CN109739091B - 基于子结构技术的结构振动分布式模型预测控制方法 - Google Patents
基于子结构技术的结构振动分布式模型预测控制方法 Download PDFInfo
- Publication number
- CN109739091B CN109739091B CN201910046102.XA CN201910046102A CN109739091B CN 109739091 B CN109739091 B CN 109739091B CN 201910046102 A CN201910046102 A CN 201910046102A CN 109739091 B CN109739091 B CN 109739091B
- Authority
- CN
- China
- Prior art keywords
- substructure
- above formula
- sub
- distributed model
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000005516 engineering process Methods 0.000 title claims abstract description 38
- 230000004044 response Effects 0.000 claims abstract description 42
- 230000000295 complement effect Effects 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 55
- 238000006073 displacement reaction Methods 0.000 claims description 54
- 125000004432 carbon atom Chemical group C* 0.000 claims description 42
- 238000005457 optimization Methods 0.000 claims description 17
- 230000001133 acceleration Effects 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 16
- 230000003993 interaction Effects 0.000 claims description 14
- 230000005284 excitation Effects 0.000 claims description 12
- 238000004088 simulation Methods 0.000 claims description 12
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 claims description 10
- 238000013016 damping Methods 0.000 claims description 10
- 230000002776 aggregation Effects 0.000 claims description 9
- 238000004220 aggregation Methods 0.000 claims description 9
- 238000004422 calculation algorithm Methods 0.000 claims description 9
- 238000006467 substitution reaction Methods 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 31
- 230000000694 effects Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开了一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法,具有如下步骤:S1、建立智能张拉整体结构分布式模型预测控制系统;S2、基于子结构技术,将智能张拉整体结构分布式模型预测控制系统分解为一系列的多层级子系统;S3、选定不同层级的子结构系统,独立设计相应的局部子控制器;S4、考虑输入饱和约束,将原分布式模型预测控制问题转化为一系列的线性互补问题;S5、求解步骤S4中的线性互补问题,获得各子控制器的输入电压,以及受控动力响应。与现有的分布式模型预测控制相比,所提方法基于子结构技术,对整体结构系统的分解建模过程更加灵活、简单,且具有统一的多层级分布式框架。
Description
技术领域
本发明涉及张拉整体结构振动控制分析技术领域,特别是涉及到一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法。
背景技术
早在上世纪60年代,美国学者Fuller就提出“张拉整体(Tensegrity)”这一概念,张拉整体结构是一种处于自应力状态下的空间网状主动结构,其通过自身内部拉、压构件相互作用来维持稳定的工作状态。由于张拉整体结构系统具有较高的强度-质量比、良好的自适应能力,较低的控制能耗等特点,对这类结构系统的动力学分析与控制研究,已成为土木、机械、航天等实际工程领域的前沿热点问题。
在实际应用环境中,为使张拉整体结构在面对可能的地震、风载和噪声等外激励作用下,依然能够保持稳定的工作状态,则主动抑制结构的振动将十分重要。1998年,Djouadi等采用瞬时最优控制方法,研究了具有大位移运动的张拉整体结构振动主动控制问题。2007年,Ganesh和Narayanan通过在张拉整体结构系统中嵌入压电作动器,提出了双层张拉整体结构振动的全反馈(或部分反馈)H2和H∞控制方法。近年来,Yang和Sultan基于control-oriented模型,设计了一种张拉整体膜结构振动抑制的线性参数可变控制器。以上方法均为集中式控制方法,已在数值上被证明其对于小规模张拉整体结构系统振动控制是有效的。然而,智能张拉整体结构在实际应用中,可能由于输入-输出的维数过大,反馈信息采集过程因传感器空间布置范围大而难以同步等因素,使得传统的集中式控制器无法满足控制需求。此外,单一的集中式控制器容错性较差,一旦出现故障,则整个控制系统将会完全失效。因此,为解决上述问题,借鉴“分而治之”的思想,可以采用分布式控制策略。将整体受控系统分解为一系列的局部子系统,对各子系统分别独立设计子控制器,从而减小系统规模,并降低采样困难。分布式控制自上世纪70年代被提出以来,因其容错性好、计算量小、设计灵活等优势而越发受到人们的关注。2003年,D’Andrea和Dullerud提出了一种具有空间交互的分布式控制方法。2008年,Borrelli和Keviczky考虑将大规模系统分解为一系列相似的解耦动力子系统,设计了一种大规模相似动力解耦系统的分布式线性二次型调节器(LQR)。近年来,分布式控制思想已被推广应用于一些智能结构,但目前对于智能张拉整体结构的分布式控制方法研究仍然很有限。李团结等人采用μ合成法,发展了一种张拉整体结构振动的分布式控制方法。但该方法没有考虑系统的约束条件,比如:输入或状态约束。这类约束往往在实际应用中是不可避免的,同时也是控制稳定与否的重要因素之一。那么,为了解决上述“约束”问题,已有学者借鉴模型预测控制(MPC)在处理含约束控制问题上的优势,提出了一系列分布式模型预测控制(DMPC)方法。例如:Camponogara等提出了一种考虑子系统之间的控制交互,并使局部性能指标最优的大规模线性系统DMPC算法;Dunbar等提出了一种考虑输入约束的动态耦合非线性系统DMPC方法;Venkat等设计了局部分布控制器之间的协调机制,以获得更加稳定良好的控制性能。
对于分布式控制,其中一个重要而开放的课题是如何将整个系统合理地分解为一系列的子系统,进而对各子系统设计局部控制器。事实上,基于结构自身的物理连接和动力特性,可应用结构有限元中的子结构技术,将整体结构系统分解为一系列的多层级子结构系统,进而对各子结构系统设计局部子控制器。因此,一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法亟待研发。
发明内容
根据上述提出的技术问题,而提供一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法。该方法融合子结构技术和分布式控制思想,以解决考虑输入饱和约束的智能张拉整体结构振动控制问题,目的在于提供一套灵活、简洁、统一的多层级分布式控制策略新框架,以更加灵活地分解整体结构系统,并更为合理地选择作动器布置方案和不同层级的预测模型。本发明采用的技术手段如下:
一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法,具有如下步骤:
S1、建立智能张拉整体结构分布式模型预测控制系统:
本发明考虑智能张拉整体结构在其平衡点附近作线性振动,并采用分布式模型预测控制方法,通过压电作动器来抑制结构在外激励作用下的振动响应。
为简化模型,对智能张拉整体结构分布式模型预测控制系统作如下假设:
智能张拉整体结构分布式模型预测控制系统中的杆件单元只承受轴向压力,绳索单元只承受轴向拉力,所有构件均质且等截面;
杆件单元与绳索单元之间的铰接摩擦力忽略不计;
不考虑杆件单元中压杆的全局或局部屈曲;
外激励产生的结构附加刚度相比于智能张拉整体结构分布式模型预测控制系统本身的刚度较小,故忽略不计;
基于上述假设,杆件单元和绳索单元均被视为有限元杆单元;
智能张拉整体结构分布式模型预测控制系统中的压电主动单元,则根据Hamilton原理和压电材料的机电耦合本构关系,得到压电主动单元的有限元列式:
基于有限元方法,假设智能张拉整体结构分布式模型预测控制系统阻尼取Rayleigh线性阻尼,则通过组装各单元可得智能张拉整体结构分布式模型预测控制系统的受控动力学方程:
上式中,为系统质量矩阵;为系统阻尼矩阵,C=γM+βK,γ和β为系数常量;为系统刚度矩阵,包括智能张拉整体结构分布式模型预测控制系统自身刚度Ks和预应力产生的几何刚度Kg,满足:K=Ks+Kg;和依次为系统节点位移、速度和加速度;和依次为控制输入(即:压电主动单元的输入电压列向量)和外激励的位置矩阵;
根据所述受控动力学方程与分布式模型预测控制理论,考虑各子结构系统之间的信息交互,则第i号子结构系统的动力学模型为:
上式中,i,j=1,2,…,S,且j≠i,S为子结构系统数目;
将上式转换至状态空间,则:
其中,
假设预测时间为T,并采用DMPC方法,则对于第i号子结构系统,其受控模型为:
S2、基于子结构技术,将智能张拉整体结构分布式模型预测控制系统分解为一系列的多层级子系统:
子结构技术已被广泛应用于大规模有限元结构力学问题求解。本发明应用子结构技术,将智能张拉整体结构系统分解为一系列的多层级子结构系统。
通过有限元网格划分技术,将智能张拉整体结构分布式模型预测控制系统剖分,并分解为S个子结构系统,称为第1层级子结构,则第i号子结构系统的动力学平衡方程为:
将上式在时域上进行离散,根据Newmark-β方法,假设速度和位移为:
上式中,Δt为仿真时间步长,δ和α(δ≥0.5,α≥0.25(0.5+δ)2)为算法参数;
在tk+1=tk+Δt时刻,动力响应需满足动力学平衡方程,故:
基于子结构技术,将第i号子结构系统的节点位移分为内部节点位移和边界节点位移,则上式可改写为:
上式中,上标s和b依次表示内部节点和边界节点;
接下来,将所有凝聚后的S个子结构系统组装可得:
组装后的结构系统同样可再次基于子结构技术,进一步对其分解为一系列新的子结构系统,称其为第2层级子结构;
第2层级子结构的各子结构系统均由第1层级子结构的一个或多个相邻边界节点凝聚获得;
类似的,可以建立第3,4,…,h,…l层级子结构,直至凝聚至顶层;
求解顶层节点位移:
q(top)=[K(top)]-1F(top);
从顶层逐层地向下一层回代,计算各层级的子结构节点的边界位移和内部位移;至此,智能张拉整体结构分布式模型预测控制系统分解为一系列的多层级子系统。
S3、选定不同层级的子结构系统,独立设计相应的局部子控制器:
模型预测控制方法的控制效果很大程度上取决于所建立问题的预测模型。本发明所提算法基于步骤S2中的分解方法,可更加灵活合理地选取不同层级的子结构系统动力学模型作为各子控制器设计的预测模型。
当选用第1层级子结构动力学模型作为控制器设计的预测模型:第1层级子结构的各相邻子结构系统之间通过边界节点状态来实现信息交互。则对于第i号子结构系统,其预测模型可写为:
上式中,D’1i为控制输入u’i的位置矩阵,且
当选用第2层级或更高层级子结构动力学模型作为控制器设计的预测模型:第2层级或更高层级子结构是由其上一层的相邻子结构系统凝聚获得,则对于第2层级或更高层级子结构的子结构系统在某种程度上已经隐含了其上一层的各相邻子结构系统交互信息,为避免重复考虑其它相邻子系统的交互影响作用,预测模型中的交互项将忽略,但其它项保持不变。
假设预测N个时间步,预测步长为η=T/N,采用显式Newmark-β方法,将所选定的各子结构系统的预测模型在时域上离散,可得:
由上式推导得到tk+1时刻的动力响应:
上式中,
v’i(tk+1)=hiv’i(tk)+wiu’i(tk+1);
上式中,
且初始动力响应为:
v’i(t0)=g1ix’i(t0)+g2iu’i(t0);
第i号子结构系统所有预测步的动力响应为:
上式中,
将所有预测步的动力响应写为矩阵形式,则:
则采用DMPC方法,得到的第i号子结构系统的受控预测模型被转化为如下受约束的二次优化问题(LQP):
S4、考虑输入饱和约束,将原分布式模型预测控制问题转化为一系列的线性互补问题:
对于步骤S3中受约束的二次优化问题(LQP)的等式约束:第i号子结构系统的各预测步输出方程为:
将其写为矩阵形式,可得:
至此,步骤S3中受约束的二次优化问题(LQP)已被转化为无约束优化问题;
使扩展性能指标极小,则:
S5、求解步骤S4中的线性互补问题,获得各子控制器的输入电压,以及受控动力响应:
将各子系统的控制力与外激励一同凝聚至顶层,在顶层计算求解出顶层节点的受控位移响应;
自顶层逐层地向下一层回代,从而获得各子结构系统的受控振动位移响应,以及各子结构系统的受控加速度和速度响应。
在步骤S2中,第l层级子结构的第i号子结构系统向l+1层级子结构凝聚的过程可采用凝聚公式:
在步骤S2中,从顶层逐层地向下一层回代,计算各层级的子结构节点的的边界位移和内部位移的回代公式为:
上式中,
在步骤S5中,各子结构系统的受控加速度和速度响应依次可由下式获得:
上式中,
至此,即完成了本发明所提一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法。
本发明的有益积极效果:
1.本发明提供了一套智能张拉整体结构振动多层级分布式模型预测控制的新策略。与现有的分布式模型预测控制相比,所提方法基于子结构技术,对整体结构系统的分解建模过程更加灵活、简单,且具有统一的多层级分布式框架。
2.本发明所提出的多层级分布式模型预测控制方法,相比于现有的单层级分布式模型预测控制方法,各子控制器可通过选取不同层级的预测模型与不同的压电主动单元(即压电作动器)布置方案,以协调在线滚动优化计算效率与振动抑制效果的需求,获得更加令人满意的整体控制结果。
3.本发明基于参变量变分原理,将各子控制器的输入饱和问题转化为线性互补问题。与传统的输入饱和问题处理方法相比,并不需要间接地通过调整控制参数使控制力处于作动器的物理量程范围之内,而是在每个预测窗口,直接地通过求解一次线性互补问题而得以满足。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的具体实施方式中一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法的流程图。
图2是本发明的具体实施方式中多层级分解示意图。
图3是本发明的具体实施方式中多层级DMPC方法的控制框架示意图。
图4是本发明的具体实施方式中空间张拉整体梁结构几何模型。
图5是本发明的具体实施方式中两种不同压电主动单元(作动器)布置的单胞类型:(a)作动器安置在绳索位置;(b)作动器安置在压杆位置。
图6是本发明的具体实施方式中不同作动器布置方案的控制结果比较:(a)梁节点Pc的位移时程曲线;(b)第二号子结构系统的第一个压电主动单元的控制电压输入时程曲线。
图7是本发明的具体实施方式中不同层级预测模型选取的控制结果比较:(a)梁节点Pc的位移时程曲线;(b)第二号子结构系统的第一个压电主动单元的控制电压输入时程曲线。
图8是本发明的具体实施方式中智能张拉整体网结构几何模型:(a)透视图;(b)俯视图。
图9是本发明的具体实施方式中智能张拉整体网结构的子结构系统分解示意图。
图10是本发明的具体实施方式中智能张拉整体网结构受控数值仿真结果:(a)中心节点Pc的位移时程曲线;(b)1至3号压电主动单元的控制电压时程曲线。
图11是本发明的具体实施方式中不同数量的子控制器失效后,中心节点Pc的位移响应比较。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法,具有如下步骤:
S1、建立智能张拉整体结构分布式模型预测控制系统:
对智能张拉整体结构分布式模型预测控制系统作如下假设:
智能张拉整体结构分布式模型预测控制系统中的杆件单元只承受轴向压力,绳索单元只承受轴向拉力,所有构件均质且等截面;
杆件单元与绳索单元之间的铰接摩擦力忽略不计;
不考虑杆件单元中压杆的全局或局部屈曲;
外激励产生的结构附加刚度相比于智能张拉整体结构分布式模型预测控制系统本身的刚度较小,故忽略不计;
基于上述假设,杆件单元和绳索单元均被视为有限元杆单元;
智能张拉整体结构分布式模型预测控制系统中的压电主动单元,则根据Hamilton原理和压电材料的机电耦合本构关系,得到压电主动单元的有限元列式:
基于有限元方法,假设智能张拉整体结构分布式模型预测控制系统阻尼取Rayleigh线性阻尼,则通过组装各单元可得智能张拉整体结构分布式模型预测控制系统的受控动力学方程:
上式中,为系统质量矩阵;为系统阻尼矩阵,C=γM+βK,γ和β为系数常量;为系统刚度矩阵,包括智能张拉整体结构分布式模型预测控制系统自身刚度Ks和预应力产生的几何刚度Kg,满足:K=Ks+Kg;和依次为系统节点位移、速度和加速度;和依次为控制输入和外激励的位置矩阵;
根据所述受控动力学方程与分布式模型预测控制理论,考虑各子结构系统之间的信息交互,则第i号子结构系统的动力学模型为:
上式中,i,j=1,2,…,S,且j≠i,S为子结构系统数目;
将上式转换至状态空间,则:
其中,
假设预测时间为T,并采用DMPC方法,则对于第i号子结构系统,其受控模型为:
S2、基于子结构技术,将智能张拉整体结构分布式模型预测控制系统分解为一系列的多层级子系统:
通过有限元网格划分技术,将智能张拉整体结构分布式模型预测控制系统剖分,并分解为S个子结构系统,称为第1层级子结构,则第i号子结构系统的动力学平衡方程为:
将上式在时域上进行离散,根据Newmark-β方法,假设速度和位移为:
上式中,Δt为仿真时间步长,δ和α(δ≥0.5,α≥0.25(0.5+δ)2)为算法参数;
在tk+1=tk+Δt时刻,动力响应需满足动力学平衡方程,故:
基于子结构技术,将第i号子结构系统的节点位移分为内部节点位移和边界节点位移,则上式可改写为:
上式中,上标s和b依次表示内部节点和边界节点;
接下来,将所有凝聚后的S个子结构系统组装可得:
组装后的结构系统同样可再次基于子结构技术,进一步对其分解为一系列新的子结构系统,称其为第2层级子结构;
第2层级子结构的各子结构系统均由第1层级子结构的一个或多个相邻边界节点凝聚获得;
类似的,可以建立第3,4,…,h,…l层级子结构,直至凝聚至顶层,如图2所示,是一个基于子结构技术的三层分解示意图,其中“Sub c.d”表示第c层级的第d号子结构系统,
第l层级子结构的第i号子结构系统向l+1层级子结构凝聚的过程可采用凝聚公式:
求解顶层节点位移:
q(top)=[K(top)]-1F(top);
从顶层逐层地向下一层回代,计算各层级的子结构节点的边界位移和内部位移,回代公式为:
至此,智能张拉整体结构分布式模型预测控制系统分解为一系列的多层级子系统。
S3、选定不同层级的子结构系统,独立设计相应的局部子控制器:
当选用第1层级子结构动力学模型作为控制器设计的预测模型:如附图3所示,第1层级子结构的各相邻子结构系统之间通过边界节点状态来实现信息交互。则对于第i号子结构系统,其预测模型可写为:
上式中,D’1i为控制输入u’i的位置矩阵,且
当选用第2层级或更高层级子结构动力学模型作为控制器设计的预测模型:如图3所示,第2层级或更高层级子结构是由其上一层的相邻子结构系统凝聚获得,则对于第2层级或更高层级子结构的子结构系统在某种程度上已经隐含了其上一层的各相邻子结构系统交互信息,为避免重复考虑其它相邻子系统的交互影响作用,预测模型中的交互项将忽略,但其它项保持不变。
假设预测N个时间步,预测步长为η=T/N,采用显式Newmark-β方法,将所选定的各子结构系统的预测模型在时域上离散,可得:
由上式推导得到tk+1时刻的动力响应:
上式中,
v’i(tk+1)=hiv’i(tk)+wiu’i(tk+1);
上式中,
且初始动力响应为:
v’i(t0)=g1ix’i(t0)+g2iu’i(t0);
第i号子结构系统所有预测步的动力响应为:
上式中,
将所有预测步的动力响应写为矩阵形式,则:
则采用DMPC方法,得到的第i号子结构系统的受控预测模型被转化为如下受约束的二次优化问题(LQP):
S4、考虑输入饱和约束,将原分布式模型预测控制问题转化为一系列的线性互补问题:
对于步骤S3中受约束的二次优化问题(LQP)的等式约束:第i号子结构系统的各预测步输出方程为:
将其写为矩阵形式,可得:
至此,步骤S3中受约束的二次优化问题(LQP)已被转化为无约束优化问题;
使扩展性能指标极小,则:
上式中,
S5、求解步骤S4中的线性互补问题,获得各子控制器的输入电压,以及受控动力响应:
利用步骤S2中的凝聚公式,将各子系统的控制力与外激励一同凝聚至顶层,在顶层计算求解出顶层节点的受控位移响应;
利用步骤S2中的回代公式,自顶层逐层地向下一层回代,从而获得各子结构系统的受控振动位移响应,以及各子结构系统的受控加速度和速度响应;
各子结构系统的受控加速度和速度响应依次可由下式获得:
上式中,
本实施例一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法,可用于压电智能张拉整体结构平衡点附近线性振动控制问题的分析,具有如下步骤:
(a)前处理:
(a1)基于子结构技术,将智能张拉整体结构分布式模型预测控制系统分解为S个子结构系统;
(a2)建立并存储所有层级子结构系统的质量矩阵Mi,阻尼矩阵Ci和刚度矩阵Ki;
(a3)给出预测的时长T和预测的时间步数N,从而预测步长为η=T/N。
(e)取控制力序列第一个预测时刻的值u’i(t0)作为第i号子结构系统的控制输入,然后连同当前时刻外激励输入fi,通过Newmark-β法子结构技术,计算更新下一时刻各子系统预测模型的初始状态x’i(t0),从而完成当前时刻的求解。
(f)重复步骤(d)-(e),随时间步进,直至完成全部时间的控制仿真。
仿真实例:利用本发明方法,分别针对智能张拉整体梁结构和智能张拉整体网结构为算例,展开数值仿真。
算例一:图4是由四个单胞组成的空间张拉整体梁结构的几何模型,梁长2.782m,宽0.795m,高0.3m,两端节点固支。其中,圆柱体表示受压杆,实线表示绳索。所有压杆材料为TC4钛合金,其外径为2.5cm,内径为1.5cm,杨氏模量为110GPa,密度为4500kg/m3;而所有绳索均采用玻璃纤维钢丝,其截面半径为3mm,杨氏模量为73GPa,密度为2450kg/m3。本算例假设每个单胞即为一个子结构系统,且对于每个单胞,布置两个压电作动器。如图5,压电主动单元(即压电作动器)将以嵌入于压杆或绳索之间的两种形式作为结构系统构件。压电主动单元的截面积为78.5mm2,压电应力系数为18.62C/m2,压电片厚度为1mm2,介电常数为7.85×10-5C/(Vm),杨氏模量为88.07GPa,密度为7600kg/m3。考虑在外激励作用下,张拉整体梁结构在平衡点附近受迫振动,其中为El Centro地震波NS方向加速度。取各子系统的权系数其中Ipi和Imi依次为Npi×Npi和Nmi×Nmi的单位矩阵。取预测时长T=0.01s,预测步数N=5。假定压电作动器可输入的电压量程为±200V。初始条件为qi(t0)=0,和采用本发明所提方法,抑制结构的受迫振动响应。接下来,将讨论压电主动单元布置和子系统预测模型对控制效果的影响。
压电主动单元布置对控制效果的影响:如图5(a-b),压电主动单元可被安置在绳索单元位置或压杆位置,为了区分两种单胞,不妨将其依次命名为“单胞Ca”和“单胞St”。随后,本算例将比较3种压电主动单元布置方案:方案1,张拉整体结构梁的四个单胞均由单胞Ca组成;方案2,张拉整体结构梁的第一、三两个单胞与第二、四两个是分别由单胞St和单胞Ca组成;方案3,张拉整体结构梁的四个单胞均由单胞St组成。对于上述三种方案,各子控制器均采用第一层级的预测模型,子控制器之间的交互信息为相邻单胞耦合节点(即边界节点)的状态响应。图6比较了三种方案数值仿真的控制结果。由图6(a)可知,应用本发明所提方法,节点Pc位移响应可被有效地抑制,而且由方案3至方案1,位移响应逐渐减小。与无控相比较,其位移均方根依次缩小了8.9%,28.9%和47.9%。而且,方案1的节点Pc绝对位移峰值降至1.9×10-3m,降低了42.4%。此外,由图6(b)可知,控制输入电压(即:第二号子结构系统的第一个压电主动单元的控制电压输入)均处于±200V之间,满足预设的输入饱和约束条件。因此,以上仿真结果说明:本发明方法有效,且对于本算例,压电主动单元安置在绳索上将具有更好的控制效果。
不同层级预测模型对控制效果的影响:基于本发明的多层级分解方法,各子控制器的预测模型可在不同层级建立。如图2,将张拉整体结构梁分解为三个层级。为考察不同层级的预测模型对控制效果的影响,比较以下三种不同的预测模型选取:选取1,所有子控制器的预测模型均取自第一层级,不妨称其为DMPC-1;选取2,第三个子控制器的预测模型取自第二层级,而其它子控制器则依然取自第一层级,不妨称其为DMPC-2;选取3,第三个子控制器的预测模型取自顶层,而其它子控制器则依然取自第一层级,不妨称其为DMPC-3。对于上述三种选取,作动器布置方案均采用方案1,即张拉整体结构梁的四个单胞均由单胞Ca组成。接下来,图7(a-b)给出了包括这三种不同选取方式的分布式控制和传统的集中式模型预测控制(CMPC)仿真结果对比。由图7(a)可知,相比于无控情况,DMPC-1,DMPC-2和DMPC-3均可有效地抑制结构的振动,且由计算可知,其位移响应均方根依次降低了47.9%,48.9%和51.6%。进一步,通过局部曲线放大,可知DMPC-3的受控位移响应小于其余两种预测模型的选取方法,且更加趋近于CMPC。这个现象是因为DMPC-3中的第三号子系统选取了更高层级的预测模型,它是通过底层凝聚获得,故可以理解为携带了更多结构自身的信息,使得输入三号子控制器的模型信息更为完整准确,从而表现出更好的振动抑制效果。在此需要指出的是:本发明所提分布式控制方法若把整体结构系统视为一个子结构系统,便可很自然地退化为传统的集中式控制方法。另外,由图7(b)可知,控制输入电压(此处给出的是第二号子结构系统的第一个压电主动单元的电压)都介于±200V之间,满足输入饱和约束条件。
算例二:图8(a-b)是智能张拉整体空间网结构的几何模型,网结构的长为3m,宽为3m,高为0.25m,在四个角节点处固支。它由图5(a)的单胞Ca组成,但相邻单胞底部重叠的绳索单元仅保留其中之一。整个系统共有144个压杆单元,336个绳索单元和42个压电主动单元。如图9,将整体结构分解为三层级子结构系统,而各子控制器的预测模型均选取第一层级的子结构动力学模型。各子系统的权系数其它算法参数,以及系统初始条件、外激励、构件的材料与尺寸参数都与算例一相同。接下来,将再次通过本算例来论证本发明所提方法是有效的,并进一步验证其具有良好的容错性。
有效性论证:基于本发明所提方法,由图10(a)可知,张拉整体网结构振动控制效果显著。受控绝对位移峰值和位移均方根依次为1.416×10-4m和3.931×10-5m,相比与无控情况,依次降低了71.9%和74.7%。另外,由图10(b)可知,控制输入电压(此处给出的是图8(b)所标识的三个压电主动单元的电压输入时程曲线)都介于±200V之间,满足输入饱和约束条件,其平均值依次为90.5v,24v和127.1v。
容错性论证:为验证本发明所提DMPC方法具有良好的容错性,接下来将比较部分子控制器失效后整体结构振动控制的效果。由图11可知,随着子控制器失效数目增加,张拉整体网结构中心点Pc的振动位移响应幅值将逐渐变大,但整体受控结构系统不会因为某个或某几个子控制器失效而突然完全失效。对于本算例,相比与无控,甚至在只有2个子控制器正常工作(即:7/9的失效比)情况下,Pc节点的绝对位移峰值依然能从5.045×10-4m降至3.645×10-4m,缩小了27.7%;而位移均方根则从1.556×10-4m降至9.683×10-5m,缩小了37.8%。因此,以上数值仿真结果表明:本发明所提方法有效且具有良好的容错性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (6)
1.一种基于子结构技术的智能张拉整体结构振动多层级分布式模型预测控制方法,其特征在于具有如下步骤:
S1、建立智能张拉整体结构分布式模型预测控制系统:
对智能张拉整体结构分布式模型预测控制系统作如下假设:
智能张拉整体结构分布式模型预测控制系统中的杆件单元只承受轴向压力,绳索单元只承受轴向拉力,所有构件均质且等截面;
杆件单元与绳索单元之间的铰接摩擦力忽略不计;
不考虑杆件单元中压杆的全局或局部屈曲;
外激励产生的结构附加刚度相比于智能张拉整体结构分布式模型预测控制系统本身的刚度较小,故忽略不计;
基于上述假设,杆件单元和绳索单元均被视为有限元杆单元;
智能张拉整体结构分布式模型预测控制系统中的压电主动单元,则根据Hamilton原理和压电材料的机电耦合本构关系,得到压电主动单元的有限元列式:
基于有限元方法,假设智能张拉整体结构分布式模型预测控制系统阻尼取Rayleigh线性阻尼,则通过组装各单元可得智能张拉整体结构分布式模型预测控制系统的受控动力学方程:
上式中,为系统质量矩阵;为系统阻尼矩阵,C=γM+βK,γ和β为系数常量;为系统刚度矩阵,包括智能张拉整体结构分布式模型预测控制系统自身刚度Ks和预应力产生的几何刚度Kg,满足:K=Ks+Kg;和依次为系统节点位移、速度和加速度;和依次为控制输入和外激励的位置矩阵;
根据所述受控动力学方程与分布式模型预测控制理论,考虑各子结构系统之间的信息交互,则第i号子结构系统的动力学模型为:
上式中,i,j=1,2,…,S,且j≠i,S为子结构系统数目;
将上式转换至状态空间,则:
其中,
S2、基于子结构技术,将智能张拉整体结构分布式模型预测控制系统分解为一系列的多层级子系统:
通过有限元网格划分技术,将智能张拉整体结构分布式模型预测控制系统剖分,并分解为S个子结构系统,称为第1层级子结构,则第i号子结构系统的动力学平衡方程为:
将上式在时域上进行离散,根据Newmark-β方法,假设速度和位移为:
上式中,Δt为仿真时间步长,δ和α(δ≥0.5,α≥0.25(0.5+δ)2)为算法参数;
在tk+1=tk+Δt时刻,动力响应需满足动力学平衡方程,故:
基于子结构技术,将第i号子结构系统的节点位移分为内部节点位移和边界节点位移,则上式可改写为:
上式中,上标s和b依次表示内部节点和边界节点;
接下来,将所有凝聚后的S个子结构系统组装可得:
组装后的结构系统同样可再次基于子结构技术,进一步对其分解为一系列新的子结构系统,称其为第2层级子结构;
第2层级子结构的各子结构系统均由第1层级子结构的一个或多个相邻边界节点凝聚获得;
类似的,可以建立第3,4,…,h,…l层级子结构,直至凝聚至顶层;
求解顶层节点位移:
q(top)=[K(top)]-1F(top);
从顶层逐层地向下一层回代,计算各层级的子结构节点的边界位移和内部位移;
S3、选定不同层级的子结构系统,独立设计相应的局部子控制器:
当选用第1层级子结构动力学模型作为控制器设计的预测模型:第1层级子结构的各相邻子结构系统之间通过边界节点状态来实现信息交互; 则对于第i号子结构系统,其预测模型可写为:
上式中,D′1i为控制输入u′i的位置矩阵,且
当选用第2层级或更高层级子结构动力学模型作为控制器设计的预测模型:预测模型中的交互项将忽略;
假设预测N个时间步,预测步长为η=T/N,采用显式Newmark-β方法,将所选定的各子结构系统的预测模型在时域上离散,可得:
由上式推导得到tk+1时刻的动力响应:
上式中,
v′i(tk+1)=hiv′i(tk)+wiu′i(tk+1);
上式中,
且初始动力响应为:
v′i(t0)=g1ix′i(t0)+g2iu′i(t0);
第i号子结构系统所有预测步的动力响应为:
上式中,
将所有预测步的动力响应写为矩阵形式,则:
则采用DMPC方法,得到的第i号子结构系统的受控预测模型被转化为如下受约束的二次优化问题:
S4、考虑输入饱和约束,将原分布式模型预测控制问题转化为一系列的线性互补问题:
对于步骤S3中受约束的二次优化问题的等式约束:第i号子结构系统的各预测步输出方程为:
将其写为矩阵形式,可得:
使扩展性能指标极小,则:
S5、求解步骤S4中的线性互补问题,获得各子控制器的输入电压,以及受控动力响应:
将各子结构系统的控制力与外激励一同凝聚至顶层,在顶层计算求解出顶层节点的受控位移响应;
自顶层逐层地向下一层回代,从而获得各子结构系统的受控振动位移响应,以及各子结构系统的受控加速度和速度响应。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910046102.XA CN109739091B (zh) | 2019-01-16 | 2019-01-16 | 基于子结构技术的结构振动分布式模型预测控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910046102.XA CN109739091B (zh) | 2019-01-16 | 2019-01-16 | 基于子结构技术的结构振动分布式模型预测控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109739091A CN109739091A (zh) | 2019-05-10 |
CN109739091B true CN109739091B (zh) | 2020-07-14 |
Family
ID=66365178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910046102.XA Active CN109739091B (zh) | 2019-01-16 | 2019-01-16 | 基于子结构技术的结构振动分布式模型预测控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109739091B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111965975B (zh) * | 2020-07-15 | 2022-10-11 | 大连理工大学 | 一种最小化振动的智能结构动态变形控制方法 |
CN112327669B (zh) * | 2020-11-14 | 2022-02-18 | 大连理工大学 | 一种航空发动机显式预测控制器的设计方法 |
CN115017682B (zh) * | 2022-05-10 | 2023-04-25 | 西北工业大学 | 空间力热环境下张拉整体模块的力学行为分析方法 |
CN117973151B (zh) * | 2024-03-27 | 2024-05-31 | 北京航空航天大学 | 一种压电层合板壳结构振动控制方法、系统及设备 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437781B (zh) * | 2011-10-28 | 2016-01-20 | 北京航空航天大学 | 基于分布式压电作动器振动主动控制电路优化结构及方法 |
US9815574B2 (en) * | 2012-03-19 | 2017-11-14 | Agence Spatiale Europeenne | Deployable tensegrity structure, especially for space applications |
KR101615565B1 (ko) * | 2014-08-29 | 2016-04-26 | 서울시립대학교산학협력단 | 관입형 텐서그리티 구조물 |
CN107563005B (zh) * | 2017-08-04 | 2019-11-26 | 大连理工大学 | 一种拉压不同刚度结构振动瞬时最优控制方法 |
CN107545126B (zh) * | 2017-09-28 | 2019-11-26 | 大连理工大学 | 一种基于多体系统滑移绳索单元的聚合式张拉整体结构动力响应分析方法 |
CN108080241B (zh) * | 2017-12-12 | 2019-06-21 | 北京科技大学 | 一种三棱柱状张拉整体结构微位移驱动平台 |
-
2019
- 2019-01-16 CN CN201910046102.XA patent/CN109739091B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN109739091A (zh) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109739091B (zh) | 基于子结构技术的结构振动分布式模型预测控制方法 | |
Senatore et al. | Force and shape control strategies for minimum energy adaptive structures | |
Ok et al. | Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers | |
Bitaraf et al. | Application of semi-active control strategies for seismic protection of buildings with MR dampers | |
Adam et al. | Active tensegrity: A control framework for an adaptive civil-engineering structure | |
Setoodeh et al. | Combined topology and fiber path design of composite layers using cellular automata | |
Korkmaz et al. | Configuration of control system for damage tolerance of a tensegrity bridge | |
Kaveh et al. | Optimal design of steel frames under seismic loading using two meta-heuristic algorithms | |
Wani et al. | A critical review on control strategies for structural vibration control | |
Wang et al. | Minimum energy adaptive structures–All-In-One problem formulation | |
CN107563005B (zh) | 一种拉压不同刚度结构振动瞬时最优控制方法 | |
Moon et al. | Sliding mode control of cable-stayed bridge subjected to seismic excitation | |
Wang et al. | Design of adaptive structures through energy minimization: extension to tensegrity | |
Etedali | A new modified independent modal space control approach toward control of seismic-excited structures | |
Korkmaz et al. | Determining control strategies for damage tolerance of an active tensegrity structure | |
Böhm et al. | Input modeling for active structural elements-extending the established fe-work? ow for modeling of adaptive structures | |
Li et al. | Topology optimization of structures composed of more than two materials with different tensile and compressive properties | |
Park et al. | Fuzzy supervisory control of earthquake-excited cable-stayed bridges | |
Zabihi-Samani | Design of optimal slit steel damper under cyclic loading for special moment frame by cuckoo search | |
Reksowardojo et al. | Design of ultra-lightweight and energy-efficient civil structures through shape morphing | |
Dakova et al. | An optimal control strategy to distribute element wear for adaptive high-rise structures | |
Yan et al. | SGC—a novel optimization method for the discrete fiber orientation of composites | |
Jafarzadeh et al. | Online Adaptive Neurochaotic Fuzzy Controller Design to Reduce the Seismic Response of Buildings Equipped with Active Tuned Mass Damper System | |
de Abreu et al. | Active modal damping control of a smart truss structure using a self-organizing fuzzy controller | |
Senatore | Designing and prototyping adaptive structures—an energy-based approach beyond lightweight design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |