CN109722621A - 枪管防腐耐磨处理工艺 - Google Patents

枪管防腐耐磨处理工艺 Download PDF

Info

Publication number
CN109722621A
CN109722621A CN201811606168.1A CN201811606168A CN109722621A CN 109722621 A CN109722621 A CN 109722621A CN 201811606168 A CN201811606168 A CN 201811606168A CN 109722621 A CN109722621 A CN 109722621A
Authority
CN
China
Prior art keywords
gun barrel
treatment
nitriding
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811606168.1A
Other languages
English (en)
Other versions
CN109722621B (zh
Inventor
何养民
曹银萍
何智俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHAANXI TIEMA FORGING Co Ltd
Original Assignee
SHAANXI TIEMA FORGING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHAANXI TIEMA FORGING Co Ltd filed Critical SHAANXI TIEMA FORGING Co Ltd
Priority to CN201811606168.1A priority Critical patent/CN109722621B/zh
Publication of CN109722621A publication Critical patent/CN109722621A/zh
Application granted granted Critical
Publication of CN109722621B publication Critical patent/CN109722621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本公开是关于一种枪管防腐耐磨处理工艺,包括:对待处理的枪管进行第一渗氮处理,该第一渗氮为气体渗氮;对经过第一渗氮处理后的枪管进行抛光处理;对抛光处理后的枪管进行第二渗氮处理,该第二渗氮为液体离子复合渗氮;对经过第二渗氮处理后的枪管进行低温时效处理。本公开可以在很大程度上克服现有枪管表面处理工艺存在的镀层与基体结合力较低,涂层易脱落、耐磨防腐性能较差、表面硬度不高等问题,显著提高枪管的使用寿命。

Description

枪管防腐耐磨处理工艺
技术领域
本公开涉及枪管表面热处理技术领域,尤其涉及一种枪管防腐耐磨处理工艺。
背景技术
枪管在过去很多年之中,除了生产方式和材料改变之外,其他的变化不大。通常枪管必须承受高热和高压,一般子弹的外径比枪管内径大,在射击开始,子弹进入枪管的喉头过程中,子弹外径收缩,子弹外壳和枪管内部形成紧配合封闭状态,这种封闭状态可以封闭弹膛燃烧气体,形成膛压,膛压可达200~300MPa,温度可达800~900℃。因此,枪管内部的失效形式一般为高温高压下的干摩擦磨损,这会导致枪管使用寿命大大减少。
为了提高枪管使用寿命,目前枪管表面热处理工艺广泛采用镀铬工艺。但是目前镀铬技术工艺至少存在如下缺点:镀层与枪管基体结合力较低,镀层易脱落,枪管耐磨防腐性能较差,表面硬度不高,使用寿命低等。
发明内容
本公开的目的在于提供一种枪管防腐耐磨处理工艺,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
本公开实施例提供一种枪管防腐耐磨处理工艺,包括:
对待处理的枪管进行第一渗氮处理,该第一渗氮为气体渗氮;
对经过第一渗氮处理后的枪管进行抛光处理;
对抛光处理后的枪管进行第二渗氮处理,该第二渗氮为液体离子复合渗氮;
对经过第二渗氮处理后的枪管进行低温时效处理。
在本公开的一实施例中,对所述枪管进行第一渗氮处理,包括:
对所述枪管的内外表面进行除油、清洗、干燥预处理;
将预处理后的所述枪管放置在加热炉中进行预热处理,预热时的预热温度为200~450℃,预热时间为10~100分钟;
对预热处理后的枪管在渗氮炉中充入氨气进行自动脉冲气体渗氮处理,渗氮加热温度为480~590℃,渗氮时间为20~25小时,以在枪管表面形成耐磨防腐渗层;
当渗氮时间到达后将所述枪管冷却至预设温度,用CO2气体更换出炉气,后续氧化40~60分钟,氧化过程中更换一次炉气,最后,用氮气换气之后打开炉盖取出枪管。
在本公开的一实施例中,在气体渗氮过程中进行至少一次中间氧化处理。
在本公开的一实施例中,对经过第一渗氮处理后的枪管进行抛光处理,包括:
对所述枪管进行超声波清洗,对清洗后的枪管进行抛光处理。
在本公开的一实施例中,对抛光处理后的枪管进行第二渗氮处理,包括:
在加热炉中化盐使液体中CNO-1离子和CN-1离子质量分数在30﹪~40﹪之间;
枪管预热:在加热炉中预热枪管,预热温度为200~450℃,时间为10~30分钟;
枪管均热:预热后枪管在液体离子渗氮炉中加热均匀保温,温度为400~500℃,时间为10~120分钟;
液体离子氮化:均热后枪管浸泡在液体离子渗氮炉中进行氮化处理,温度为500~650℃,时间为10~120分钟。
在本公开的一实施例中,枪管在进行液体离子氮化处理后还包括钝化氧化处理,温度为200~450℃,时间为10~30分钟。
在本公开的一实施例中,对经过第二渗氮处理后的枪管进行低温时效处理,包括:
将所述经过第二渗氮处理后的枪管放入时效炉中进行低温时效处理,温度为150~200℃,时间为200~300分钟。
在本公开的一实施例中,枪管内外表面形成耐磨防腐渗层,该耐磨防腐渗层由表及里依次包括化合物层和扩散层,且该耐磨防腐渗层的厚度为4μm~500μm。
在本公开的一实施例中,该耐磨防腐渗层含有氮化物组织、碳化物组织和氧化物组织中的一个或多个。
在本公开的一实施例中,在枪管内外表面形成的所述耐磨防腐层的厚度为10μm~100μm。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开的实施例提供一种新的枪管防腐耐磨处理工艺,首先对待处理的枪管进行气体渗氮处理,然后对处理后的枪管进行抛光处理,再对抛光处理后的枪管进行液体离子复合渗氮处理,最后对复合渗氮处理后的枪管进行低温时效处理。经试验,本公开实施例提供的工艺处理后的枪管内壁具有较高的耐磨性能,枪管外壁具有较好的防腐性能,枪管表面的渗层与基体结合力较高,表面硬度较高,不易脱落,耐磨防腐性能较好,显著提高了枪管的使用寿命。
附图说明
图1示出现有镀铬工艺形成的镀铬层金相图;
图2示出现有镀铬工艺形成的镀层磨损脱落图;
图3示出本公开实施例中枪管防腐耐磨处理工艺流程图;
图4示出本公开示例性实施例中枪管结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。
本申请发明人发现,目前镀铬工艺处理后形成的镀铬层与枪管基体结合面处,硬度有较大的突变,如图1所示。另外镀层材料与基体材料的热膨胀系数相差较大,在热冷交变状态下,镀层与基体结合面处,产生较为明显的切向位移,易造成镀层脱落,参考图2中所示上部方框区域;且随着枪管温度升高到800~900℃,镀铬层与基体结合面处产生的位移更为明显。在枪管内壁,钢管材料处于外层,镀铬层在最里层,由热膨胀位移引起应力是沿着园周方向的拉应力,在交变热应力下,镀铬层和基体结合处更容易剥落。
提高枪管镀层与基体结合力的途径就是使镀层至少具备下列条件:镀层有较为理想的硬度、镀层具备比较理想的硬度梯度、镀层具备比较理想的密度梯度。基于此,本发明实施例提供了一种新的枪管防腐耐磨处理工艺,该工艺处理后的枪管基本完全具备上述三个条件中的一个或多个,可以代替现有的镀铬处理工艺,克服现有工艺处理的枪管存在的镀层与基体结合力较低、镀层易脱落、耐磨防腐性能较差、表面硬度不高等问题,显著提高枪管的使用寿命。
图3所示为本公开实施例提供的一种枪管防腐耐磨处理工艺流程图,该工艺可以包括以下步骤:
步骤S101:对待处理的枪管进行第一渗氮处理,该第一渗氮为气体渗氮。
步骤S102:对经过第一渗氮处理后的枪管进行抛光处理。
步骤S103:对抛光处理后的枪管进行第二渗氮处理,该第二渗氮为液体离子复合渗氮。
步骤S104:对经过第二渗氮处理后的枪管进行低温时效处理。
本公开实施例提供的上述工艺不同于现有镀铬工艺,其通过两次不同的渗氮处理并结合抛光处理以及低温时效处理,经该工艺处理后的枪管表面具有较好的硬度梯度和密度梯度,有较好的耐磨性能和防腐性能,例如枪管内壁具有较高的耐磨性能,而枪管外壁具有较好的防腐性能。另外枪管表面的渗层与基体结合力较高,表面硬度较高,不易脱落,耐磨防腐性能较好,可显著提高枪管的使用寿命。
具体的,在本公开的一实施例中,步骤S101中对所述枪管进行第一渗氮处理具体可以包括以下步骤201~204:
步骤201:对所述枪管的内外表面进行除油、清洗、干燥预处理;
步骤202:将预处理后的所述枪管放置在加热炉中进行预热处理,预热时的预热温度为200~450℃,预热时间为10~100分钟。示例性的,预热温度可以为250~400℃,预热时间可以为50~90分钟。
步骤203:对预热处理后的枪管在渗氮炉中充入氨气进行自动脉冲气体渗氮处理,渗氮加热温度为480~580℃,渗氮时间为20~25小时,以在枪管表面形成耐磨防腐渗层;该渗氮加热温度可以为490~500℃,如490℃、500℃等;该渗氮时间可以为20、21、23、24或25小时等。
步骤204:当渗氮时间到达后将所述枪管冷却至预设温度,用CO2气体更换出炉气,后续氧化40~60分钟,氧化过程中更换一次炉气,最后,用氮气换气之后打开炉盖取出枪管。其中该预设温度小于所述渗氮加热温度,例如为450℃;氧化时间可以为40分钟、50分钟或60分钟等。
在本公开的一实施例中,在步骤203的气体渗氮过程中可进行中间氧化处理。该中间氧化处理具体为:充CO2氧化25~35分钟。
在本公开的一实施例中,步骤S102中对经过第一渗氮处理后的枪管进行抛光处理具体可以为:对所述枪管进行超声波清洗,对清洗后的枪管进行抛光处理,这样可磨去经第一渗氮处理后枪管表面的疏松层,利于后续第二渗氮处理形成。
在本公开的一实施例中,步骤S103中对抛光处理后的枪管进行第二渗氮处理具体可以包括以下步骤301~304:
步骤301:在加热炉中化盐使液体中CNO-1离子和CN-1离子质量分数在30﹪~40﹪之间;
步骤302:枪管预热:在加热炉中预热枪管,预热温度为200~450℃,时间为10~30分钟;示例性的,预热温度可为250~450℃,时间可为20~30分钟。
步骤303:枪管均热:预热后枪管在液体离子渗氮炉中加热均匀保温,温度为400~500℃,时间为10~120分钟。示例性的,温度可为450~490℃,时间为20~100分钟。
步骤304:液体离子氮化:均热后枪管浸泡在液体离子渗氮炉中进行氮化处理,温度为500~650℃,时间为10~120分钟。示例性的,温度可为600~650℃,时间为30~100分钟。
在本公开的一实施例中,步骤304枪管在进行液体离子氮化处理后还包括钝化氧化处理,温度为200~450℃,时间为10~30分钟。
在本公开的一实施例中,步骤S104中对经过第二渗氮处理后的枪管进行低温时效处理具体可以为:将所述经过第二渗氮处理后的枪管放入时效炉中进行低温时效处理,温度为150~200℃,时间为200~300分钟。示例性的,所述温度可以为150℃,时间可以为300分钟,但不限于此。时效处理可消除枪管的内应力,稳定组织,改善机械性能。
在本公开的实施例中,参考图4所示,经过上述工艺在枪管基体1表面均形成耐磨防腐渗层,该耐磨防腐渗层由表及里依次包括化合物层3和扩散层2,且该耐磨防腐渗层的厚度可以为4μm~500μm。示例性的,该耐磨防腐渗层含有氮化物组织、碳化物组织和氧化物组织中的一个或多个,例如含有耐磨防腐性较好的Fe2N、Fe3N、、Fe4N等氮化物组织,Fe3C等碳化物组织以及Fe3O4氧化物组织等。较佳的,在枪管内外表面形成的所述耐磨防腐层的厚度可以为10μm~100μm,如20μm、40μm、60μm、80μm、90μm等。
实施例1:
枪管防腐耐磨处理工艺步骤包括:
第一步、对枪管进行气体脉冲渗氮处理:
1)对枪管内外表面进行预处理,例如对枪管内外表面进行除油、清洗、干燥处理;其中该枪管的材料为30SiMn2MoVA。
2)枪管预热处理,将预处理后的枪管放置在预热加热炉中预热,预热温度200~450℃,时间10~100min;
3)自动脉冲气体渗氮处理:渗氮炉中通纯氨气进行气体渗氮处理,渗氮温度时间为500℃×25小时。
在渗氮过程中分别进行一次到三次的中间氧化。中间氧化方法为:抽真空至-0.09MPa,冲氮气至0MPa,然后抽真空,然后充CO2至0MPa,氧化30分钟,然后抽真空,通氨气至0MPa,然后转入自动脉冲继续渗氮。
4)整个渗氮时间到达25小时后,开动鼓风机,冷却至450℃,用CO2气更换出炉气,后续氧化60分钟,氧化过程中更换一次炉气,最后用氮气换气之后打开炉盖,取出枪管试样,油冷。
第二步、对枪管内外壁抛光处理,具体可对渗氮枪管进行超声波清洗,然后对枪管进行抛光处理。这一工序的作用是磨去枪管表面的疏松层。
第三步、对枪管进行液体离子复合渗氮处理:
1)加热炉中化盐,保证液体中CNO-1离子和CN-1离子质量分数在30﹪~40﹪之间。
2)枪管预热:预热温度为200~450℃,时间为10~30min。
3)枪管均热:枪管在液体离子渗氮炉中加热均匀保温,温度为400~500℃,时间为10~120min。
4)枪管液体离子氮化,钢管浸泡在液体离子渗氮炉中进行氮化,温度为500~650℃,时间为10~120min。
5)钝化氧化处理:温度为200~450℃,时间为10~30min。
6)50~90℃热水清洗。
7)冷水洗。
8)50~90℃热水清洗。
第四步、枪管时效处理:在时效炉中加热枪管,温度时间为150℃×300分钟,即得处理完毕的枪管。
按照实施例1的步骤,对由30SiMn2MoVA材料制造的枪管进行本发明工艺处理,测得其表面硬度及硬度梯度如表1所示。
表1
渗层深度(μm) 0.00 10 20 30 40 50
硬度Hv0.2 901 920 905 885 835 810
实施例2:与实施例1的工艺步骤相同,仅替换枪管材料为38CrMoLA材料。按照实施例1的步骤,对由38CrMoLA材料制造的发泡枪管进行工艺处理,测得其表面硬度及硬度梯度如表2所示。
表2
渗层深度(μm) 0.00 10 20 30 40 50
硬度Hv0.2 1084 1001 980 930 801 839
实施例3:
枪管防腐耐磨处理工艺步骤包括:
第一步、对枪管进行气体脉冲渗氮处理:
1)对枪管内外表面进行预处理,例如对枪管内外表面进行除油、清洗、干燥处理。
2)枪管预热处理,将预处理后的枪管放置在预热加热炉中预热,预热温度400℃,时间50min;
3)自动脉冲气体渗氮处理:渗氮炉中通纯氨气进行气体渗氮处理,渗氮温度时间为500℃×25小时。
在渗氮过程中分别进行一次到三次的中间氧化。中间氧化方法为:抽真空至-0.09MPa,冲氮气至0MPa,然后抽真空,然后充CO2至0MPa,氧化30分钟,然后抽真空,通氨气至0MPa,然后转入自动脉冲继续渗氮。
4)整个渗氮时间到达25小时后,开动鼓风机,冷却至450℃,用CO2气更换出炉气,后续氧化60分钟,氧化过程中更换一次炉气,最后用氮气换气之后打开炉盖,取出枪管试样,油冷。
第二步、对枪管内外壁抛光处理,具体可对渗氮枪管进行超声波清洗,然后对枪管进行抛光处理。这一工序的作用是磨去枪管表面的疏松层。
第三步、对枪管进行液体离子复合渗氮处理:
1)加热炉中化盐,保证液体中CNO-1离子和CN-1离子质量分数为35﹪。
2)枪管预热:预热温度为300℃,时间为20min。
3)枪管均热:枪管在液体离子渗氮炉中加热均匀保温,温度为450℃,时间为60min。
4)枪管液体离子氮化,钢管浸泡在液体离子渗氮炉中进行氮化,温度为550℃,时间为90min。
5)钝化氧化处理:温度为300℃,时间为20min。
6)50~90℃热水清洗。
7)冷水洗。
8)50~90℃热水清洗。
第四步、枪管时效处理:在时效炉中加热枪管,温度时间为150℃×300分钟,即得处理完毕的枪管。
实施例4:
枪管防腐耐磨处理工艺步骤包括:
第一步、对枪管进行气体脉冲渗氮处理:
1)对枪管内外表面进行预处理,例如对枪管内外表面进行除油、清洗、干燥处理。
2)枪管预热处理,将预处理后的枪管放置在预热加热炉中预热,预热温度300℃,时间80min;
3)自动脉冲气体渗氮处理:渗氮炉中通纯氨气进行气体渗氮处理,渗氮温度时间为500℃×25小时。
在渗氮过程中分别进行一次到三次的中间氧化。中间氧化方法为:抽真空至-0.09MPa,冲氮气至0MPa,然后抽真空,然后充CO2至0MPa,氧化30分钟,然后抽真空,通氨气至0MPa,然后转入自动脉冲继续渗氮。
4)整个渗氮时间到达25小时后,开动鼓风机,冷却至450℃,用CO2气更换出炉气,后续氧化50分钟,氧化过程中更换一次炉气,最后用氮气换气之后打开炉盖,取出枪管试样,油冷。
第二步、对枪管内外壁抛光处理,具体可对渗氮枪管进行超声波清洗,然后对枪管进行抛光处理。这一工序的作用是磨去枪管表面的疏松层。
第三步、对枪管进行液体离子复合渗氮处理:
1)加热炉中化盐,保证液体中CNO-1离子和CN-1离子质量分数为40﹪。
2)枪管预热:预热温度为400℃,时间为30min。
3)枪管均热:枪管在液体离子渗氮炉中加热均匀保温,温度为480℃,时间为90min。
4)枪管液体离子氮化,钢管浸泡在液体离子渗氮炉中进行氮化,温度为600℃,时间为80min。
5)钝化氧化处理:温度为400℃,时间为10min。
6)50~90℃热水清洗。
7)冷水洗。
8)50~90℃热水清洗。
第四步、枪管时效处理:在时效炉中加热枪管,温度时间为180℃×200分钟,即得处理完毕的枪管。
上述实施例中枪管的材料可以为所有牌号的碳钢或不锈钢。
在其他实施例中,上述液体离子复合渗氮处理和气体脉冲渗氮处理步骤中的各个参数可以自行调整。
枪管性能对比
1、机械性能对比(试样材料30SiMn2MoVA)如表3所示。
表3
从上表可看出,经本发明工艺处理的枪管完全达到GB/T 3077-1999标准规定的机械性能要求。
2、防腐性能对比
盐雾对比试验(试样材料30SiMn2MoVA)如表4所示。
表4
综上所述,经过本发明工艺处理后的枪管表面具有较好的防腐、耐磨性能,经测试其机械性能完全符合国家有关标准。本发明处理后的枪管表面具有较好硬度梯度和密度梯度,有较好的耐磨性能和防腐性能,表面有效硬度达800Hv以上,中性盐雾试验时间超过240小时。因此,本发明完全可以替代和提升现有枪管的镀铬表面处理工艺,枪管表面具有较高的耐磨损性能、耐腐蚀性能、耐高温烧蚀性能等,也可适用于炮钢钢管耐磨防腐处理,同时可广泛用于其他如水运码头、岛礁海岸机械电子设备,高铁、城市轨道交通、地铁、海水净化和船舶等设备零部件表面处理领域。
在本公开中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (10)

1.一种枪管防腐耐磨处理工艺,其特征在于,包括:
对待处理的枪管进行第一渗氮处理,该第一渗氮为气体渗氮;
对经过第一渗氮处理后的枪管进行抛光处理;
对抛光处理后的枪管进行第二渗氮处理,该第二渗氮为液体离子复合渗氮;
对经过第二渗氮处理后的枪管进行低温时效处理。
2.根据权利要求1所述处理工艺,其特征在于,对所述枪管进行第一渗氮处理,包括:
对所述枪管的内外表面进行除油、清洗、干燥预处理;
将预处理后的所述枪管放置在加热炉中进行预热处理,预热时的预热温度为200~450℃,预热时间为10~100分钟;
对预热处理后的枪管在渗氮炉中充入氨气进行自动脉冲气体渗氮处理,渗氮加热温度为480~500℃,渗氮时间为20~25小时,以在枪管表面形成耐磨防腐渗层;
当渗氮时间到达后将所述枪管冷却至预设温度,用CO2气体更换出炉气,后续氧化40~60分钟,氧化过程中更换一次炉气,最后,用氮气换气之后打开炉盖取出枪管。
3.根据权利要求2所述处理工艺,其特征在于,在气体渗氮过程中进行至少一次中间氧化处理。
4.根据权利要求2所述处理工艺,其特征在于,对经过第一渗氮处理后的枪管进行抛光处理,包括:
对所述枪管进行超声波清洗,对清洗后的枪管进行抛光处理。
5.根据权利要求3所述处理工艺,其特征在于,对抛光处理后的枪管进行第二渗氮处理,包括:
在加热炉中化盐使液体中CNO-1离子和CN-1离子质量分数在30﹪~40﹪之间;
枪管预热:在加热炉中预热枪管,预热温度为200~450℃,时间为10~30分钟;
枪管均热:预热后枪管在液体离子渗氮炉中加热均匀保温,温度为400~500℃,时间为10~120分钟;
液体离子氮化:均热后枪管浸泡在液体离子渗氮炉中进行氮化处理,温度为500~650℃,时间为10~120分钟。
6.根据权利要求5所述处理工艺,其特征在于,枪管在进行液体离子氮化处理后还包括钝化氧化处理,温度为200~450℃,时间为10~30分钟。
7.根据权利要求5所述处理工艺,其特征在于,对经过第二渗氮处理后的枪管进行低温时效处理,包括:
将所述经过第二渗氮处理后的枪管放入时效炉中进行低温时效处理,温度为150~200℃,时间为200~300分钟。
8.根据权利要求1~6之一所述处理工艺,其特征在于,枪管内外表面形成耐磨防腐渗层,该耐磨防腐渗层由表及里依次包括化合物层和扩散层,且该耐磨防腐渗层的厚度为4μm~500μm。
9.根据权利要求7所述处理工艺,其特征在于,该耐磨防腐渗层含有氮化物组织、碳化物组织和氧化物组织中的一个或多个。
10.根据权利要求8所述处理工艺,其特征在于,在枪管内外表面形成的所述耐磨防腐层的厚度为10μm~100μm。
CN201811606168.1A 2018-12-27 2018-12-27 枪管防腐耐磨处理工艺 Active CN109722621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811606168.1A CN109722621B (zh) 2018-12-27 2018-12-27 枪管防腐耐磨处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811606168.1A CN109722621B (zh) 2018-12-27 2018-12-27 枪管防腐耐磨处理工艺

Publications (2)

Publication Number Publication Date
CN109722621A true CN109722621A (zh) 2019-05-07
CN109722621B CN109722621B (zh) 2020-12-29

Family

ID=66296535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811606168.1A Active CN109722621B (zh) 2018-12-27 2018-12-27 枪管防腐耐磨处理工艺

Country Status (1)

Country Link
CN (1) CN109722621B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575710A (zh) * 2020-05-14 2020-08-25 成都工具研究所有限公司 提高40CrNiMoA结构钢耐磨防腐性能的处理工艺及40CrNiMoA结构钢件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1433940A (en) * 1972-11-14 1976-04-28 Magyar Vagon Es Gepgyar Process for increasing service life of powder metallurgical hard metal products
GB2234266A (en) * 1989-07-18 1991-01-30 Mo Avtomobilnyj Zavod Im I A L Chemical-thermal treatment of parts
JPH08104973A (ja) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd 白層のない鋼製ダイスの窒化方法
CN102304691A (zh) * 2011-09-09 2012-01-04 舒彩云 Qpq低温盐浴渗氮复合新处理工艺
CN102747316A (zh) * 2012-07-30 2012-10-24 鹰普航空零部件(无锡)有限公司 耐腐蚀不锈钢零件盐浴氮化预处理与气体氮化复合热处理工艺
CN103540892A (zh) * 2013-10-25 2014-01-29 深圳市铭昊五金模具有限公司 氮气弹簧的活塞杆生产工艺
CN105349943A (zh) * 2015-12-23 2016-02-24 四川全丰新材料科技有限公司 一种qpq氮化共渗防腐新工艺
CN105525192A (zh) * 2015-12-14 2016-04-27 浙江海洋学院 一种耐腐蚀的船锚用不锈钢板及其生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1433940A (en) * 1972-11-14 1976-04-28 Magyar Vagon Es Gepgyar Process for increasing service life of powder metallurgical hard metal products
GB2234266A (en) * 1989-07-18 1991-01-30 Mo Avtomobilnyj Zavod Im I A L Chemical-thermal treatment of parts
JPH08104973A (ja) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd 白層のない鋼製ダイスの窒化方法
CN102304691A (zh) * 2011-09-09 2012-01-04 舒彩云 Qpq低温盐浴渗氮复合新处理工艺
CN102747316A (zh) * 2012-07-30 2012-10-24 鹰普航空零部件(无锡)有限公司 耐腐蚀不锈钢零件盐浴氮化预处理与气体氮化复合热处理工艺
CN103540892A (zh) * 2013-10-25 2014-01-29 深圳市铭昊五金模具有限公司 氮气弹簧的活塞杆生产工艺
CN105525192A (zh) * 2015-12-14 2016-04-27 浙江海洋学院 一种耐腐蚀的船锚用不锈钢板及其生产方法
CN105349943A (zh) * 2015-12-23 2016-02-24 四川全丰新材料科技有限公司 一种qpq氮化共渗防腐新工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
上海市热处理协会: "《实用热处理手册(第2版)》", 31 January 2009, 上海科学技术出版社 *
熊健: "《国外热处理新技术》", 31 July 1990, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575710A (zh) * 2020-05-14 2020-08-25 成都工具研究所有限公司 提高40CrNiMoA结构钢耐磨防腐性能的处理工艺及40CrNiMoA结构钢件

Also Published As

Publication number Publication date
CN109722621B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
KR100325671B1 (ko) 오스테나이트계금속에대한침탄처리방법
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
CN111575710B (zh) 提高40CrNiMoA结构钢耐磨防腐性能的处理工艺及40CrNiMoA结构钢件
CN107245691B (zh) 金属材料复合热处理表面强化方法
CN110965014A (zh) 一种钢球碳氮共渗工艺
Zhang et al. Microstructure and properties of 1Cr12Ni2WMoVNb (GX-8) steel bored barrels with and without QPQ treatment
Zhang et al. Effect of process temperature on the microstructure and properties of gas oxynitrocarburized 35CrMo alloy steel
US20170292172A1 (en) Method for heat treating long steel pipes
JP2005531694A (ja) 表面改質ステンレス鋼
CN109722621A (zh) 枪管防腐耐磨处理工艺
US11840765B2 (en) Nitriding process for carburizing ferrium steels
US6413326B1 (en) High strength coupling and method
US2799959A (en) Nitrided gun barrel with chromium deposit
WO2019091222A1 (zh) 一种控制31CrMoV9齿轮材料氮化物的热处理方法
CN109778109A (zh) 一种解决碳氮共渗质量不合格的方法
CN111500833A (zh) 一种阀门耐热钢铸件热处理工艺
JP5295813B2 (ja) 鉄族系合金の窒化処理方法
JP2000310329A (ja) 表面硬化処理したコンロッド
CN108251788B (zh) 一种经软氮化处理的动车组制动钢背及软氮化处理方法
Senatorski et al. Tribology of Nitrided and Nitrocarburized steels
CN108588633A (zh) 一种中温气体氮碳共渗淬火工艺
CN201448461U (zh) 一种阀门阀芯
Howie et al. Subcritical Carbonitriding For Stainless Steels
CN109913795A (zh) 锅炉管用奥氏体耐热钢及其表面化学热处理工艺
RU2077603C1 (ru) Способ обработки стальных деталей нефтегазодобывающего оборудования

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant