CN109694463B - 含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用 - Google Patents

含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用 Download PDF

Info

Publication number
CN109694463B
CN109694463B CN201710991407.9A CN201710991407A CN109694463B CN 109694463 B CN109694463 B CN 109694463B CN 201710991407 A CN201710991407 A CN 201710991407A CN 109694463 B CN109694463 B CN 109694463B
Authority
CN
China
Prior art keywords
groups
siloxane side
type copolymer
naphthalene diimide
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710991407.9A
Other languages
English (en)
Other versions
CN109694463A (zh
Inventor
应磊
胡志诚
黄飞
曹镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan volt ampere Photoelectric Technology Co., Ltd
Original Assignee
South China Institute of Collaborative Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Institute of Collaborative Innovation filed Critical South China Institute of Collaborative Innovation
Priority to CN201710991407.9A priority Critical patent/CN109694463B/zh
Publication of CN109694463A publication Critical patent/CN109694463A/zh
Application granted granted Critical
Publication of CN109694463B publication Critical patent/CN109694463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/144Side-chains containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一类含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用。所述的共聚物由含硅氧烷侧链的萘二酰亚胺、烷基链侧链的萘二酰亚胺和联杂环共轭结构三元共聚而成,具有以下结构,式中a为1到40的正整数,0<b≤1,n为小于1000万的正整数,X为氧、硫、硒等杂原子,R1、R2为烷基链。所述的共聚物由于硅氧烷侧链的引入使得分子在薄膜中呈比较有序的排列,从而使得聚合物薄膜有比较强的吸收和较高的电子迁移率,可作为高效的电子受体用于高效有机光伏器件中。

Description

含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件 中的应用
技术领域
本发明属于高分子光电材料领域,具体涉及含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用。
背景技术
随着全球对于能源需求的逐年增加,石油、煤炭等传统能源的日益枯竭,以及对保护地球生态环境的需要,全世界越来越多的科学家将研究集中在氢气、太阳能等取之不尽用之不竭的可再生清洁能源。
已经成熟的无机硅、砷化镓、磷化铟等基于无机材料的光伏器件已经在市场上占有主导地位,然而由于其对于材料纯度的要求高,加工过程中会产生高能耗及污染等问题,且其价格非常昂贵,因此在追求低成本和绿色环保的今天,其大规模应用受到了限制。
有机光伏器件作为一种新型薄膜光伏电池技术,具有全固态、光伏材料性质可调范围宽、可实现半透明、柔性电池、具有大面积低成本制备潜力等突出优点。有机材料的光伏性能可调范围宽,可利用化学手段对材料的能级、载流子迁移率以及吸收等性能进行有效的调控。有机/聚合物光伏器件可采用打印、印刷等方法进行加工,可借鉴传统塑料的加工工艺,通过卷对卷滚动加工流程制造大面积、柔性的薄膜光伏器件,该生产工艺能够有效降低光伏电池的制造成本。有机光伏器件几乎不受环境和场地限制,在许多场合可将光能转换为电能,同时与无机半导体光伏器件有非常强的互补性,无疑具有巨大的商业开发价值和市场竞争力。因此有机光伏器件的研究引起了广泛关注,以有机光伏器件为核心的科学研究已经成为一个世界范围内竞争激烈的材料科学前沿研究领域。
有机光伏器件的受体研究进展缓慢,早期的研究以富勒烯为主。最近两年来,非富勒烯进展较快,然而以共轭聚合物为受体的报道相对较少,效率也不高。对于大部分聚合物受体材料,其薄膜中分子呈无序的排列,从而影响其对光的吸收以及电子迁移率。通过对共轭聚合物分子结构的调节,引入含硅氧烷的侧链可以有效地改善这些问题,并提高以共轭聚合物为受体的有机光伏器件的性能。
发明内容
为解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种含硅氧烷侧链的萘二酰亚胺n型共聚物。
本发明的另一目的在于提供上述含硅氧烷侧链的萘二酰亚胺n型共聚物的合成方法。
本发明的再一目的在于提供上述含硅氧烷侧链的萘二酰亚胺n型共聚物的应用。
本发明目的通过以下技术方案实现:
含硅氧烷侧链的萘二酰亚胺n型共聚物,其具有以下结构:
Figure BDA0001441567400000021
其中,a为1到40的正整数,0<b≤1,n为小于1000万的正整数,X为氧、硫、硒等杂原子,R1、R2为烷基链。
进一步地,所述的R1、R2为具有1~40个碳原子的直链、支链或者环状烷基链;所述直链、支链或者环状烷基链中一个或多个碳原子可被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基,甲基,乙基,甲氧基,硝基取代;所述直链、支链或者环状烷基链中一个或多个氢原子可被氟原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基,甲基,乙基,甲氧基或硝基取代。
上述含硅氧烷侧链的萘二酰亚胺n型共聚物通过Suzuki或Stille聚合反应得到。
上述含硅氧烷侧链的萘二酰亚胺n型共聚物作为电子受体用于有机光伏器件中。
本发明中使用的有机光伏器件结构如图1所示,由衬底1、阴极2、阴极界面层3、光吸收层4、阳极界面层5、阳极6或由衬底1、阳极2、阳极界面层3、光吸收层4、阴极界面层5、阴极6依次层叠构成。光吸收层受体由本发明合成的共聚物组成。
本发明光伏器件中,阳极材料优选为铝、银、金、钙/铝合金或钙/银合金。
本发明所述阳极界面层优选为有机共轭聚合物(如聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐)或无机半导体。
本发明所述阴极优选为金属、金属氧化物(如氧化铟锡导电膜(ITO),掺杂二氧化锡(FTO),氧化锌(ZnO),铟镓锌氧化物(IGZO))和石墨烯及其衍生物中的至少一种。
本发明所述衬底优选为玻璃、柔性材料(如聚酰亚胺、聚对苯二甲酸乙二醇酯、乙烯对苯二甲酸酯、聚萘二甲酸乙二醇酯或其他聚酯材料)、金属、合金和不锈钢薄膜中的至少一种。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明设计了含硅氧烷侧链的萘二酰亚胺n型共聚物,分子在薄膜中呈有序排列从而有效提高聚合物的吸收系数和电子迁移率,能够极大地提高电池器件的光电流以及电池器件效率;
(2)所述的含硅氧烷侧链的萘二酰亚胺n型共聚物作为电子受体,分子排列规整,成膜性好,易于加工且具有较高的电池器件效率,可制备能量转化效率超过10%的全聚合物光伏器件。
附图说明
图1为有机光伏器件结构示意图;
图2代表性所述的新型n型共聚物(P1,P2,P3)的紫外-可见光-近红外吸收谱图;
图3代表性所述的新型n型共聚物(P4,P5)的紫外-可见光-近红外吸收谱图;
图4电池结构为ITO阴极/阴极界面层/活性层/阳机界面层/阳极(倒装结构)时,代表性含本次发明的共聚物(P1,P2,P3)作为电子受体材料时电池器件的电流-电压曲线图;
图5电池结构为ITO阴极/阳极界面层/活性层/阴机界面层/阳极(正装结构)时,代表性含本次发明的共聚物(P1,P2,P3)作为电子受体材料时电池器件的电流-电压曲线图。
图6电池结构为ITO阴极/阴极界面层/活性层/阳机界面层/阳极(倒装结构)时,代表性含本次发明的共聚物(P4,P5)作为电子受体材料时电池器件的电流-电压曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:代表性合成路线如下:
(a):
Figure BDA0001441567400000051
(b):
Figure BDA0001441567400000061
(c):
Figure BDA0001441567400000071
(d):
Figure BDA0001441567400000081
(e):
Figure BDA0001441567400000091
(1)单体M1,M2,M6,M7按照文献[Journal of Materials Chemistry C,2015,3(34):8904-8915.]公开的方法合成。
(2)单体M3,M4,M5按照文献[Journal of the American Chemical Society,2011,133(5):1405-1418.]公开的方法合成。
(3)聚合物P1,P2,P3的合成:
将单体M1(0.1mmol)、单体M2(0.4mmol)和单体M3(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入8mL甲苯。抽换气两次后加入5mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P1,产率89.4%。1H NMR(CDCl3 600MHz):ppm8.82(s,4H),7.36(d,4H),7.32(d,4H),4.15(m,8H),2.16(m,6H),1.71-1.0(br,96H),0.87-0.20(br,46H).GCP:Mn=32kDa,Mw=74kDa,PDI=2.32(以聚苯乙烯为标准)。
Elem.Anal:C,63.49;H,7.43;N,2.99;O,10.25;S,6.85;Si,9.00。
将单体M1(0.1mmol)、单体M2(0.4mmol)和单体M4(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入12mL甲苯。抽换气两次后加入7mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P2,产率85.0%。1H NMR(CDCl3 600MHz):ppm8.82(s,4H),7.34(d,4H),7.28(d,4H),4.15(m,8H),2.16(m,6H),1.71-1.0(br,96H),0.87-0.20(br,46H).GCP:Mn=31kDa,Mw=63kDa,PDI=1.81(以聚苯乙烯为标准)。
Elem.Anal:C,64.84;H,7.76;N,2.99;O,11.97;S,3.43;Si,9.01。
将单体M1(0.1mmol)、单体M2(0.4mmol)和单体M5(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入11mL甲苯。抽换气两次后加入4mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P3,产率80.3%。1H NMR(CDCl3 600MHz):ppm8.82(s,4H),7.28(d,4H),7.24(d,4H),4.15(m,8H),2.16(m,6H),1.71-1.0(br,96H),0.87-0.20(br,46H).GCP:Mn=33kDa,Mw=67kDa,PDI=2.05(以聚苯乙烯为标准)。
Elem.Anal:C,65.97;H,7.89;N,3.05;O,13.92;Si,9.16。
(5)聚合物P4,P5的合成
将单体M6(0.1mmol)、单体M7(0.4mmol)和单体M3(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入11mL甲苯。抽换气两次后加入3mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P4,产率92.1%。1H NMR(CDCl3 600MHz):ppm8.82(s,4H),7.36(d,4H),7.32(d,4H),4.15(m,8H),2.16(m,6H),1.71-1.0(br,28H),0.87-0.20(br,46H).GCP:Mn=31kDa,Mw=69kDa,PDI=2.18(以聚苯乙烯为标准)。
Elem.Anal:C,60.82;H,6.73;N,3.34;O,11.44;S,7.64;Si,10.04。
将单体M6(0.1mmol)、单体M7(0.4mmol)和单体M5(0.5mmol)加入到25mL两口烧瓶中,通入氮气保护,加入11mL甲苯。抽换气两次后加入4mg Pd(PPh3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物P5,产率91.3%。1H NMR(CDCl3 600MHz):ppm8.82(s,4H),7.28(d,4H),7.24(d,4H),4.15(m,8H),2.16(m,6H),1.71-1.0(br,28H),0.87-0.20(br,46H).GCP:Mn=34kDa,Mw=75kDa,PDI=2.21(以聚苯乙烯为标准)。
Elem.Anal:C,63.24;H,6.99;N,3.47;O,15.86;S,7.64;Si,10.44。
将所得的聚合物进行溶液的吸收光谱的测定,如图2和图3所示。从溶液的浓度(0.02mg/ml)和所测得的吸收值可以计算出聚合物P1、P2、P3、P4、P5的吸收系数。P1、P2、P3、P4、P5在最高峰的吸收系数分别为2.37*106cm-1、2.21*106cm-1、2.23*106cm-1、4.45*106cm-1和4.19*106cm-1。从图2、3的吸收图中可以看出所述的聚合物受体分子在薄膜中有很强的π-π堆积吸收峰,进一步说明分子在薄膜中呈有序的排列。
实施例2:以实施例1所合成的共轭聚合物P1、P2、P3(结构中AB组分相同)作为电子受体在有机光伏器件(ITO阴极/阴极界面层/活性层/阳机界面层/阳极)中应用
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ITO上旋凃一层5nm厚的PFN-Br,然后旋涂活性层材料PTB7-Th/P1,PTB7-Th/P2,PTB7-Th/P3,厚度为110纳米,最后蒸镀MoO3和Al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的倒装电池器件的电流-电压曲线如图4所示,相关的数据在表一中列出。可以看出,本发明所述的含硅氧烷侧链的萘二酰亚胺n型共聚物能够极大地提高电池器件的电流,提高电池效率。主要是在填充因子,短路电流以及开路电压达到了很好的平衡。
实施例3:以实施例1所合成的共轭聚合物P1,P2,P3(结构中AB组分相同)作为电子受体在有机光伏器件(ITO阳极/阳极界面层/活性层/阴机界面层/阴极)中应用
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ITO上旋凃一层20nm厚的PEDOT:PSS,然后旋涂活性层材料PTB7-Th/P1,PTB7-Th/P2,PTB7-Th/P3,厚度均为100纳米。然后旋涂一层5nm厚的PFN-Br,最后蒸镀Al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的正装电池器件的电流-电压曲线如图5所示,相关的数据在表一中列出。可以看出,本发明所述的含硅氧烷侧链的萘二酰亚胺n型共聚物能够极大地提高电池器件的电流,并且填充因子也较高,器件效率最高可达10.11%。
实施例4:以实施例1所合成的共轭聚合物P4、P5(结构中AB组分不同)作为电子受体在有机光伏器件(ITO阳极/阳极界面层/活性层/阴机界面层/阴极)中应用
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ITO上旋凃一层20nm厚的PEDOT:PSS,然后旋涂活性层材料PTB7-Th/P4,PTB7-Th/P5,PTB7-Th/P3,厚度均为100纳米。然后旋涂一层5nm厚的PFN-Br,最后蒸镀Al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的正装电池器件的电流-电压曲线如图5所示,相关的数据图6所示并在表一中列出。可以看出,本发明所述的含硅氧烷侧链的萘二酰亚胺n型共聚物能够极大地提高电池器件的电流,并且填充因子也较高,器件效率最高可达10.43%。
表1代表性共轭聚合物作为电子受体材料时,有机光伏器件的性能参数
Figure BDA0001441567400000121
Figure BDA0001441567400000131
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.含硅氧烷侧链的萘二酰亚胺n型共聚物,其特征在于,其具有以下结构:
Figure FDA0002940282000000011
其中,a为1到40的正整数,0<b<1,n为小于1000万的正整数,X为氧、硫或硒,R1、R2为烷基链。
2.根据权利要求1所述的含硅氧烷侧链的萘二酰亚胺n型共聚物,其特征在于,所述的R1、R2为具有1~40个碳原子的直链、支链或者环状烷基链。
3.根据权利要求2所述的含硅氧烷侧链的萘二酰亚胺n型共聚物,其特征在于,所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基、硝基取代。
4.根据权利要求2所述的含硅氧烷侧链的萘二酰亚胺n型共聚物,其特征在于,所述直链、支链或者环状烷基链中氢原子被氟原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基、甲基、乙基、甲氧基、硝基取代。
5.权利要求1-4任一项所述的含硅氧烷侧链的萘二酰亚胺n型共聚物的制备方法,其特征在于,所述含硅氧烷侧链的萘二酰亚胺n型共聚物通过Suzuki或Stille聚合反应得到。
6.权利要求1-4任一项所述的含硅氧烷侧链的萘二酰亚胺n型共聚物作为电子受体应用于有机光伏器件中。
CN201710991407.9A 2017-10-23 2017-10-23 含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用 Active CN109694463B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710991407.9A CN109694463B (zh) 2017-10-23 2017-10-23 含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710991407.9A CN109694463B (zh) 2017-10-23 2017-10-23 含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用

Publications (2)

Publication Number Publication Date
CN109694463A CN109694463A (zh) 2019-04-30
CN109694463B true CN109694463B (zh) 2021-06-01

Family

ID=66225761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710991407.9A Active CN109694463B (zh) 2017-10-23 2017-10-23 含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用

Country Status (1)

Country Link
CN (1) CN109694463B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512179B (zh) * 2021-04-29 2022-07-05 南昌航空大学 一种n型三嗪萘二酰亚胺类COF共轭聚合物阴极界面层的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725557B2 (en) * 2013-10-15 2017-08-08 The Board Of Trustees Of The Leland Stanford Junior University Conjugated polymer-based apparatuses, articles and compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Balanced Face-On to Edge-On Texture Ratio in Naphthalene Diimide-Based Polymers with Hybrid Siloxane Chains Directs Highly Efficient Electron Transport;Yiho Kim et al.;《Macromolecules》;20150730;第48卷;5179-5187 *
Improved electron transport properties of n-type naphthalenediimide polymers through refined molecular ordering and orientation induced by processing solvents;Yujin An et al.;《Phys. Chem. Chem. Phys.》;20160324;第18卷;12486-12493 *

Also Published As

Publication number Publication date
CN109694463A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
Yu et al. Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer
CN108276560B (zh) 基于主链含苯并三唑酰亚胺和引达省氰基茚酮的嵌段共聚物及在单组分有机太阳电池的应用
CN109749059A (zh) 一种主链含氰基茚酮的稠环n型聚合物及其应用
Ono et al. Efficient crystalline Si/poly (ethylene dioxythiophene): poly (styrene sulfonate): graphene oxide composite heterojunction solar cells
Jaimes et al. Effect of CdS nanoparticle content on the in-situ polymerization of 3-hexylthiophene-2, 5-diyl and the application of P3HT‐CdS products in hybrid solar cells
Lee et al. Flexible p-type PEDOT: PSS/a-Si: H hybrid thin film solar cells with boron-doped interlayer
CN108084405B (zh) 基于主链结构为萘二酰亚胺和引达省氰基茚酮的嵌段共聚物及其在有机光伏器件中的应用
CN108034042B (zh) 一种主链给体-侧链受体型共轭聚合物及其制备和应用
CN109244242B (zh) 一种有机太阳电池及其制备方法
CN107325266A (zh) 含醌式结构的n型共轭聚合物及其在有机光电器件中的应用
CN107793423B (zh) 新型n型醌式结构小分子及其在有机光电器件中的应用
Bereznev et al. Electrodeposited (Cu–In–Se)/polypyrrole PV structures
CN114883500A (zh) 一种非卤素溶剂加工的基于聚噻吩体系的有机太阳电池及其制备方法
CN112646129B (zh) 含苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
CN109694463B (zh) 含硅氧烷侧链的萘二酰亚胺n型共聚物及其在有机光电器件中的应用
Luo et al. Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT: PSS
CN109749060B (zh) 一种侧链支化点可调的萘酰亚胺n型共轭聚合物及其应用
CN107674180A (zh) 基于共轭π桥相连呋喃的n型共轭聚合物及其在有机光电器件中的应用
CN105384930B (zh) 共轭-非共轭n型聚电解质及其在有机光电器件中的应用
CN107778457A (zh) 基于连呋喃的n型共轭聚合物及其在有机光电器件中的应用
CN108084406B (zh) 基于侧链含吸光型受体的n型共轭聚合物及其制备和应用
CN110862518A (zh) 基于多元稠环结构的多元共聚物及其在有机光电器件中的应用
CN112646130B (zh) 基于双自由基苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
Han et al. Regioregularity effects in poly (3-hexylthiophene): PCBM-based solar cells incorporating acid-doped polyaniline nanotubes as an interfacial layer
CN108276559B (zh) 一种含菲并三杂环共轭聚合物及其在有机光电器件中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210701

Address after: 523808 room 236, building 15, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Patentee after: Dongguan Hua Gong Cooperative Innovation Technology Development Co.,Ltd.

Patentee after: Huang Fei

Patentee after: Ying Lei

Address before: 523808 room 168, productivity building, Songshan Lake high tech Industrial Development Zone, Dongguan, Guangdong

Patentee before: SOUTH CHINA INSTITUTE OF COLLABORATIVE INNOVATION

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210819

Address after: 523808 room 533, building 15, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Patentee after: Dongguan volt ampere Photoelectric Technology Co., Ltd

Address before: 523808 room 236, building 15, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Patentee before: Dongguan Hua Gong Cooperative Innovation Technology Development Co.,Ltd.

Patentee before: Huang Fei

Patentee before: Ying Lei