CN109766659A - 一种考虑风荷载与通电时间影响的导线垂度计算方法 - Google Patents

一种考虑风荷载与通电时间影响的导线垂度计算方法 Download PDF

Info

Publication number
CN109766659A
CN109766659A CN201910077686.7A CN201910077686A CN109766659A CN 109766659 A CN109766659 A CN 109766659A CN 201910077686 A CN201910077686 A CN 201910077686A CN 109766659 A CN109766659 A CN 109766659A
Authority
CN
China
Prior art keywords
temperature
conducting wire
conductor
change
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910077686.7A
Other languages
English (en)
Other versions
CN109766659B (zh
Inventor
晏致涛
胡伟
刘欣鹏
李妍
孙毅
张璞
王灵芝
钟永力
赵爽
游溢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201910077686.7A priority Critical patent/CN109766659B/zh
Publication of CN109766659A publication Critical patent/CN109766659A/zh
Application granted granted Critical
Publication of CN109766659B publication Critical patent/CN109766659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

本发明工况了一种考虑风荷载与通电时间影响的导线垂度计算方法,所述导线为钢芯铝绞线,本发明能够精确求解风荷载下以及通电时间影响下的温度变化产生的导线垂度变化。包括:S1、试验确定导线通电后,温度随时间变化的规律:分别试验钢芯以及各内层铝绞线、外层铝绞线温度随时间变化的规律,且分别测试内层铝绞线、外层铝绞线的迎风面、背风面、上风面、下风面;S2、建立导线的有限元模型,并基于该模型,计算导线的等效平均温度;S3、在不作用温度荷载只改变弹性模量的情况下,测试多种工况下,导线垂度随时间的变化情况;在不改变弹性模量的情况下,将平均温度对应的温度荷载作用在模型上,得到导线垂度随通电时间的变化情况。

Description

一种考虑风荷载与通电时间影响的导线垂度计算方法
技术领域
本发明涉及输电技术领域,特别是涉及一种考虑风荷载与通电时间影响的导线垂度计算方法。
背景技术
目前温度对导线的垂度变化进行数值模拟分析属于传统的力学分析方法,比较成熟,通过定义不同温度下导线的线胀系数,施加不同的温度荷载,通过有限元软件即可实现。但是由于受到风的影响,导线上作用的温度荷载以及弹性模量都将随时间产生变化。导线上的迎风侧和背风侧以及内外圈层的温度均不同,其对垂度的影响需要考虑。
发明内容
本发明的目的在于克服现有技术的不足,提供一种考虑风荷载与通电时间影响的导线垂度计算方法,本发明能够精确求解风荷载下以及通电时间影响下的温度变化产生的导线垂度变化。
本发明的目的是这样实现的:
一种考虑风荷载与通电时间影响的导线垂度计算方法,所述导线为钢芯铝绞线,
S1、试验确定导线通电后,温度随时间变化的规律
分别试验钢芯以及各内层铝绞线、外层铝绞线温度随时间变化的规律,且分别测试内层铝绞线、外层铝绞线的迎风面、背风面、上风面、下风面;
S2、建立导线的有限元模型,并基于该模型,计算导线的等效平均温度;
S3、在不作用温度荷载只改变弹性模量的情况下,测试多种工况下,导线垂度随时间的变化情况;
在不改变弹性模量的情况下,将平均温度对应的温度荷载作用在模型上,得到导线垂度随通电时间的变化情况。
优选地,S2中,导线的等效平均温度的计算方法为:对模型两端的位移在轴向方向进行耦合,确保两端在变形后仍然为平面,在对每一股导线作用不同的温度荷载后,提取模型轴线方向的位移变化量l1,再在整个模型上作用相同的温度荷载,提取模型轴向方向的位移变化量l2,最后对比l1和l2的值,当l1=l2时,l2对应的温度值就是此时钢芯铝绞线对应的平均温度值;
计算多种工况下对应的平均温度值,并将各工况对应的平均温度与时间的关系进行曲线拟合,以求出其他时间点的温度,进而得到等效平均温度随通电时间的变化情况。
由于采用了上述技术方案,本发明通过定义截面不同位置的温度不同时对应的等效平均温度,能够精确求解风荷载下以及通电时间影响下的温度变化产生的导线变形以及温度引起弹性模量变化后产生的垂度变形。适用于精确评估在线监测系统中输电线的张力和变形。
与传统的计算方法仅仅只考虑均匀温度变化对输电线垂度的影响不同,本专利精确考虑了三方面变形:(1)温度产生导线变形;(2)风荷载导致温度分布变化;(3)温度导致钢芯铝绞线的弹性模量发生变化。综合考虑各种因素后,可以更加全面地考虑实际输电线路中的垂度、张力、温度等的关系。
附图说明
图1为钢芯温度随时间的变化图;
图2a为内层铝绞线温度随时间的变化图;
图2b为外层铝绞线温度随时间的变化图;
图3为ACSR-300/25钢芯铝绞线横截面温度示意图;
图4为ACSR-300/25钢芯铝绞线有限元模型;
图5为ACSR300/25导线截面平均温度与时间关系的拟合曲线;
图6为ACSR300/25导线截面等效平均温度变化曲线;
图7为弹性模量改变后ACSR300/25导线垂度随时间变化曲线;
图8为温度改变后ACSR300/40导线垂度随时间变化曲线;
图9为ACSR300/25导线垂度随时间变化曲线。
具体实施方式
参见图1-图9,一种考虑风荷载与通电时间影响的导线垂度计算方法的实施例,本实施例中的导线采用钢芯铝绞线。
1、导线通电温度随时间变化
通过试验,将一组导线通电后温度随时间的变化数据应用于此次研究。此次测量通电导线温度随试件变化的试验条件为:1500A电流作用下,1m/s风速作用下,每隔10秒测量出的数据,直到导线的温度平稳,试验总进行时间为2000s。试验结果如图1、图2a、图2b所示。
由图1、图2a、图2b可以看出,钢芯的温度1200s后稳定在85℃。内层铝绞线上部、下部、背风面的温度都与钢芯的温度相差不超过5℃。由于金属的弹性模量对于温度的不敏感性,且由试验拟合出的曲线推测,20℃时钢芯铝绞线的综合弹性模量为51.8583GPa,当温度升高至50℃时钢芯铝绞线的综合弹性模量降低至50.6968GPa,其变化率为2.3%,故80℃和85℃的曲线可视为稳定在85℃。内层铝绞线迎风面稳定在70℃。外层铝绞线上部和下部的铝绞线温度相差不超过5℃,可视为稳定后在80℃。80℃与85℃相差不超过5℃,故外层铝绞线上部和下部也视为85℃。外层铝绞线迎风面和背风面的温度相差不超过5℃,可视为稳定后在70℃。
最终ACSR300/25钢芯铝绞线截面温度分布示意图如图3所示。
2、钢芯铝绞线的等效平均温度
在对导线有限元模型作用温度荷载时,由于导线单元中不能分开对导线中的每一股进行温度荷载的设置,故需要先求出导线不同位置截面在设定的不同时间内的平均温度。在图4上对100mm的钢芯铝绞线实体模型的截面不同位置作用对应的温度荷载,在考虑风的影响下,导线的温度曲线采用上一步中每一股绞线的典型温度曲线。
对模型两端的位移在轴向方向进行耦合,确保两端在变形后仍然为平面(即两端的伸缩状态一致)。在对每一股导线作用不同的温度荷载后,提取模型轴线方向的位移变化量l1。再在整个模型上作用相同的温度荷载,提取模型轴向方向的位移变化量l2。最后对比l1和l2的值,当l1=l2时,l2对应的温度值就是此时钢芯铝绞线对应的平均温度值。计算的工况以及对应的平均温度值如下表所示:
表1 不同工况下ACSR-300/25导线的等效平均温度表
将上表所示的5个工况对应的平均温度与时间的关系进行曲线拟合,以求出其他时间点的温度,通电时间和平均温度的拟合公式为:
y=1E-08x3-6E-05x2+0.1016x+20.636 (1)
拟合曲线如图5所示。
利用拟合的曲线的公式(1)将每10s对应的平均温度求出来,等效平均温度随通电时间的变化情况如图6所示。
3、导线垂度随通电时间的变化
考虑风影响下温度变化,求得等效平均温度,进而求得弹性模量的变化情况。不作用温度荷载只改变弹性模量的情况下,每个工况都进行一次计算,计算结果的导线垂度随时间的变化情况如下表所示。
表2 不同工况下ACSR-300/25导线垂度变化表
只改变弹性模量,导线垂度的变化曲线如图7所示。
在不改变弹性模量的情况下,将平均温度曲线对应的温度荷载作用在模型上,导线垂度随通电时间的变化情况如图8所示。
由图8可见,弹性模量的改变使导线垂度增加了0.1228m,温度的改变使导线垂度增加了2.0314m,将两条曲线进行叠加后,得到导线垂度随时间的变化曲线,如下图所示。
如图9所示,在风的影响下导线温度也在1500s左右趋于稳定,垂度变化也趋于稳定,即在10m/s的风速影响下档距为400m的ACSR300/25型号的钢芯铝绞线垂度增加了2.1542m。其中由于弹性模量的改变导致导线垂度的增加量占总增加量的5%。
本发明建立了导线垂度的有限元模型,在模型上作用温度荷载并改变弹性模量,然后利用ANSYS计算导线垂度的变化量。对通电后的导线垂度的变化情况进行了研究,再探讨了风对钢芯铝绞线垂度的影响规律。得到的结果如下:
在线膨胀系数和弹性模量的影响下,导线温度的改变使导线垂度发生很大的变化,在400m档距的时候导线在常温下的垂度为12.26m,但是在通电1500A后当导线的整体温度升高到85℃时导线的垂度增加了2.4908m,与常温时的垂度对比高温下导线垂度增加率为20%。
利用同样的方法对通电有风时400m档距的ACR300/25型号导线垂度的变化量进行有限元分析,分析发现此时导线垂度的变化量为2.1542m。与通电无风时导线垂度的变化量2.4908m进行对比,发现有风时的垂度比无风时的垂度变化量减少了15%。
温度使导线弹性模量发生变化,但是在400m档距时弹性模量的改变对导线垂度的影响不大。当通电无风时由于弹性模量的改变导致导线垂度的增加量占总增加量的6%,当通电有风时由于弹性模量的改变导致导线垂度的增加量占总增加量的5%。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (2)

1.一种考虑风荷载与通电时间影响的导线垂度计算方法,所述导线为钢芯铝绞线,其特征在于:
S1、试验确定导线通电后,温度随时间变化的规律
分别试验钢芯以及各内层铝绞线、外层铝绞线温度随时间变化的规律,且分别测试内层铝绞线、外层铝绞线的迎风面、背风面、上风面、下风面;
S2、建立导线的有限元模型,并基于该模型,计算导线的等效平均温度;
S3、在不作用温度荷载只改变弹性模量的情况下,测试多种工况下,导线垂度随时间的变化情况;
在不改变弹性模量的情况下,将平均温度对应的温度荷载作用在模型上,得到导线垂度随通电时间的变化情况。
2.根据权利要求1所述的一种考虑风荷载与通电时间影响的导线垂度计算方法,其特征在于:S2中,导线的等效平均温度的计算方法为:对模型两端的位移在轴向方向进行耦合,确保两端在变形后仍然为平面,在对每一股导线作用不同的温度荷载后,提取模型轴线方向的位移变化量l1,再在整个模型上作用相同的温度荷载,提取模型轴向方向的位移变化量l2,最后对比l1和l2的值,当l1=l2时,l2对应的温度值就是此时钢芯铝绞线对应的平均温度值;
计算多种工况下对应的平均温度值,并将各工况对应的平均温度与时间的关系进行曲线拟合,以求出其他时间点的温度,进而得到等效平均温度随通电时间的变化情况。
CN201910077686.7A 2019-01-28 2019-01-28 一种考虑风荷载与通电时间影响的导线垂度计算方法 Active CN109766659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910077686.7A CN109766659B (zh) 2019-01-28 2019-01-28 一种考虑风荷载与通电时间影响的导线垂度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910077686.7A CN109766659B (zh) 2019-01-28 2019-01-28 一种考虑风荷载与通电时间影响的导线垂度计算方法

Publications (2)

Publication Number Publication Date
CN109766659A true CN109766659A (zh) 2019-05-17
CN109766659B CN109766659B (zh) 2022-11-08

Family

ID=66455405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910077686.7A Active CN109766659B (zh) 2019-01-28 2019-01-28 一种考虑风荷载与通电时间影响的导线垂度计算方法

Country Status (1)

Country Link
CN (1) CN109766659B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111177641A (zh) * 2019-12-23 2020-05-19 中国能源建设集团江苏省电力设计院有限公司 一种大风速下导线温升评估方法
CN112541630A (zh) * 2020-12-10 2021-03-23 国网辽宁省电力有限公司丹东供电公司 一种基于天气变化的输电导线垂度预测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189061A1 (en) * 2007-02-05 2008-08-07 Abb Research Ltd. Real-time power-line sag monitoring using time-synchronized power system measurements
US20090138229A1 (en) * 2007-05-08 2009-05-28 John Engelhardt Power line temperature and sag monitor system
CN101707077A (zh) * 2009-08-03 2010-05-12 浙江石金玄武岩纤维有限公司 制造架空输电铝绞线用智能复合芯
CN104931335A (zh) * 2015-06-05 2015-09-23 北京大学 导电功能材料力电耦合效应测试系统及其测试方法
CN105138740A (zh) * 2015-07-29 2015-12-09 广东电网有限责任公司电力科学研究院 基于温度场和分层应力的输电导线拐点载流量求解方法
CN106326584A (zh) * 2016-08-29 2017-01-11 国网江西省电力公司电力科学研究院 一种输电线路风‑冰耦合荷载断线效应的分析方法
CN108959742A (zh) * 2018-06-20 2018-12-07 重庆科技学院 大跨越输电塔线体系气动弹性模型设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189061A1 (en) * 2007-02-05 2008-08-07 Abb Research Ltd. Real-time power-line sag monitoring using time-synchronized power system measurements
US20090138229A1 (en) * 2007-05-08 2009-05-28 John Engelhardt Power line temperature and sag monitor system
CN101707077A (zh) * 2009-08-03 2010-05-12 浙江石金玄武岩纤维有限公司 制造架空输电铝绞线用智能复合芯
CN104931335A (zh) * 2015-06-05 2015-09-23 北京大学 导电功能材料力电耦合效应测试系统及其测试方法
CN105138740A (zh) * 2015-07-29 2015-12-09 广东电网有限责任公司电力科学研究院 基于温度场和分层应力的输电导线拐点载流量求解方法
CN106326584A (zh) * 2016-08-29 2017-01-11 国网江西省电力公司电力科学研究院 一种输电线路风‑冰耦合荷载断线效应的分析方法
CN108959742A (zh) * 2018-06-20 2018-12-07 重庆科技学院 大跨越输电塔线体系气动弹性模型设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
沈卫娜 等: "移动磁场作用下的通电导线的非线性动力学分析", 《河北理工大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111177641A (zh) * 2019-12-23 2020-05-19 中国能源建设集团江苏省电力设计院有限公司 一种大风速下导线温升评估方法
CN111177641B (zh) * 2019-12-23 2023-07-07 中国能源建设集团江苏省电力设计院有限公司 一种大风速下导线温升评估方法
CN112541630A (zh) * 2020-12-10 2021-03-23 国网辽宁省电力有限公司丹东供电公司 一种基于天气变化的输电导线垂度预测方法

Also Published As

Publication number Publication date
CN109766659B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN105353256B (zh) 一种输变电设备状态异常检测方法
CN104764985A (zh) 一种基于参数辨识估计油纸绝缘系统低频介损方法
Feng et al. Evaluation of power transformers' effective hot-spot factors by thermal modeling of scrapped units
WO2023103278A1 (zh) 基于地线电磁信号的输电线路导线位置信息在线监测方法
CN109766659A (zh) 一种考虑风荷载与通电时间影响的导线垂度计算方法
CN105844538A (zh) 一种基于故障严重度的电力电缆风险评估方法
CN104459380A (zh) 电缆负荷载流量的测量方法和系统
CN106990310B (zh) 架空输电导线容量特性监测系统、测试方法及装置
CN105676015B (zh) 一种输电线路载流量计算方法
Fernandez et al. Dynamic line rating systems for wind power integration
CN109060214A (zh) 一种不平衡张力工况下的导线应力监测方法
CN109408928A (zh) 一种v型绝缘子悬挂方式的优化方法
CN110108983B (zh) 一种智能电缆状态在线测控管理方法
CN107329022A (zh) 一种输电线路热载荷能力分析方法
CN116222466A (zh) 耐张塔导线覆冰厚度监测方法、装置、设备和介质
Mo et al. Study on operating status of overhead transmission lines based on wind speed variation
Balangó et al. Overview of a new dynamic line rating system, from modelling to measurement
CN105975697B (zh) 输电塔迎风面积确定方法及装置
Lawry et al. Overhead line thermal rating calculation based on conductor replica method
CN111666690B (zh) 输电线路导线的弧垂分析方法、装置、设备和介质
Ramachandran et al. On-line monitoring of sag in overhead transmission lines with leveled spans
Fernandez et al. Power line monitoring for the analysis of overhead line rating forecasting methods
CN115877268B (zh) 一种智慧照明系统中l-n间漏电点定位监测和告警方法
Bedialauneta Landaribar et al. Uncertainties in the Testing of the Coefficient of Thermal Expansion of Overhead Conductors
CN103644884A (zh) 基于温度测量的电力电缆接头施工规范性检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant