CN109736819A - 一种盾构掘进总推力确定方法及系统 - Google Patents

一种盾构掘进总推力确定方法及系统 Download PDF

Info

Publication number
CN109736819A
CN109736819A CN201910004323.0A CN201910004323A CN109736819A CN 109736819 A CN109736819 A CN 109736819A CN 201910004323 A CN201910004323 A CN 201910004323A CN 109736819 A CN109736819 A CN 109736819A
Authority
CN
China
Prior art keywords
unit
characteristic
gross thrust
shield
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910004323.0A
Other languages
English (en)
Other versions
CN109736819B (zh
Inventor
张茜
周思阳
亢一澜
侯振德
蔡宗熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910004323.0A priority Critical patent/CN109736819B/zh
Publication of CN109736819A publication Critical patent/CN109736819A/zh
Application granted granted Critical
Publication of CN109736819B publication Critical patent/CN109736819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开一种盾构掘进总推力确定方法及系统。方法包括:确定影响盾构掘进总推力的参数;根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;根据所述掘进总推力计算模型确定盾构掘进总推力。采用本发明的方法或系统能够实现盾构掘进过程中的总推力快速准确的计算。

Description

一种盾构掘进总推力确定方法及系统
技术领域
本发明涉及盾构掘进领域,特别是涉及一种盾构掘进总推力确定方法及系统。
背景技术
盾构是一种隧道掘进的专用工程机械,主要用于软土地层的隧道挖掘。其掘进总推力是一种重要的性能参数,以保证装备正常前进,是贯穿装备运行始终的核心参量。目前针对盾构掘进总推力的计算方法,主要分为基于软土地层的力学分析的理论建模与基于工程数据分析进行预测。其中,在基于工程数据分析进行预测的这类方法中,通过量纲分析进行计算的方法普适性高。然而,已有基于量纲分析的方法考虑的参数众多,从而导致模型结构复杂,不利于工程应用。
发明内容
本发明的目的是提供一种盾构掘进总推力确定方法及系统,能够筛选出影响盾构掘进总推力的主要参数,能够帮助盾构技术管理人员及时调整盾构掘进总推力的大小。
为实现上述目的,本发明提供了如下方案:
一种盾构掘进总推力确定方法,包括:
确定影响盾构掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;
根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;
根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;
将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;
根据所述掘进总推力计算模型确定盾构掘进总推力。
可选的,所述根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力,具体包括:
根据公式分别确定盾构掘进过程中的无量纲量π1,π2,π3,π4,π5
根据公式确定盾构掘进过程中的无量纲化总推力
其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为掘进总推力,单位:kN。
可选的,所述根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果,具体包括:
将所述无量纲量π1,π2,π3,π4,π5作为自变量,无量纲化总推力作为因变量,利用LASSO算法采用公式得到无量纲量的系数α12345
其中,n为样本量;X为自变量,包括π1,π2,π3,π4,π5;α为识别系数,包括α12345;y为因变量,y为无量纲化总推力λ为惩罚权重。
可选的,所述将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到盾构掘进总推力计算模型,具体包括:
将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到盾构掘进总推力计算模型
其中,F为盾构掘进总推力,单位:kN;α12345为无量纲量的系数;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min。
一种盾构掘进总推力确定系统,包括:
参数确定模块,用于确定影响盾构掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;
无量纲参数确定模块,用于根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;
系数识别结果确定模块,用于根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;
模型建立模块,用于将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;
盾构总推力计算模块,用于根据所述掘进总推力计算模型确定盾构掘进总推力。
可选的,所述根据无量纲参数确定模块,具体包括:
无量纲量参数确定单元,用于根据公式 分别确定盾构掘进过程中的无量纲量π1,π2,π3,π4,π5
无量纲化总推力确定单元,用于根据公式确定盾构掘进过程中的无量纲化总推力
其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为盾构掘进总推力,单位:kN。
可选的,所述系数识别结果确定模块,具体包括:
系数识别结果确定单元,用于将所述无量纲量π1,π2,π3,π4,π5作为自变量,无量纲化总推力作为因变量,利用LASSO算法采用公式得到无量纲量的系数α12345
其中,n为样本量;X为自变量,包括π1,π2,π3,π4,π5;α为识别系数,包括α12345;y为因变量,y为无量纲化总推力λ为惩罚权重。
可选的,所述模型建立模块,具体包括:
模型建立单元,用于将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型
其中,F为盾构掘进总推力,单位:kN;α12345为无量纲量的系数;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供一种盾构掘进总推力确定方法,包括:确定影响掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;根据所述掘进总推力计算模型确定盾构掘进总推力。本发明能够实现盾构装备掘进过程中的总推力快速准确的计算。在基于LASSO算法的基础上,本发明不仅融入了基本的力学规律,而且通过LASSO算法剔除了无关的影响参数,从而为盾构技术管理人员及时调整推力大小提供了有效的决策支持。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例盾构掘进总推力确定方法流程图;
图2为本发明实施例盾构掘进总推力确定系统结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种盾构掘进总推力确定方法及系统,能够筛选出影响盾构掘进总推力的主要参数,能够帮助盾构技术管理人员及时调整推力的大小。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明实施例盾构掘进总推力确定方法流程图。如图1所示,一种盾构掘进总推力确定方法,包括:
步骤101:确定影响盾构掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;
步骤102:根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;
步骤103:根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;
步骤104:将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;
步骤105:根据所述掘进总推力计算模型确定盾构掘进总推力。
步骤102,具体包括:
根据公式分别确定盾构掘进过程中的无量纲量π1,π2,π3,π4,π5
根据公式确定盾构掘进过程中的无量纲化总推力
其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为盾构掘进总推力,单位:kN。
步骤103,具体包括:
将所述无量纲量π1,π2,π3,π4,π5作为自变量,无量纲化总推力作为因变量,利用LASSO算法采用公式得到无量纲量的系数α12345
其中,n为样本量;X为自变量,包括π1,π2,π3,π4,π5;α为识别系数,包括α12345;y为因变量,y为无量纲化总推力λ为惩罚权重。
步骤104,具体包括:
将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型
其中,F为盾构掘进总推力,单位:kN;α12345为无量纲量的系数;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min。
本发明能够实现盾构装备掘进过程中的总推力快速准确的计算。在基于套索算法(LASSO算法)的基础上,本发明不仅融入了基本的力学规律,而且通过LASSO算法剔除了无关的影响参数,从而为盾构技术管理人员及时调整推力大小提供了有效的决策支持。
图2为本发明实施例盾构掘进总推力确定系统结构图。如图2所示,一种盾构掘进总推力确定系统,包括:
参数确定模块201,用于确定影响盾构掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;
无量纲参数确定模块202,用于根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;
系数识别结果确定模块203,用于根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;
模型建立模块204,用于将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到盾构掘进总推力计算模型;
盾构总推力计算模块205,用于根据所述掘进总推力计算模型确定盾构掘进总推力。
所述根据无量纲参数确定模块202,具体包括:
无量纲量参数确定单元,用于根据公式 分别确定盾构掘进过程中的无量纲量π1,π2,π3,π4,π5
无量纲化总推力确定单元,用于根据公式确定盾构掘进过程中的无量纲化总推力
其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为盾构掘进总推力,单位:kN。
所述系数识别结果确定模块203,具体包括:
系数识别结果确定单元,用于将所述无量纲量π1,π2,π3,π4,π5作为自变量,无量纲化总推力作为因变量,利用LASSO算法采用公式得到无量纲量的系数α12345
其中,n为样本量;X为自变量,包括π1,π2,π3,π4,π5;α为识别系数,包括α12345;y为因变量,y为无量纲化总推力λ为惩罚权重。
所述模型建立模块204,具体包括:
模型建立单元,用于将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型
其中,F为盾构掘进总推力,单位:kN;α12345为无量纲量的系数;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min。
具体实施例:
下面结合实施例对本发明的盾构总推力的计算方法做出详细说明。具体步骤如下:
1、列出影响盾构掘进总推力F的参数:pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;F为掘进总推力,单位:kN。
2、根据下列公式(1)-(6),分别计算无量纲量及无量纲化总推力大小。其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为盾构掘进总推力,单位:kN。
3、将按公式(1)-(6)式计算得到的值汇总,并将(π1,π2,π3,π4,π5)这五个无量纲量作为自变量,无量纲化总推力作为因变量,利用LASSO算法,得到无量纲量的系数α1~α5的识别计算式如下:
α1=0,α2=4.93×10-13=2.22×10-34=0,α5=0.
4、将各个无量纲量系数识别结果α1~α5与五个无量纲量π1~π5分别相乘,得到掘进总推力F的计算模型:如下式所示:
F=4.93*10-1γD3+2.22*10-3EDH (7)
将如下表所示的工程数据:
E D ω p<sub>e</sub> γ H W ν
67650 6.34 1.22 168 40 9.6 160.59 0.03
带入式(7)可得盾构掘进总推力F的大小如下:
F=14166.18(kN)。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种盾构掘进总推力确定方法,其特征在于,包括:
确定影响盾构掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;
根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;
根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;
将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;
根据所述掘进总推力计算模型确定盾构掘进总推力。
2.根据权利要求1所述的盾构掘进总推力确定方法,其特征在于,所述根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力,具体包括:
根据公式分别确定盾构掘进过程中的无量纲量π1,π2,π3,π4,π5
根据公式确定盾构掘进过程中的无量纲化总推力
其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为盾构掘进总推力,单位:kN。
3.根据权利要求2所述的盾构掘进总推力确定方法,其特征在于,所述根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果,具体包括:
将所述无量纲量π1,π2,π3,π4,π5作为自变量,无量纲化总推力作为因变量,利用LASSO算法采用公式得到无量纲量的系数α12345
其中,n为样本量;X为自变量,包括π1,π2,π3,π4,π5;α为识别系数,包括α12345;y为因变量,y为无量纲化总推力λ为惩罚权重。
4.根据权利要求3所述的盾构掘进总推力确定方法,其特征在于,所述将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型,具体包括:
将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型
其中,F为盾构掘进总推力,单位:kN;α12345为无量纲量的系数;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min。
5.一种盾构掘进总推力确定系统,其特征在于,包括:
参数确定模块,用于确定影响盾构掘进总推力的参数,所述参数包括土体弹性模量、土体容量、隧道埋深、岩土承载力、掘进速度、土舱压力、盾构直径和刀盘转速;
无量纲参数确定模块,用于根据所述参数确定盾构掘进过程中的无量纲量和无量纲化总推力;
系数识别结果确定模块,用于根据所述无量纲量采用LASSO算法,得到所述无量纲量的系数识别结果;
模型建立模块,用于将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到掘进总推力计算模型;
盾构总推力计算模块,用于根据所述掘进总推力计算模型确定盾构掘进总推力。
6.根据权利要求5所述的盾构掘进总推力确定系统,其特征在于,所述无量纲参数确定模块,具体包括:
无量纲量参数确定单元,用于根据公式 分别确定盾构掘进过程中的无量纲量π1,π2,π3,π4,π5
无量纲化总推力确定单元,用于根据公式确定盾构掘进过程中的无量纲化总推力
其中,π1,π2,π3,π4,π5为五个无量纲量;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min;为无量纲化总推力;F为盾构掘进总推力,单位:kN。
7.根据权利要求6所述的盾构掘进总推力确定系统,其特征在于,所述系数识别结果确定模块,具体包括:
系数识别结果确定单元,用于将所述无量纲量π1,π2,π3,π4,π5作为自变量,无量纲化总推力作为因变量,利用LASSO算法采用公式得到无量纲量的系数α12345
其中,n为样本量;X为自变量,包括π1,π2,π3,π4,π5;α为识别系数,包括α12345;y为因变量,y为无量纲化总推力λ为惩罚权重。
8.根据权利要求7所述的盾构掘进总推力确定系统,其特征在于,所述模型建立模块,具体包括:
模型建立单元,用于将各个无量纲量系数识别结果与对应的所述无量纲量相乘,得到盾构掘进总推力计算模型
其中,F为盾构掘进总推力,单位:kN;α12345为无量纲量的系数;pe为土舱压力,单位:kpa;E为土体弹性模量,单位:kpa;γ为土体容重,单位:kN/m3;D为盾构直径,单位:m;H为隧道埋深,单位:m;W为岩土承载力,单位:kpa;v为掘进速度,单位:m/s;ω为刀盘转速,单位:r/min。
CN201910004323.0A 2019-01-03 2019-01-03 一种盾构掘进总推力确定方法及系统 Active CN109736819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910004323.0A CN109736819B (zh) 2019-01-03 2019-01-03 一种盾构掘进总推力确定方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910004323.0A CN109736819B (zh) 2019-01-03 2019-01-03 一种盾构掘进总推力确定方法及系统

Publications (2)

Publication Number Publication Date
CN109736819A true CN109736819A (zh) 2019-05-10
CN109736819B CN109736819B (zh) 2020-02-14

Family

ID=66363295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910004323.0A Active CN109736819B (zh) 2019-01-03 2019-01-03 一种盾构掘进总推力确定方法及系统

Country Status (1)

Country Link
CN (1) CN109736819B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023504306A (ja) * 2020-08-06 2023-02-02 中▲鉄▼九局集▲団▼有限公司 地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246091A (ja) * 1997-03-05 1998-09-14 Hitachi Constr Mach Co Ltd シールド工法及びシールド掘削機
CN103670383A (zh) * 2012-09-17 2014-03-26 中国石油天然气股份有限公司 一种识别泥页岩油藏有效储层的方法及设备
CN205446412U (zh) * 2015-12-29 2016-08-10 瓦戭店轴承集团有限责任公司 一种盾构机主轴轴承的保持架
CN107992447A (zh) * 2017-12-13 2018-05-04 电子科技大学 一种应用于河流水位预测数据的特征选择分解方法
CN108446418A (zh) * 2018-01-16 2018-08-24 天津大学 一种基于量纲分析的盾构掘进总推力计算方法
CN108763673A (zh) * 2018-05-16 2018-11-06 广东省生态环境技术研究所 基于lasso回归的土地利用变化驱动力筛选方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246091A (ja) * 1997-03-05 1998-09-14 Hitachi Constr Mach Co Ltd シールド工法及びシールド掘削機
CN103670383A (zh) * 2012-09-17 2014-03-26 中国石油天然气股份有限公司 一种识别泥页岩油藏有效储层的方法及设备
CN205446412U (zh) * 2015-12-29 2016-08-10 瓦戭店轴承集团有限责任公司 一种盾构机主轴轴承的保持架
CN107992447A (zh) * 2017-12-13 2018-05-04 电子科技大学 一种应用于河流水位预测数据的特征选择分解方法
CN108446418A (zh) * 2018-01-16 2018-08-24 天津大学 一种基于量纲分析的盾构掘进总推力计算方法
CN108763673A (zh) * 2018-05-16 2018-11-06 广东省生态环境技术研究所 基于lasso回归的土地利用变化驱动力筛选方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023504306A (ja) * 2020-08-06 2023-02-02 中▲鉄▼九局集▲団▼有限公司 地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法
JP7264566B2 (ja) 2020-08-06 2023-04-25 中▲鉄▼九局集▲団▼有限公司 地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法

Also Published As

Publication number Publication date
CN109736819B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN107060746B (zh) 一种复杂裂缝性油藏流动模拟的方法
CN107515976A (zh) 基于泥水盾构施工主控参数的地面沉降预测方法
CN108089227B (zh) 新的基于三维地震资料的地层孔隙压力预测方法
CN106529150B (zh) 复合地层盾构隧道拱顶荷载计算方法
CN105891888A (zh) 多域分频并行多尺度全波形反演方法
CN108446418A (zh) 一种基于量纲分析的盾构掘进总推力计算方法
CN109882164A (zh) 一种裂缝性碳酸盐岩油藏的大尺度酸化模拟方法
CN107346361A (zh) 基于地形地质图的边坡稳定性初步判别方法
CN109839493A (zh) 地下工程岩体质量评价方法、装置、存储介质及电子设备
CN109736819A (zh) 一种盾构掘进总推力确定方法及系统
CN109488321B (zh) 一种盾构刀盘扭矩确定方法及系统
CN110197013B (zh) 基于Morphing的河床基岩面建模方法
CN109711079A (zh) 一种tbm掘进总推力确定方法及系统
CN107219564A (zh) 一种处理垂向连井剖面的方法及装置
CN116291406A (zh) 一种海上疏松砂岩油藏大孔道识别方法和系统
CN102855664A (zh) 一种复杂块体的三维建模方法
CN112419493B (zh) 页岩储层三维属性模型建立方法及装置
CN113158561B (zh) 适用于多种岩体条件的tbm操作参数优化方法及系统
CN106150491B (zh) 一种油藏的勘探方法及装置
CN104392131A (zh) 一种水驱沙过程中破碎岩石渗流场计算方法
CN115062461A (zh) 考虑地下结构阻隔作用的抗浮设防水位取值系统及方法
CN109766621A (zh) 一种tbm刀盘扭矩确定方法及系统
CN111951394A (zh) 基于地质图的断层构造单元三维模型构建方法及装置
CN111852459A (zh) 一种页岩气储层构造建模方法及装置
CN112379082B (zh) 一种基于mic的盾构施工地表变形影响因素的确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant