CN109727900A - Substrate transfer robot end effector - Google Patents

Substrate transfer robot end effector Download PDF

Info

Publication number
CN109727900A
CN109727900A CN201811152281.7A CN201811152281A CN109727900A CN 109727900 A CN109727900 A CN 109727900A CN 201811152281 A CN201811152281 A CN 201811152281A CN 109727900 A CN109727900 A CN 109727900A
Authority
CN
China
Prior art keywords
substrate
contact surface
contact
supporting member
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811152281.7A
Other languages
Chinese (zh)
Other versions
CN109727900B (en
Inventor
普及特·阿咖瓦
丹尼尔·格林伯格
徐松文
杰弗里·布罗丁
史蒂芬·V·桑索尼
格伦·莫里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to CN201811152281.7A priority Critical patent/CN109727900B/en
Publication of CN109727900A publication Critical patent/CN109727900A/en
Application granted granted Critical
Publication of CN109727900B publication Critical patent/CN109727900B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • H01L21/67787Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks with angular orientation of the workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67796Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations with angular orientation of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

The embodiment of the device of substrate is used to support in the displosure.In some embodiments, the device for being used to support substrate includes: supporting member;And multiple substrate contact elements, multiple substrate contact element are protruded by the supporting member, wherein each of multiple substrate contact element includes: the first contact surface supports the substrate when substrate is placed in first contact surface;And second contact surface, second contact surface are extended by first contact surface;Wherein second contact surface prevents moving radially for the substrate adjacent to the periphery of the substrate;Wherein first contact surface is relevant to the supporting member and is in first angle, and second contact surface is relevant to the supporting member and is in second angle;And wherein the first angle between about 3 degree and 5 degree.

Description

Substrate transfer robot end effector
The application be the applying date be on June 5th, 2015, application No. is 201580036350.6, it is entitled that " substrate passes Send terminal of manipulator effector " application for a patent for invention divisional application.
Technical field
The embodiment of present disclosure relates in general to semiconductor processing equipment.
Background technique
In the manufacture of microelectronic component on a semiconductor substrate, repeatedly in substrate edges and back side during manufacturing process Upper disposition (handle) semiconductor substrate.The disposition can cause pollutant to be adhered to substrate backside and move between processing component It is dynamic, for example, follow substrate or between different substrate by chamber to chamber, FOUP (front-open wafer feeder) to FOUP or Handling implement undesirably increases the tool down time for maintenance, for removing pollutant to handling implement.These are dirty Dye object is also transferred on front side of substrate, and leads to reduced equipment performance and/or yield loss.
The typical solution of the above problem is intended to transmit/dispose contact area between device by being reduced to substrate and substrate To reduce the generation of backside particle.However, inventor observes while reduction contact area can reduce particle generation: even if Using the smallest contact area considered, a large amount of particle is still generated.
Therefore, inventor provides the implementation for the improved device for being used to support and disposing substrate that there is reduced particle to generate Mode.
Summary of the invention
The embodiment of the device of substrate is used to support in the displosure.In some embodiments, it is used to support substrate Device includes: supporting member;And multiple substrate contact elements, multiple substrate contact element are protruded by the supporting member, wherein Each of multiple substrate contact element includes: the first contact surface, the branch when substrate is placed in first contact surface Support the substrate;And second contact surface, second contact surface are extended by first contact surface;Wherein second contact surface The periphery of the neighbouring substrate is to prevent moving radially for the substrate;Wherein first contact surface is relevant to the supporting member and is in First angle, and second contact surface is relevant to the supporting member and is in second angle;And wherein the first angle between Between about 3 degree and 5 degree.
In some embodiments, the substrate transfer robot for transmitting substrate includes: arm, which includes blade;And Multiple substrate contact elements, multiple substrate contact element are prominent by the upper surface of the blade.Multiple substrate contact element Each includes: the first contact surface supports the substrate when substrate is placed in first contact surface;And second contact table Face, second contact surface are extended by first contact surface;Wherein second contact surface adjacent to the periphery of the substrate to prevent Only the substrate moves radially;Wherein first contact surface is relevant to the upper surface and is in first angle, and second contact Surface is relevant to the upper surface and is in second angle;And wherein the first angle is between about 3 degree and 5 degree.
In some embodiments, the substrate transfer robot for transmitting substrate includes: arm, which includes blade, In the blade titanium ceramics mixed by electrical conductivity formed;And multiple substrate contact elements, multiple substrate contact element is by the blade Upper surface it is prominent.Each of multiple substrate contact element includes: the first contact surface, is placed in this in substrate and first connects The substrate is supported when on touching surface;And second contact surface, second contact surface are extended by first contact surface;Wherein should Second contact surface prevents moving radially for the substrate adjacent to the periphery of the substrate;Wherein first contact surface is relevant to this Upper surface is in first angle, and second contact surface is in second angle relative to the upper surface, wherein the first angle The second angle is greater than the first angle between about 3 degree and 5 degree, and wherein.
The others and further embodiment of present disclosure are described below.
Detailed description of the invention
It summarizes briefly above and the embodiment of present disclosure discussed in more detail below can be by referring to being depicted in Illustrative embodiments of the present disclosure in attached drawing and understand.However, attached drawing is only painted the typical reality of present disclosure Mode is applied, thus is not construed as the limitation to range, because present disclosure allows other equivalent effective embodiments.
Fig. 1 describes the signal for transmitting the substrate transfer robot of substrate according to some embodiments of present disclosure Figure, the substrate are placed on the lifter pin of substrate support.
Fig. 2 according to some embodiments of present disclosure describe substrate transfer robot end effector it is equidistant Figure.
Fig. 3 describes the lateral section of the part of substrate transfer robot blade according to some embodiments of present disclosure Figure.
Fig. 4 describes the lateral section of the part of substrate transfer robot blade according to some embodiments of present disclosure Figure.
Fig. 5 describes the plane of the end effector of substrate transfer robot according to some embodiments of present disclosure Figure.
Fig. 6 describes the lateral section of the part of substrate transfer robot blade according to some embodiments of present disclosure Figure.
In order to make it easy to understand, using identical drawing reference numeral, as much as possible to indicate similar elements common in attached drawing.Attached drawing It is not necessarily to scale and can simplify for clarity.Element and feature in one embodiment be not further described through Under can be beneficially incorporated in other embodiment.
Specific embodiment
The embodiment of present disclosure provides the substrate disposal plant of improvement, which is provided compared to biography The particle reduced for system baseplate support device generates.The embodiment of present disclosure can be advantageously during manufacturing process The pollutant accumulated on substrate is avoided or reduced, for example, can further limit in this way when disposing substrate between processing step Or it prevents pollutant from reaching on front side of substrate and causes device performance problems and/or yield loss.The reality of present disclosure can be used Mode to be applied to contact in processing in the huge variety of surface of substrate, these processing are wanted low-down particle and are introduced, for example, in Display processing, silicon wafer processing, Optical element manufacturing, it is such among.
Fig. 1 describes substrate transfer robot 100 according to some embodiments of present disclosure.For example, substrate conveyer Tool hand 100 may include the mechanical arm (arm 104) at first end 106 for vertical and swing offset.Arm 104 may include one or More connections (link), such as the first connection 108 and the second connection 110 being nailed together at axis 112.The second of arm 104 End 114 may include toggle 116, and the first end of blade 102 is coupled to toggle 116.Blade 102 may include being dashed forward by the upper surface of blade Engagement pad 118 out is with supporting substrate.Engagement pad 118 is described in more detail below with regard to Fig. 2 to Fig. 6.
In operation, it can control substrate transfer robot 100 that blade 102 is made to be placed on 150 lower section of substrate, in multiple Supporting substrate 150 on lifter pin 120.Via the manipulation of substrate transfer robot 100 and arm 104, blade 102 is by under substrate 150 The position of side is risen, so that at least one of engagement pad 118 and the edge of substrate 150 or back side be made to contact, and increases substrate 150 leave lifter pin 120.When contacting substrate 150, generated at the contact area usually between engagement pad 118 and substrate 150 Particle.
Inventor's discovery: when any element material for contacting substrate is hard compared with baseplate material (such as silicon), the particle of generation It with the high adhesion for baseplate material, can not prevent substrate from sliding, there is rough surface and non-conducting.For example, if just Begin the element formed by cohesive material contact substrate, and then contacts substrate by another element formed by hard material, will Deteriorate the generation of particle on substrate.Similarly, if having, electric current flows between substrate and conductive of material and substrate is by non-biography The property led material increases, and electric arc can occur and deteriorate the generation of particle on substrate.
Inventor's discovery: the generation of particle can be prevented or substantially minimized by using a material, which shows Contact one group of predetermined performance in the element (for example, engagement pad 118) of substrate.The predetermined performance of the group includes: Less than or equal to the hardness (for example, silicon) for the hardness for being intended to supporting substrate, Abherent, up to it is enough to prevent substrate in contact substrate Element on static friction coefficient, electrical conductivity and the surface roughness less than or equal to 10Ra slided.The material can wrap Contain: for example, one or more among aluminium oxide, silicon nitride, stainless steel and electrical conductivity plastics, electrical conductivity plastics are all Such as AndCan be used other process compatibles, show top annotation The material of performance.
Conventional edge engagement pad includes to be relevant to the edge supports table that horizontal plane is in a precipitous angle (close to 60 degree) Face.Inventor's discovery: after increasing substrate, due to the steepness of edge support surface angle, substrate slides into final installation position, The particle on substrate edges is caused to generate.Therefore, inventor find: can by provide EDGE CONTACT pad a low-angle inclined-plane to prevent Only or substantially minimize the generation of particle.
For example, Fig. 2 describes end effector 202 according to some embodiments of present disclosure.End effector 202 is wrapped Containing the multiple EDGE CONTACT pads 210 for being coupled to supporting member 204 (Fig. 2 shows four).It can engagement pad as depicted in fig. 1 118 use EDGE CONTACT pad 210 like that.In some embodiments, supporting member 204 is substantive plane, or comprising being enough The substantive plane domain of supporting substrate.In some embodiments, supporting member 204 formed by ceramic material and can be used titanium Doping.For mixing titanium ceramic material compared to conventional substrate transfer robot blade, more resistances are advantageously provided for sagging. In addition, mixing titanium ceramic support component is advantageously electrical conductivity.End effector 202 also may include feature structure 206, such as Hole, feature structure 206 can be used for the weight saving of the purpose and/or end effector 202 of substrate alignment.Before and after EDGE CONTACT The diameter of the more processed substrate of the distance between pad 210 L is slightly larger.For example, there is the substrate of 300mm diameter for disposing, away from It can be about 304mm from L.However, foundation is disposed depending on the size of substrate by distance L.
Fig. 3 describes the side view of EDGE CONTACT pad 210 according to some embodiments of present disclosure.EDGE CONTACT pad 210 include the first contact surface 302 and the second contact surface 304.First contact surface 302, which is relevant to supporting member 204, to be had First angle θ.Second contact surface 304 is relevant to supporting member 204 with second angle α.Due to substrate 150 weight and by The mobile inertia force of substrate 150 caused by substrate transfer robot 100, each EDGE CONTACT pad 210 give hanging down on substrate Directly (rub) power and radial force.Radial force is directed toward 150 center of substrate to ensure that substrate 150 is remain stationary.In order to ensure The friction and radial force of sufficient intensity on substrate, first angle θ can be between about 3 degree and 5 degree.First angle θ it is sufficiently small with Ensure there is the radial force for being directed towards substrate center, while keeping enough frictional force to prevent substrate from sliding.First connects The horizontal length for touching surface 302 can be between about 4mm between about 7mm, preferably from about 5.8mm.Second angle α is big compared with first angle θ, So that 304 essence of the second contact surface is vertical.Second contact surface 304 serve as buffer in case place during substrate slide.
EDGE CONTACT pad 210 is coupled to the supporting member 204 of end effector 202.In some embodiments, it can be used One or more screws 306 are to couple EDGE CONTACT pad 210 to supporting member 204.Screw 306 includes through-hole, to ensure to take out Any air bag between empty screw 306 and EDGE CONTACT pad 210.In some embodiments, it can be used one or more Gasket 308 advantageously ensures that substrate in all sides to control the height of the EDGE CONTACT pad 210 of 204 top of supporting member It is properly horizontal in edge engagement pad.
Fig. 4 describes the perspective view of EDGE CONTACT pad 210 according to some embodiments of present disclosure.Described in Fig. 4 EDGE CONTACT pad 210 it is similar to EDGE CONTACT pad 210 shown in Fig. 3, in addition to the EDGE CONTACT pad 210 in Fig. 4 includes Curved first contact surface 402 and the second contact surface 404 (compared to linear surface shown in Fig. 3).Inventor's discovery: By providing curved contact surface, the friction and radial force for being applied to substrate change according to substrate position.In this way, if substrate is sliding Dynamic, the radial force acted on substrate is increased or decreased with the substrate position for being relevant to EDGE CONTACT pad 210.For example, radial Power substrate be in high angle Shi Genggao and when substrate is in compared with low angle it is lower.As a result, certain party has been restricted or prevented Further sliding to upper substrate.Angle, θ between first and second contact surface 402,404 and horizontal plane is in the first contact The section start on surface 402 changes by 0 degree or close to 0 degree at 90 degree of the end of the second contact surface 404 or close to 90 degree. First contact surface 402 (for example, at more low-angle and curved surface part of more radial inward) is played for being placed in first The effect of the support surface of substrate in contact surface 402, and the second contact surface 404 is (for example, at greater angle and more diameter To curved surface part outwardly) play the role of buffer to prevent substrate from sliding.First and second contact surface 402,404 Form a continuous bend surface.Alternatively, bending and the combination of linear surface can be used and provide the angle of more low-angle to support If substrate further moves when substrate and greater angle are to prevent from skidding.
Fig. 5 describes end effector 500 according to some embodiments of present disclosure.End effector 500 includes coupling It is connected to the backside contact pad 510 of the supporting member 502 of end effector 500, with by substrate backside supporting substrate, rather than as more than It is relevant to edge described in Fig. 2 to Fig. 4.Engagement pad 118 backside contact pad 510 can be used like that as depicted in Figure 1.When When substrate transfer robot raising substrate 150 leaves lifter pin 120, substrate 150 accelerates to transmission speed by speed zero.The acceleration Lead to the power F of the contact area of the position corresponding to engagement pad 118, as illustrated in figure 6.As a result, backside contact pad 510 and base Particle is generated at contact area between plate 150.
It is similar to EDGE CONTACT pad 210, screw 506 can be used that backside contact pad 510 is coupled to end effector 500 Supporting member 502.Screw 506 can be discharged to which any air void between screw and backside contact pad 510 be discharged.Although not It shows, can be used and be similar to Fig. 3 and these gaskets depicted in figure 4 to increase any backside contact pad 510, in substrate 150 ensure that substrate 150 is suitable smooth when being placed on backside contact pad 510.
Therefore, it is used to avoid in the device and material of the improvement for generating particle on substrate in the displosure.In the manufacturing process phase Between, for example, can there is the device of invention during disposition substrate between processing step and inside processing chamber housing when supporting substrate Make the pollutant accumulated on substrate that pollutant be reduced or prevented to accumulate on substrate sharply, thus prevents or reduce pollutant Incidence and from reaching on front side of substrate and causing reduced unit efficiency and/or yield loss.
Although the aforementioned embodiment for present disclosure, in the condition for the base region for not departing from present disclosure The others and further embodiment of present disclosure can be designed down.

Claims (9)

1. a kind of device for being used to support substrate, described device include:
Supporting member;With
Multiple substrate contact elements, the multiple substrate contact element is protruded by the supporting member, wherein the multiple substrate Each of contact element includes:
First contact surface supports the substrate when substrate is placed in first contact surface;And
Second contact surface, second contact surface are extended by first contact surface, wherein second contact surface The periphery of the neighbouring substrate is to prevent moving radially for the substrate, wherein first contact surface is relevant to the support Component is in first angle, and second contact surface is relevant to the supporting member and is in second angle, wherein described The second angle is greater than the first angle to one angle between about 3 degree and 5 degree, and wherein;And
One or more gaskets, one or more gasket are set to the supporting member and contact with the multiple substrate Between one or more substrate contact elements in element.
2. device as described in claim 1, wherein the supporting member is the blade of the arm of substrate transfer robot, and its Described in multiple substrate contact elements it is prominent by the upper surface of the blade.
3. device as claimed in claim 2 is formed wherein the blade mixes titanium ceramics by electrical conductivity.
4. device as described in any one of claims 1 to 3, wherein first contact surface and the second contact surface shape At continuous curved surface.
5. device as described in any one of claims 1 to 3, wherein first contact surface be configured to using frictional force and Radial force, to prevent the substrate from sliding.
6. device as described in any one of claims 1 to 3, wherein the horizontal length of first contact surface is between about 4mm Between 7mm.
7. device as described in any one of claims 1 to 3, wherein the multiple substrate contact element is coupled using multiple screws To the supporting member.
8. device as claimed in claim 7, wherein each screw of the multiple screw includes through-hole, the vented liquid coupling It is connected to gap, the gap is set between each screw of the multiple screw and the supporting member.
9. device as described in any one of claims 1 to 3, wherein the multiple substrate contact element is by following one or more shape At: aluminium oxide, silicon nitride, stainless steel or electrical conductivity plastics.
CN201811152281.7A 2014-07-03 2015-06-05 Substrate transfer robot end effector Active CN109727900B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811152281.7A CN109727900B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462020769P 2014-07-03 2014-07-03
US62/020,769 2014-07-03
US14/476,224 US9425076B2 (en) 2014-07-03 2014-09-03 Substrate transfer robot end effector
US14/476,224 2014-09-03
PCT/US2015/034333 WO2016003598A1 (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector
CN201580036350.6A CN106489194B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector
CN201811152281.7A CN109727900B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580036350.6A Division CN106489194B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector

Publications (2)

Publication Number Publication Date
CN109727900A true CN109727900A (en) 2019-05-07
CN109727900B CN109727900B (en) 2023-05-09

Family

ID=55017516

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201811152281.7A Active CN109727900B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector
CN201580036350.6A Active CN106489194B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580036350.6A Active CN106489194B (en) 2014-07-03 2015-06-05 Substrate transfer robot end effector

Country Status (9)

Country Link
US (1) US9425076B2 (en)
EP (1) EP3164883A4 (en)
JP (2) JP2017522738A (en)
KR (1) KR102509442B1 (en)
CN (2) CN109727900B (en)
IL (1) IL249505A0 (en)
SG (1) SG11201610314UA (en)
TW (1) TWI628738B (en)
WO (1) WO2016003598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060116A (en) * 2020-09-02 2020-12-11 胡坤宇 Transfer robot

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312127B2 (en) 2013-09-16 2019-06-04 Applied Materials, Inc. Compliant robot blade for defect reduction
US9536329B2 (en) * 2014-05-30 2017-01-03 Adobe Systems Incorporated Method and apparatus for performing sentiment analysis based on user reactions to displayable content
JP6276317B2 (en) * 2016-03-31 2018-02-07 平田機工株式会社 Hand unit and transfer method
US10090188B2 (en) * 2016-05-05 2018-10-02 Applied Materials, Inc. Robot subassemblies, end effector assemblies, and methods with reduced cracking
JP6757646B2 (en) * 2016-10-27 2020-09-23 川崎重工業株式会社 Board gripping hand and board transfer device equipped with it
US10773902B2 (en) 2016-12-22 2020-09-15 General Electric Company Adaptive apparatus and system for automated handling of components
US10781056B2 (en) 2016-12-22 2020-09-22 General Electric Company Adaptive apparatus and system for automated handling of components
USD822735S1 (en) * 2017-03-17 2018-07-10 Donald Dimattia, Jr. Positionable end effector link
US10399231B2 (en) * 2017-05-22 2019-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate handling contacts and methods
EP3867047A1 (en) 2018-10-15 2021-08-25 General Electric Company Systems and methods of automated film removal
US11600580B2 (en) 2019-02-27 2023-03-07 Applied Materials, Inc. Replaceable end effector contact pads, end effectors, and maintenance methods
JP7415782B2 (en) * 2020-05-11 2024-01-17 東京エレクトロン株式会社 Substrate transfer mechanism and substrate transfer method
US20220063113A1 (en) * 2020-08-26 2022-03-03 WaferPath, Inc. Protective cap for a robot end effector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558984A (en) * 1984-05-18 1985-12-17 Varian Associates, Inc. Wafer lifting and holding apparatus
JPH0189455U (en) * 1987-12-04 1989-06-13
EP0878559A1 (en) * 1997-05-09 1998-11-18 Leybold Systems GmbH Apparatus for transport of plate shaped substrates
EP1063683A2 (en) * 1999-06-03 2000-12-27 Applied Materials, Inc. Robot blade for semiconductor processing equipment
JP2003258076A (en) * 2002-03-05 2003-09-12 Tokyo Electron Ltd Transport device
JP2004266202A (en) * 2003-03-04 2004-09-24 Daihen Corp Holding mechanism of workpiece
US20080267747A1 (en) * 2007-04-27 2008-10-30 Brooks Automation, Inc. Inertial wafer centering end effector and transport apparatus
US20100255195A1 (en) * 2007-05-07 2010-10-07 Symyx Solutions, Inc. Apparatus and method for moving a substrate

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151195A (en) 1992-11-06 1994-05-31 Meidensha Corp Transformer
US6322119B1 (en) * 1999-07-09 2001-11-27 Semitool, Inc. Robots for microelectronic workpiece handling
JPH10144758A (en) * 1996-11-11 1998-05-29 Kokusai Electric Co Ltd Substrate transfer plate
JPH10181878A (en) * 1996-12-26 1998-07-07 Canon Inc Finger for carrying substrate
US5955858A (en) * 1997-02-14 1999-09-21 Applied Materials, Inc. Mechanically clamping robot wrist
US5985033A (en) * 1997-07-11 1999-11-16 Applied Materials, Inc. Apparatus and method for delivering a gas
US6722834B1 (en) * 1997-10-08 2004-04-20 Applied Materials, Inc. Robot blade with dual offset wafer supports
US6537011B1 (en) * 2000-03-10 2003-03-25 Applied Materials, Inc. Method and apparatus for transferring and supporting a substrate
JP2003065311A (en) * 2001-08-24 2003-03-05 Nitto Seiko Co Ltd Screw part for fluid discharge
US7048316B1 (en) * 2002-07-12 2006-05-23 Novellus Systems, Inc. Compound angled pad end-effector
US7641247B2 (en) * 2002-12-17 2010-01-05 Applied Materials, Inc. End effector assembly for supporting a substrate
JP4275420B2 (en) * 2003-01-28 2009-06-10 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
US7654596B2 (en) * 2003-06-27 2010-02-02 Mattson Technology, Inc. Endeffectors for handling semiconductor wafers
KR100679269B1 (en) * 2006-01-04 2007-02-06 삼성전자주식회사 Semiconductor manufacturing device of multi-chamber type
JP2008108991A (en) * 2006-10-27 2008-05-08 Daihen Corp Work holding mechanism
US7669903B2 (en) 2007-10-11 2010-03-02 Crossing Automation, Inc. Ultra low contact area end effector
US8382180B2 (en) * 2007-10-31 2013-02-26 Applied Material, Inc. Advanced FI blade for high temperature extraction
WO2009099107A1 (en) * 2008-02-06 2009-08-13 Ulvac, Inc. Robot hand for substrate transportation
US20100178137A1 (en) * 2009-01-11 2010-07-15 Applied Materials, Inc. Systems, apparatus and methods for moving substrates
JP2010239023A (en) 2009-03-31 2010-10-21 Tokyo Electron Ltd Substrate transfer device, and substrate processing device
KR102077351B1 (en) * 2011-12-14 2020-02-13 가부시키가이샤 니콘 Substrate holder and pair of substrate holders
US10431489B2 (en) 2013-12-17 2019-10-01 Applied Materials, Inc. Substrate support apparatus having reduced substrate particle generation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558984A (en) * 1984-05-18 1985-12-17 Varian Associates, Inc. Wafer lifting and holding apparatus
JPH0189455U (en) * 1987-12-04 1989-06-13
EP0878559A1 (en) * 1997-05-09 1998-11-18 Leybold Systems GmbH Apparatus for transport of plate shaped substrates
EP1063683A2 (en) * 1999-06-03 2000-12-27 Applied Materials, Inc. Robot blade for semiconductor processing equipment
JP2003258076A (en) * 2002-03-05 2003-09-12 Tokyo Electron Ltd Transport device
JP2004266202A (en) * 2003-03-04 2004-09-24 Daihen Corp Holding mechanism of workpiece
US20080267747A1 (en) * 2007-04-27 2008-10-30 Brooks Automation, Inc. Inertial wafer centering end effector and transport apparatus
US20100255195A1 (en) * 2007-05-07 2010-10-07 Symyx Solutions, Inc. Apparatus and method for moving a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060116A (en) * 2020-09-02 2020-12-11 胡坤宇 Transfer robot
CN112060116B (en) * 2020-09-02 2021-08-24 深圳市大族富创得科技有限公司 Transfer robot

Also Published As

Publication number Publication date
KR20170026595A (en) 2017-03-08
TW201608671A (en) 2016-03-01
TWI628738B (en) 2018-07-01
JP7169334B2 (en) 2022-11-10
KR102509442B1 (en) 2023-03-10
WO2016003598A1 (en) 2016-01-07
JP2021048406A (en) 2021-03-25
US20160005638A1 (en) 2016-01-07
CN109727900B (en) 2023-05-09
IL249505A0 (en) 2017-02-28
US9425076B2 (en) 2016-08-23
JP2017522738A (en) 2017-08-10
CN106489194B (en) 2020-12-04
EP3164883A4 (en) 2018-08-01
CN106489194A (en) 2017-03-08
SG11201610314UA (en) 2017-01-27
EP3164883A1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
CN109727900A (en) Substrate transfer robot end effector
CN109616438A (en) The substrate support equipment that substrate particle with reduction generates
CN110050336A (en) Waffer edge lift pin for manufacturing semiconductor device designs
EP3605597A1 (en) Silicon chip holding device, silicon chip conveying device, silicon chip delivery system and conveying method
JP2001223252A (en) Suctionless hand of robot
KR102544974B1 (en) Patterned chuck for double-sided processing
KR20100034742A (en) Techniques for handling substrates
JP2014203967A (en) Chuck table
CN216389310U (en) Wafer adsorption equipment
CN201966192U (en) Static sucker with double contact surfaces
KR20160002345A (en) Substrate transferring arm and substrate transferring apparatus including the same
CN110238816A (en) Mechanical arm, manipulator and transmission equipment
CN215036825U (en) Chip board burning tool
CN215266186U (en) Wafer bearing disc and plasma processing device
CN106684027B (en) Microelectronic processing equipment and method
TW202021017A (en) Wafer transfer device
JP5795172B2 (en) Semiconductor manufacturing equipment
JP2007208092A (en) Wafer transfer machine
CN116344433A (en) Method for reinforcing mechanical strength of sheet silicon carbide wafer
KR20060035467A (en) Robot blade for transferring wafers
KR20070073014A (en) Blade for transferring wafer
KR20000065967A (en) wafer dumping machine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant