CN109713141B - 一种qled器件及其制备方法 - Google Patents

一种qled器件及其制备方法 Download PDF

Info

Publication number
CN109713141B
CN109713141B CN201711007092.6A CN201711007092A CN109713141B CN 109713141 B CN109713141 B CN 109713141B CN 201711007092 A CN201711007092 A CN 201711007092A CN 109713141 B CN109713141 B CN 109713141B
Authority
CN
China
Prior art keywords
nano
film
qled device
type semiconductor
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711007092.6A
Other languages
English (en)
Other versions
CN109713141A (zh
Inventor
向超宇
邓天旸
李乐
张滔
辛征航
张东华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Technology Group Co Ltd
Original Assignee
TCL Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Technology Group Co Ltd filed Critical TCL Technology Group Co Ltd
Priority to CN201711007092.6A priority Critical patent/CN109713141B/zh
Publication of CN109713141A publication Critical patent/CN109713141A/zh
Application granted granted Critical
Publication of CN109713141B publication Critical patent/CN109713141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

本发明公开一种QLED器件及其制备方法,包括阳极、量子点发光层及阴极,所述量子点发光层设置在所述阳极与所述阴极之间,其中,所述量子点发光层和所述阴极之间包括薄膜;所述薄膜由N型半导体和纳米金属颗粒组成;沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高到低。所述具有渐变结构的薄膜应用于QLED器件中,可以调节发光峰,增强QLED器件的发光,实现更高效的QLED器件发光效率。

Description

一种QLED器件及其制备方法
技术领域
本发明涉及QLED器件领域,尤其涉及一种QLED器件及其制备方法。
背景技术
表面等离子增强效应(surface plasma enhancement SPE)是无机纳米材料的另一令人着迷的性质。如对于币族金属,如银、金、铜,其纳米尺寸下的单体会对特定波长的外界电磁波的激发产生共振,达到增强信号的效果。这同样可以用于光电转换器件。例如,对发光显示二极管,纳米金粒子带来的表面增强效应可用于放大半导体材料发出的光,从而提升发光效率。同时,纳米金粒子也可以分散在溶剂体系中,以便于进行后续旋涂、喷涂、喷墨打印等加工工艺。
之前的表面等离子增强效应主要通过真空方法制备特殊结构获得,通过单独沉积纳米金属层获得。这些工艺对于大面积、溶液加工法制备光电子器件来说成本较高、制备工艺复杂、重复性差、无法量产等。
氧化锌(ZnO)是一种宽禁带材料,其禁带带隙在室温下约为3.37 eV,且激子结合能高,属于n型导体,透光率高,电阻小,在光电转换和光电子器件中,如薄膜太阳能电池、有机薄膜发光二极管和量子点薄膜发光二极管,作为电子传输层,有着广泛且深入的应用。类似的,氧化镍(NiO)同样作为宽禁带材料,有着出色化学稳定性和优良的光、电、磁学性能,属于p型的NiO半导体,因此同样受到半导体行业的青睐。
而纳米氧化锌兼具纳米材料和氧化锌的双重特性,尺寸的缩小伴随着表面电子结构和晶体结构的变化,产生了宏观氧化锌所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应,还具有高分散性的特点,可分散到有机溶剂中,为基于溶液进行的后期加工工艺,如喷涂、刮涂、喷墨打印创造了可能性。
近年来,国内外已有诸多研究致力于将纳米金属粒子负载在纳米氧化锌或氧化镍结构上,以构造纳米复合材料兼顾两种材料的优点,用于制造电子传输层,同时提高光电器件效率。然而,当中所采用的工艺都是气相沉积、蒸镀或蚀刻等方法,制造成本高,能耗高,材料利用率低,不符合工业化规模化的生产需求。同时不能够有效利用纳米颗粒材料易于溶剂化的特点。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种QLED器件及其制备方法,旨在解决现有的QLED器件其发光效率较低的问题。
本发明的技术方案如下:
一种QLED器件,包括阳极、量子点发光层及阴极,所述量子点发光层设置在所述阳极与所述阴极之间,其中,所述量子点发光层和所述阴极之间包括薄膜;
所述薄膜由N型半导体和纳米金属颗粒组成;
沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高到低。
所述的QLED器件,其中,所述薄膜按照从所述量子点发光层往所述阴极方向上,所述N型半导体的质量浓度从100%渐变到0%。
所述的QLED器件,其中,所述薄膜与所述量子点发光层之间包括电子传输层。
所述的QLED器件,其中,所述N型半导体为氧化钛、氧化锌和掺杂氧化锌中的至少一种。
所述的QLED器件,其中,所述纳米金属颗粒为纳米Au、纳米Ag、纳米Cu、纳米Fe、纳米Ni、纳米Pt中的至少一种。
所述的QLED器件,其中,所述薄膜的厚度为5-100nm。
所述的QLED器件,其中,所述电子传输层的厚度为1-50nm。
所述的QLED器件,其中,沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高浓度线性渐变或指数渐变到低浓度。
一种QLED器件的制备方法,其中,包括步骤:
制备阳极;
在阳极上制备量子点发光层;
在量子点发光层上制备薄膜;
在薄膜上制备阴极,得到QLED器件;
所述薄膜由N型半导体和纳米金属颗粒组成;
沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高到低。
所述的QLED器件的制备方法,其中,所述薄膜的制备方法包括步骤:采用真空方法,控制N型半导体的沉积速率从大变到小,同时控制纳米金属颗粒的沉积速率从小变到大,形成N型半导体的质量浓度由高到低的薄膜。
有益效果:本发明将具有渐变结构的SPE薄膜应用于QLED器件中,以调节发光峰,增强QLED器件的发光,实现更高效的QLED器件发光效率。
附图说明
图1为本发明实施例1与对照例1的QLED器件的发光光谱图。
具体实施方式
本发明提供一种QLED器件及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种QLED器件,包括阳极、量子点发光层及阴极,所述量子点发光层设置在所述阳极与所述阴极之间,其中,所述量子点发光层和所述阴极之间包括薄膜;
所述薄膜由N型半导体和纳米金属颗粒组成;
沿所述SPE薄膜的厚度方向,所述N型半导体的质量浓度由高到低。具体地,沿所述薄膜的厚度方向,所述N型半导体的质量浓度从100%渐变到0%,所述纳米金属颗粒的质量浓度从0%渐变到100%,上述质量浓度变化包括0%~100%中的任何值。本发明所述薄膜的两侧还可以设置半导体层或金属层,换句话说,所述薄膜的一侧设置半导体层,另一侧设置金属层;或是所述薄膜仅一侧设置半导体层或金属层,以进一步提高QLED器件的发光效率。
优选地,所述薄膜的厚度为5-100nm,以确保所述QLED器件的增强效果。本发明沿所述薄膜的厚度方向,N型半导体和纳米金属颗粒的质量浓度均逐渐变化,形成了具有渐变结构的薄膜。与现有常规的不含渐变结构的薄膜相比,本发明所述具有渐变结构的薄膜可以增加N型半导体和纳米金属颗粒的接触面,金属纳米颗粒表面的自由电子与发光层发射的光子相互作用,产生沿金属纳米颗粒表面传播的表面等离子体,它会产生电场,与发光层发射的电磁波产生共振,增强了发光强度,并且能够促进复合发光效率;同时可以避免无渐变结构所带来的因机械应力不同所引起的结构性损毁。另外,所述SPE薄膜的强度和电子的浓度有关,通过渐变方法电子从N型半导体注入到纳米金属颗粒上,从而增加纳米金属颗粒的电子浓度,提高局域的表面等离子体强度,进而提高增强光源发光的效果。在所述薄膜中,金属的功函数高于N型半导体的功函数,两者功函数之差为0.1eV费米能级,且金属与禁带的能级差大于与导带的能级差。
本发明所述具有渐变结构的薄膜应用于QLED器件中,可以调节发光峰,增强QLED器件的发光,进而提高QLED器件的发光效率。薄膜的增强效果与光源的距离有关,通过控制所述具有渐变结构的薄膜与发光层的实际距离,可以平衡淬灭和增强的关系,进而进一步提高QLED器件的发光效率。
优选地,所述薄膜按照从所述量子点发光层往所述阴极方向上,所述N型半导体的质量浓度从100%渐变到0%,所述纳米金属颗粒的质量浓度从0%渐变到100%。本发明纳米金属颗粒含量少的一端靠近量子点发光层,可进一步增强QLED器件的发光,最大化提高QLED器件的发光效率。
优选地,所述具有渐变结构的薄膜与所述量子点发光层之间包括电子传输层。更优选地,所述电子传输层的厚度为1-50nm。薄膜的增强效果与发光层的距离有关,通过控制电子传输层的厚度,控制量子点发光层与薄膜之间的距离,使得量子点发光层通过辐射跃迁产生的光子照射在所述薄膜上时,金属纳米颗粒表面的自由电子与光子相互作用,产生局域电场,该局域电场与QLED器件内的有效电场产生共振,促进发光层的复合发光效率。
本发明浓度渐变可以是浓度线性渐变或非线性渐变,浓度非线性渐变可以是浓度指数渐变或者浓度梯度渐变。
具体地,沿所述薄膜的厚度方向,所述N型半导体的质量浓度从100%线性渐变到0%,所述纳米金属颗粒的质量浓度从0%线性渐变到100%。
具体地,沿所述薄膜的厚度方向,所述N型半导体的质量浓度从100%指数渐变到0%,所述纳米金属颗粒的质量浓度从0%指数渐变到100%。
具体地,沿所述薄膜的厚度方向,所述N型半导体的质量浓度从100%梯度渐变到0%,所述纳米金属颗粒的质量浓度从0%梯度渐变到100%。
本发明还提供一种QLED器件的制备方法,其包括步骤:
制备阳极;
在阳极上制备量子点发光层;
在量子点发光层上制备薄膜;
在薄膜上制备阴极,得到QLED器件;
所述薄膜由N型半导体和纳米金属颗粒组成;
沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高到低;
具体地,沿所述薄膜的厚度方向,所述N型半导体的质量浓度从100%渐变到0%,所述纳米金属颗粒的质量浓度从0%渐变到100%。
所述薄膜的制备方法包括步骤:采用真空方法,控制N型半导体的沉积速率从大变到小,同时控制纳米金属颗粒的沉积速率从小变到大,形成N型半导体的质量浓度由高到低的薄膜。
具体地,采用真空方法,控制N型半导体的沉积速率从设定的最高值渐变到0,同时控制纳米金属颗粒的沉积速率从0渐变到设定的最高值,在基底上生长由N型半导体和纳米金属颗粒组成的具有渐变结构的薄膜。
进一步地,所述沉积速率的渐变可以为线性渐变或指数渐变。
进一步地,所述真空方法可以为常规的蒸镀法或溅射法。本发明制备方法通过同时对N型半导体和纳米金属颗粒的蒸镀速率或溅射速率进行精确控制,形成一个可控的浓度渐变的薄膜。薄膜中N型半导体和纳米金属颗粒浓度及分布、薄膜厚度等参数可控,且重复性好。
进一步地,所述N型半导体为氧化钛、氧化锌和掺杂氧化锌等中的至少一种。
进一步地,所述纳米金属颗粒为纳米Au、纳米Ag、纳米Cu、纳米Fe、纳米Ni、纳米Pt等中的至少一种。
本发明中纳米金属颗粒可以是一种纳米金属颗粒或者多种纳米金属颗粒,当为多种纳米金属颗粒时,可以将纳米金属颗粒进行混合,控制混合纳米金属颗粒的沉积速率,也可以分别控制不同纳米金属颗粒的沉积速率。
优选地,所述QLED器件还可以包括空穴注入层、空穴传输层中的至少一种。
下面通过实施例对本发明进行详细说明。
实施例1
一种QLED器件,包括依次设置的ITO阳极、PEDOT空穴注入层、TFB空穴传输层、量子点发光层、薄膜、Al阴极,所述薄膜由纳米银和氧化锌组成,所述薄膜从所述量子点发光层往所述阴极方向上,所述氧化锌的质量浓度从100%渐变到0%,所述纳米银的质量浓度从0%渐变到100%。所述量子点发光层和所述薄膜之间包括氧化锌层,所述Al阴极和所述薄膜之间包括银层。
所述QLED器件的制备方法包括如下步骤:
在玻璃ITO阳极上旋涂PEDOT空穴注入层;
在PEDOT空穴注入层上旋涂TFB空穴传输层;
在TFB空穴传输层上旋涂量子点发光层;
在量子点发光层上旋涂氧化锌制备氧化锌层(5nm),在氧化锌层上旋涂纳米银和氧化锌制备薄膜(12nm),在薄膜上旋涂纳米银制备银层(3nm);20mg纳米ZnO和20mg纳米金属Ag溶解到2ml的1,5-二戊醇、庚醇、角鲨烷(6:3:1,体积比计)中,得到混合液,然后在氧化锌层上旋涂所述混合液,制成所述薄膜;
在银层上蒸镀Al阴极。
本实施例所述QLED器件的发光光谱图见图1中实线部分。
实施例2
一种QLED器件,包括依次设置的ITO阳极、量子点发光层、薄膜、Al阴极,所述薄膜由纳米银和氧化锌组成,所述薄膜从所述量子点发光层往所述阴极方向上,所述氧化锌的质量浓度从100%渐变到0%,所述纳米银的质量浓度从0%渐变到100%。
所述QLED器件的制备方法包括如下步骤:
在玻璃ITO阳极上旋涂量子点发光层;
在量子点发光层上蒸镀纳米银和氧化锌制备薄膜;所述薄膜的厚度为5nm,在整个蒸镀的过程中,控制Ag的蒸镀速率从0nm/s增加至0.4nm/s,同时控制氧化锌的蒸镀速率从0.24nm/s降低至0;
在薄膜上蒸镀Al阴极。
实施例3
一种QLED器件,包括依次设置的ITO阳极、量子点发光层、薄膜、Al阴极,所述薄膜由纳米Au和TiO组成,所述薄膜从所述量子点发光层往所述阴极方向上,所述TiO的质量浓度从100%渐变到0%,所述纳米Au的质量浓度从0%渐变到100%,所述量子点发光层和所述薄膜之间包括TiO层,所述Al阴极和所述薄膜之间包括TiO层。
所述QLED器件的制备方法包括如下步骤:
在玻璃ITO阳极上旋涂量子点发光层;
在量子点发光层上溅射纳米TiO制备TiO层(25nm),在TiO层上溅射纳米Au和TiO制备薄膜(35nm),在所述薄膜上溅射TiO制备溅射TiO层(10nm);无定型TiO和金属Au,通过溅射方法制成所述薄膜;
在TiO层上蒸镀Al阴极。
对照例1
QLED器件的制备步骤如下:
在玻璃ITO基底上旋涂PEDOT空穴注入层;
在PEDOT空穴注入层上旋涂TFB空穴传输层;
在TFB空穴传输层上旋涂量子点发光层;
在量子点发光层上旋涂ZnO电子传输层;
在ZnO电子传输层上蒸镀Al阴极,得到QLED器件。
本实施例所述QLED器件的发光光谱图见图1中虚线部分,从图1可知,实施例1所述QLED器件的发光峰明显高于本对照例所述QLED器件的发光峰,说明所述具有渐变结构的薄膜应用于QLED器件中,可以调节发峰,增强QLED器件的发光,实现更高效的QLED器件发光效率。
对照例2
QLED器件的制备步骤如下:
在玻璃ITO基底上旋涂量子点发光层;
在量子点发光层上蒸镀Al阴极,得到QLED器件。
经测试发现,实施例2与实施例3所述QLED器件的发光效率均明显高于本对照例所述QLED器件的发光效率。
综上所述,本发明提供的一种QLED器件,本发明将具有渐变结构的薄膜应用于QLED器件中,可以调节发光峰,能够增强QLED器件的发光,实现更高效的发光效率。薄膜的增强效果与光源的距离有关,通过控制所述具有渐变结构的薄膜与发光层的实际距离,可以平衡淬灭和增强的关系,进一步提高QLED器件的发光效率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种QLED器件,包括阳极、量子点发光层及阴极,所述量子点发光层设置在所述阳极与所述阴极之间,其特征在于,所述量子点发光层和所述阴极之间包括薄膜;
所述薄膜由N型半导体和纳米金属颗粒组成;
沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高渐变到低;
所述纳米金属颗粒为纳米Au、纳米Ag、纳米Cu、纳米Fe、纳米Ni、纳米Pt中的至少一种。
2.根据权利要求1所述的QLED器件,其特征在于,所述薄膜按照从所述量子点发光层往所述阴极方向上,所述N型半导体的质量浓度从100%渐变到0%。
3.根据权利要求1所述的QLED器件,其特征在于,所述薄膜与所述量子点发光层之间包括电子传输层。
4.根据权利要求1所述的QLED器件,其特征在于,所述N型半导体为氧化钛、氧化锌和掺杂氧化锌中的至少一种。
5.根据权利要求1所述的QLED器件,其特征在于,所述薄膜的厚度为5-100nm。
6.根据权利要求3所述的QLED器件,其特征在于,所述电子传输层的厚度为1-50nm。
7.根据权利要求1所述的QLED器件,其特征在于,沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高浓度线性渐变或指数渐变到低浓度。
8.一种QLED器件的制备方法,其特征在于,包括步骤:
制备阳极;
在阳极上制备量子点发光层;
在量子点发光层上制备薄膜;
在薄膜上制备阴极,得到QLED器件;
所述薄膜由N型半导体和纳米金属颗粒组成;
沿所述薄膜的厚度方向,所述N型半导体的质量浓度由高渐变到低;
所述纳米金属颗粒为纳米Au、纳米Ag、纳米Cu、纳米Fe、纳米Ni、纳米Pt中的至少一种。
9.根据权利要求8所述的QLED器件的制备方法,其特征在于,所述薄膜的制备方法包括步骤:采用真空方法,控制N型半导体的沉积速率从大渐变到小,同时控制纳米金属颗粒的沉积速率从小渐变到大,形成N型半导体的质量浓度由高渐变到低的薄膜。
CN201711007092.6A 2017-10-25 2017-10-25 一种qled器件及其制备方法 Active CN109713141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711007092.6A CN109713141B (zh) 2017-10-25 2017-10-25 一种qled器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711007092.6A CN109713141B (zh) 2017-10-25 2017-10-25 一种qled器件及其制备方法

Publications (2)

Publication Number Publication Date
CN109713141A CN109713141A (zh) 2019-05-03
CN109713141B true CN109713141B (zh) 2021-07-16

Family

ID=66253255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711007092.6A Active CN109713141B (zh) 2017-10-25 2017-10-25 一种qled器件及其制备方法

Country Status (1)

Country Link
CN (1) CN109713141B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333777B2 (ja) * 2006-05-22 2013-11-06 ナンヤン テクノロジカル ユニヴァーシティー 有機メモリデバイス及びその製造方法
CN102790185B (zh) * 2012-08-28 2015-10-21 友达光电(苏州)有限公司 有机发光装置
CN106450016B (zh) * 2016-10-17 2019-11-12 Tcl集团股份有限公司 一种发光器件及制备方法
CN106972115B (zh) * 2017-05-27 2019-03-12 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板

Also Published As

Publication number Publication date
CN109713141A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
KR102306134B1 (ko) 페로브스카이트 광전 소자, 제조 방법 및 페로브스카이트 재료
Ji et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode
WO2013051895A2 (en) Metal oxide semiconductor-nanocarbon consolidated core-shell quantum dots and ultraviolet photovoltaic cell using it and fabrication process thereof
CN110265564B (zh) 量子点发光二极管及其制备方法和显示屏
KR20160052871A (ko) 금속 나노클러스터를 포함하는 유기태양전지 및 이의 제조방법
CN112538163A (zh) 复合材料及其制备方法和量子点发光二极管
Du et al. Solution-processed PEDOT: PSS: GO/Ag NWs composite electrode for flexible organic light-emitting diodes
CN109713141B (zh) 一种qled器件及其制备方法
CN109713152B (zh) 一种薄膜及其制备方法与qled器件
KR101191527B1 (ko) 나노 산화구리 물질을 첨가한 유기 박막 및 이를 이용한 전자 소자
CN109427978A (zh) 一种qled器件及其制备方法
CN109713138B (zh) 一种qled器件
CN109994653B (zh) 一种薄膜的制备方法与qled器件
CN106848091A (zh) 白光oled器件
CN111883681B (zh) 发光器件及其制备方法和显示装置
CN109713140B (zh) 薄膜及其制备方法与qled器件
CN114242923A (zh) 一种硫醇类化合物界面修饰磷化铟量子点提高电致发光器件性能的方法
CN114267799B (zh) 一种量子点发光二极管及其制备方法
KR101633451B1 (ko) 핵-껍질 구조의 금속산화물 반도체-플러렌 양자점을 이용한 색 변환 발광소자와 그 제조방법
CN110838551A (zh) 复合材料和量子点发光二极管及其制备方法
KR102294667B1 (ko) 플라즈몬 향상 효과를 갖는 금속나노입자가 부착된 m13 박테리오파지 어셈블리, 이의 제조방법 및 이의 용도
CN111769202B (zh) 一种基于银纳米线电极的有机发光器件结构
CN113130809B (zh) 复合电极及其制备方法、量子点发光二极管
CN111341922B (zh) 复合材料其制备方法和量子点发光二极管
CN107302038B (zh) 一种实现表面等离子激元增强型纳米结构薄膜太阳电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 516006 TCL science and technology building, No. 17, Huifeng Third Road, Zhongkai high tech Zone, Huizhou City, Guangdong Province

Applicant after: TCL Technology Group Co.,Ltd.

Address before: 516006 Guangdong province Huizhou Zhongkai hi tech Development Zone No. nineteen District

Applicant before: TCL RESEARCH AMERICA Inc.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant