+2.77
其中,Creq为铬当量,Nieq为铬当量,表示铁素体含量(wt%)。
采用双电炉熔炼:第一个电炉为返回法熔炼,将采用低磷高Cr优质返回料,其它Cr、Ni、Mo合金也在此炉熔化,熔化后的钢水中的磷含量为0.031%;第二个电炉为氧化法熔炼,采用优质低磷废钢,熔炼后的钢水中的磷含量为0.005%。第一个电炉钢水量与第二个电炉钢水重量比约为2.9:1。
电炉出钢及LF精炼操作:电炉出钢后进行铝脱氧,返回法加铝量0.5kg/t,氧化法出钢时加铝量1kg/t。然后到LF进行扩散脱氧,其中SiC与硅铁粉按照1:2重量比例混合添加,总加入量1.5kg/t。白渣时间25min,然后添加Mn及微调其它合金。钢水温度1630℃、硫含量为0.001%,其关键成分碳控制在0.4%,硅含量控制在0.24%。
VOD工位操作:入VOD工位时钢水温度控制在1580℃,吹氧真空度初期控制在20~30KPa,后期控制在5~20KPa之间,氧枪高度初期在1500~1700mm,后期调整到1400~1500mm。底吹氩量保证钢液面翻开直径约控制在550mm,通过实时观察系统微调。吹氧时间控制在20min,采用微氧分析仪对VOD中废气进行监控,确保仪器中废气二次峰完毕。
VOD后处理操作:钢水温度达到1630℃,不需要采用二次电极加热的方式,利用钢水热量,采用直接添加石灰、硅铁粉、铝块的方式进行还原处理,真空处理时间为12min,这时的碳含量0.031%,N含量0.018%。之后进行钢水软吹,浇注温度达到1535℃,铝含量为0.02%。
实施例结果表明,材料经热处理后,满足材料性能要求。

Claims (8)

1.一种核主泵泵壳材料的冶炼方法,其特征在于,该冶炼方法采用电炉+LF炉+VOD炉的冶炼工艺,能够稳定满足化学成分范围,按重量百分含量计:C≤0.08%、Mn≤1.5%、Si≤2.0%、P≤0.04%、S≤0.005%、Ni 8.0~11%、Cr 18~21%、Mo≤0.5%、Al≤0.05%,余量为Fe;同时,满足基于赫尔等值方程计算结果的铁素体含量要求;其中,电炉采用双电炉熔炼;LF炉进行脱硫操作,调合金成分;VOD炉进行脱碳操作、控温操作;在VOD炉之后还进行还原操作,控制钢水的纯净度。
2.根据权利要求1所述的核主泵泵壳材料的冶炼方法,其特征在于,电炉熔炼中选择两个电炉,一个电炉采用返回法,将需要的合金Cr、Ni、Mo基本在此炉中熔化;另一个电炉采用氧化法,主要控制钢水中磷的含量,将钢水中的磷含量控制在0.005wt%以下。
3.根据权利要求2所述的核主泵泵壳材料的冶炼方法,其特征在于,第一个电炉钢水量与第二个电炉钢水重量比为2.5~3:1。
4.根据权利要求1所述的核主泵泵壳材料的冶炼方法,其特征在于,电炉出钢后进行铝脱氧,返回法加铝量0.4~0.6kg/t,氧化法出钢时加铝量0.8~1.2kg/t;然后到LF炉进行扩散脱氧,其中SiC与硅铁粉按照1:1.5~2.5的重量比例混合添加,总加入量1.0~2.0kg/t;白渣时间高于20min,然后添加Mn及微调其它合金;钢水温度1610~1630℃、硫含量为0.005wt%以下,其关键成分碳控制在0.2~0.4wt%,硅控制在0.2~0.4wt%后出钢。
5.根据权利要求1所述的核主泵泵壳材料的冶炼方法,其特征在于,LF炉精炼后,钢水进入VOD炉工位时,钢水温度控制在1570~1590℃,吹氧真空度控制在5~30KPa之间,氧枪高度1400~1700mm,底吹氩量保证钢液面翻开直径控制在400~700mm之间,通过实时观察系统微调;吹氧时间控制在20min之内,采用微氧分析仪对VOD中废气进行监控,确保仪器中废气二次峰完毕。
6.根据权利要求1所述的核主泵泵壳材料的冶炼方法,其特征在于,VOD后钢水温度控制到1610~1640℃,利用钢水热量,采用直接添加石灰、硅铁粉、铝块的方式进行还原处理,真空处理时间为10~12min,碳含量≤0.04wt%,N含量0.015~0.025wt%;之后进行钢水软吹,浇注温度控制在1520~1540℃。
7.根据权利要求1至6之一所述的核主泵泵壳材料的冶炼方法,其特征在于,经此冶炼方法能够准确将材料所需的冶炼关键成分最佳控制范围为:C 0.03~0.05wt%,Cr 19.5~20.5wt%,Ni 8.6~9.0wt%,满足铁素体含量要求。
8.根据权利要求7所述的核主泵泵壳材料的冶炼方法,其特征在于,核主泵泵壳材料的未固溶基体中,铁素体含量比例控制在8~20wt%,最终实现铁素体含量比例15~20wt%的控制。
CN201711106937.7A 2017-11-10 2017-11-10 一种核主泵泵壳材料的冶炼方法 Active CN109778077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711106937.7A CN109778077B (zh) 2017-11-10 2017-11-10 一种核主泵泵壳材料的冶炼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711106937.7A CN109778077B (zh) 2017-11-10 2017-11-10 一种核主泵泵壳材料的冶炼方法

Publications (2)

Publication Number Publication Date
CN109778077A true CN109778077A (zh) 2019-05-21
CN109778077B CN109778077B (zh) 2021-01-08

Family

ID=66485417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711106937.7A Active CN109778077B (zh) 2017-11-10 2017-11-10 一种核主泵泵壳材料的冶炼方法

Country Status (1)

Country Link
CN (1) CN109778077B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725814A (zh) * 2021-08-27 2023-03-03 天津重型装备工程研究有限公司 一种核电机组主管道钢锭的冶炼方法及钢锭

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162510A (zh) * 1996-03-22 1997-10-22 犹齐诺-萨西洛公司 在一个或两个带凹坑表面的活动壁连续铸造奥氏体不锈钢带的方法及铸造设备
CN1351528A (zh) * 1999-04-22 2002-05-29 于西纳公司 表面质量极好的奥氏体不锈钢带的双辊连铸方法以及利用该方法所获得的带材
CN101058842A (zh) * 2007-05-25 2007-10-24 山西太钢不锈钢股份有限公司 一种提高低温钢板韧性的方法
CN101294234A (zh) * 2008-06-19 2008-10-29 武汉钢铁(集团)公司 一种用于返回法冶炼不锈钢的脱硫剂
CN101307410A (zh) * 2007-05-15 2008-11-19 南通特钢有限公司 加氢裂化装置用炉管的冶炼方法
CN101307409A (zh) * 2007-05-15 2008-11-19 南通特钢有限公司 加氢裂化装置用炉管的选料及备料方法
CN101328555A (zh) * 2007-06-22 2008-12-24 大冶特殊钢股份有限公司 一种高质量低磷硫高合金钢的混炼方法
CN101476016A (zh) * 2008-12-26 2009-07-08 内蒙古北方重工业集团有限公司 不锈钢冶炼方法
CN101487104A (zh) * 2009-03-03 2009-07-22 北京科技大学 一种碳钢/不锈钢复合材料及制备方法
CN101892437A (zh) * 2009-05-22 2010-11-24 宝山钢铁股份有限公司 一种镜面抛光性良好的低磁奥氏体不锈钢及其制造方法
CN102691001A (zh) * 2011-03-22 2012-09-26 宝山钢铁股份有限公司 一种具优异表面抛光加工性能的奥氏体不锈钢制造方法
CN102766726A (zh) * 2012-08-02 2012-11-07 山西太钢不锈钢股份有限公司 一种使用高铬熔体和脱磷预熔体冶炼不锈钢的方法
CN102876865A (zh) * 2012-08-31 2013-01-16 陈德祥 一种304不锈钢的热处理方法
WO2014030607A1 (ja) * 2012-08-20 2014-02-27 新日鐵住金株式会社 ステンレス鋼板とその製造方法
CN104263880A (zh) * 2014-10-11 2015-01-07 中冶南方工程技术有限公司 一种适应高磷原料的不锈钢冶炼方法
CN204185511U (zh) * 2014-10-11 2015-03-04 中冶南方工程技术有限公司 一种适应高磷原料的不锈钢冶炼装置
CN105074031A (zh) * 2013-03-22 2015-11-18 丰田自动车株式会社 奥氏体耐热铸钢及其制造方法
CN105518161A (zh) * 2013-07-05 2016-04-20 奥托库姆普联合股份公司 抵抗延迟开裂的不锈钢及其生产方法
CN107075651A (zh) * 2014-09-17 2017-08-18 新日铁住金株式会社 奥氏体系不锈钢钢板

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162510A (zh) * 1996-03-22 1997-10-22 犹齐诺-萨西洛公司 在一个或两个带凹坑表面的活动壁连续铸造奥氏体不锈钢带的方法及铸造设备
CN1351528A (zh) * 1999-04-22 2002-05-29 于西纳公司 表面质量极好的奥氏体不锈钢带的双辊连铸方法以及利用该方法所获得的带材
CN101307410A (zh) * 2007-05-15 2008-11-19 南通特钢有限公司 加氢裂化装置用炉管的冶炼方法
CN101307409A (zh) * 2007-05-15 2008-11-19 南通特钢有限公司 加氢裂化装置用炉管的选料及备料方法
CN101058842A (zh) * 2007-05-25 2007-10-24 山西太钢不锈钢股份有限公司 一种提高低温钢板韧性的方法
CN101328555A (zh) * 2007-06-22 2008-12-24 大冶特殊钢股份有限公司 一种高质量低磷硫高合金钢的混炼方法
CN101294234A (zh) * 2008-06-19 2008-10-29 武汉钢铁(集团)公司 一种用于返回法冶炼不锈钢的脱硫剂
CN101476016A (zh) * 2008-12-26 2009-07-08 内蒙古北方重工业集团有限公司 不锈钢冶炼方法
CN101487104A (zh) * 2009-03-03 2009-07-22 北京科技大学 一种碳钢/不锈钢复合材料及制备方法
CN101892437A (zh) * 2009-05-22 2010-11-24 宝山钢铁股份有限公司 一种镜面抛光性良好的低磁奥氏体不锈钢及其制造方法
CN102691001A (zh) * 2011-03-22 2012-09-26 宝山钢铁股份有限公司 一种具优异表面抛光加工性能的奥氏体不锈钢制造方法
CN102766726A (zh) * 2012-08-02 2012-11-07 山西太钢不锈钢股份有限公司 一种使用高铬熔体和脱磷预熔体冶炼不锈钢的方法
WO2014030607A1 (ja) * 2012-08-20 2014-02-27 新日鐵住金株式会社 ステンレス鋼板とその製造方法
CN102876865A (zh) * 2012-08-31 2013-01-16 陈德祥 一种304不锈钢的热处理方法
CN105074031A (zh) * 2013-03-22 2015-11-18 丰田自动车株式会社 奥氏体耐热铸钢及其制造方法
CN105518161A (zh) * 2013-07-05 2016-04-20 奥托库姆普联合股份公司 抵抗延迟开裂的不锈钢及其生产方法
CN107075651A (zh) * 2014-09-17 2017-08-18 新日铁住金株式会社 奥氏体系不锈钢钢板
CN104263880A (zh) * 2014-10-11 2015-01-07 中冶南方工程技术有限公司 一种适应高磷原料的不锈钢冶炼方法
CN204185511U (zh) * 2014-10-11 2015-03-04 中冶南方工程技术有限公司 一种适应高磷原料的不锈钢冶炼装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725814A (zh) * 2021-08-27 2023-03-03 天津重型装备工程研究有限公司 一种核电机组主管道钢锭的冶炼方法及钢锭
CN115725814B (zh) * 2021-08-27 2023-12-08 天津重型装备工程研究有限公司 一种核电机组主管道钢锭的冶炼方法及钢锭

Also Published As

Publication number Publication date
CN109778077B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN106636953B (zh) 一种锅炉管用马氏体不锈钢p91冶炼方法
CN104962800B (zh) 一种不锈钢材料的冶炼方法
CN105603312B (zh) 一种超纯度工业纯铁的制造方法
EP4253586A1 (en) Preparation method for low-temperature impact toughness-resistant wind power steel
CN104988283B (zh) 一种双相不锈钢冶炼工艺
CN104087854A (zh) 马氏体不锈钢钢材
CN103627973B (zh) 一种低碳高铬钢的生产方法
CN102248142A (zh) 一种中低碳铝镇静钢的生产方法
CN102382925A (zh) 一种超纯度工业纯铁的制造方法
CN106555124B (zh) 高铬、高钼铁素体不锈钢的制备方法
CN111705260B (zh) 一种超纯15-5ph不锈钢电渣锭及其制备方法
CN108588541A (zh) 一种提高硼元素收得率的低氮含硼钢冶炼方法
CN105648357A (zh) 一种低温冲击用马氏体不锈钢冶炼方法
CN109576577A (zh) 耐大气腐蚀焊丝th550-nq-ⅱ钢的生产方法
CN102787206B (zh) 控制中碳含铬模具钢钢锭中氮含量的冶炼方法
CN115044820B (zh) 一种超低碳超低硫纯铁的冶炼方法
CN103320718A (zh) 316ln核电用奥氏体不锈钢的生产方法
CN109402328B (zh) 一种精炼炉冶炼双相不锈钢碳元素含量控制方法
CN108048737A (zh) 钻采提升设备主承载件用钢及其制备方法
CN103642967B (zh) 一种转炉生产高铬钢的方法
CN105177408A (zh) 低成本热轧含硼薄带钢及其制造方法
CN103160739B (zh) 一种连铸80mm厚度桥梁钢Q420qE及其制备工艺
CN105861773B (zh) 高钛气保焊丝er70s‑g用钢控制钛、硫含量的冶炼方法
CN103498099A (zh) 一种低温时效性能优异的厚规格钢板及其制造方法
CN109778077A (zh) 一种核主泵泵壳材料的冶炼方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant