CN109686822A - 极化电场辅助的空穴供给和p型接触结构、使用该结构的发光器件和光电探测器 - Google Patents

极化电场辅助的空穴供给和p型接触结构、使用该结构的发光器件和光电探测器 Download PDF

Info

Publication number
CN109686822A
CN109686822A CN201810657741.5A CN201810657741A CN109686822A CN 109686822 A CN109686822 A CN 109686822A CN 201810657741 A CN201810657741 A CN 201810657741A CN 109686822 A CN109686822 A CN 109686822A
Authority
CN
China
Prior art keywords
layer
hole
contact
type
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810657741.5A
Other languages
English (en)
Other versions
CN109686822B (zh
Inventor
张剑平
高英
周瓴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boer Corp
Bolb Inc
Original Assignee
Boer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boer Corp filed Critical Boer Corp
Publication of CN109686822A publication Critical patent/CN109686822A/zh
Application granted granted Critical
Publication of CN109686822B publication Critical patent/CN109686822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Abstract

一种用于发光器件或者光电探测器的空穴供给和p‑接触结构包括p型III族氮化物结构以及在其上形成的空穴供给和p‑接触层,所述空穴供给和p‑接触层由含Al的III族氮化物制成,并且处于双轴面内张应力应变下,所述空穴供给和p‑接触层的厚度在0.6‑10nm的范围内,并且所述p型III族氮化物结构形成在发光器件或者光电探测器的有源区上。还提供了一种具有空穴供给和p‑接触结构的发光器件和光电探测器。

Description

极化电场辅助的空穴供给和p型接触结构、使用该结构的发光 器件和光电探测器
相关申请的交叉引用
本申请要求2017年10月18日提交的、发明名称为“极化电场辅助的空穴供给和p型接触结构以及使用该空穴供给和p型接触结构的发光器件”、申请号为62/574,083的美国临时申请的优先权,以及2017年11月14日提交的、发明名称为“极化电场辅助的空穴供给和p型接触结构以及使用该空穴供给和p型接触结构的发光器件”、申请号为15/813,082的美国专利申请的优先权,该两案以引用的方式全部并入本文。
技术领域
本申请一般地涉及半导体发光技术,更具体地涉及一种用于发光器件或者光电探测器的极化电场辅助的空穴供给和p型接触结构,并且涉及具有极化电场辅助的空穴供给和p型接触结构的发光器件和光电探测器。
背景技术
诸如InN、GaN、AlN的氮化物半导体及其取决于合金组分的三元和四元合金,可实现从410nm到大约200nm的紫外(UV)辐射。这些包括UVA(400-315nm)辐射、UVB(315-280nm)辐射和部分UVC(280-200nm)辐射。UVA辐射正在引发固化行业的变革,UVB和UVC辐射由于其杀菌效果正期待在食品、水和表面消毒业中普遍应用。与诸如汞灯的传统UV光源相比,由氮化物制成的UV光发射器具有内在优势。通常,氮化物UV发射器是坚固的、紧凑的、光谱可调节的且环境友好的。其提供高UV光强度和剂量,从而有助于对水、空气、食品和物体表面进行理想的消毒/杀菌处理。进一步地,氮化物UV光发射器的光输出可以以高达几百兆赫的高频进行调制,从而确保其能够作为物联网、隐蔽通信和生物化学检测的创新光源。
现有技术的UV发光二极管(LED)通常采用层压结构,其包含c面蓝宝石作为UV透明衬底、涂覆在衬底上的AlN层充当外延模板,以及一组AlN/AlGaN超晶格用于位错和应变管理。AlN模板和AlN/AlGaN超晶格的使用使得能够生长高质量高导电性n型AlGaN电子供给层,其将电子注入后续的基于AlGaN的多量子阱(MQW)有源区中。在MQW有源区的另一侧是A1GaN电子阻挡层、A1GaN空穴注入层、空穴供给层和用于形成欧姆接触的p型GaN或者InGaN层。在参考文献(例如,“Milliwatt power deep ultraviolet light-emitting diodesover sapphire with emission at 278nm”J.P.Zhang等人,APPLIED PHYSICS LETTERS81,4910(2002),其内容以引用的方式全部并入本文)中可以找到常规的A1GaN UV LED结构。
诸如A1GaN材料的宽带隙半导体具有随带隙宽度(Eg)而增加的受主激活能(EA)。EA根据以下公式决定了空穴浓度(p):其中,g是受主简并度(g=2),NA是受主浓度,NV是价带边缘的有效态密度,K是玻尔兹曼常数,T是绝对温度(“Enhancement ofdeep acceptor activation in semiconductors by superlattice doping”E.F.Schubert、W.Grieshaber和I.D.Goepfert,Appl.Phys.Lett.69,9(1996))。对于NA=1020cm-3和EA=200meV(对于在GaN中含Mg的情况,Nv(300K)=4.62×1019cm-3),该公式计算出约1%的受主在室温下进行电离,这意味着价带中的自由空穴的浓度为1×1018cm-3,几乎不适合于空穴供给和p型欧姆接触。对于NA=1020cm-3和EA=500meV(对于在AlN中含Mg的情况,Nv(300K)=4.88×1020cm-3),所估计的室温受主激活率仅为9.86×10-5。对于普通AlxGa1-xN材料,受主电离能在200-500meV之间(随Al组分x线性增加)。因此,对于UVB/UVC透明AlxGa1-xN材料(1≥x≥0.26),空穴浓度对于空穴供给和p型欧姆接触形成而言过低。考虑到这种障碍,p型GaN或者InGaN层通常用作常规UV LED中的空穴供给层和p-欧姆接触层。然而,p型GaN和InGaN层的强UV吸收(系数~105cm-1)将UV LED的光提取效率(LEE)严格限制为小至3%-6%。
已经提出了包含p型AlGaN势垒层和p型GaN势阱层的超晶格结构来替代常规p型AlGaN层,以改善导电性且保持对UV的透明性(例如,美国专利第5,831,277号、第6,104,039号和第8,426,225号,其内容以引用的方式全部并入本文)。在A1GaN和GaN之间的价带和极化不连续性将导致GaN阱内的空穴累积。空穴可以在GaN阱面内自由移动。然而,AlGaN/GaN价带和极化不连续性将阻碍在与GaN阱面垂直的方向上的空穴移动。也就是说,p型AlGaN/GaN超晶格横向导电性有所改善,但是垂直导电性上仍存在限制,不适合于将空穴垂直注入MQW有源区中进行发光。为了增强p-AlGaN/GaN超晶格的垂直导电性,可以根据空穴的波尔半径作为经验法则来估计超晶格内的p-AlGaN势垒层的厚度:
由于AlGaN中的空穴的有效质量mh非常重,接近或者大于自由电子质量m0的有效质量,且根据Al组分,AlGaN材料的相对介电常数εr介于8至9之间,因此AlGaN内的空穴的波尔半径约为当在AlGaN/GaN超晶格中应用这种薄AlGaN层时,a)如果GaN阱层的厚度足以保持良好的AlGaN/GaN界面,则超晶格将是UV不透明的;b)如果GaN阱层也保持用于UV透明性的超薄厚度,则由于界面粗糙度和组分混合,超薄的AlGaN/GaN超晶格界面将消失,这使得超薄周期AlGaN/GaN超晶格与常规AlGaN合金相同,从而失去了所有空穴累积效益。
发明内容
本发明的实施例公开了一种空穴供给和p型接触结构,特别是一种UV透明空穴供给和p型接触结构,用于发光器件或者光电探测器,特别是UV发光器件和UV光电探测器。根据本发明的实施例的空穴供给和p型接触结构具有改善的电流-电压特性和光提取效率。
本发明的一个方面提供了一种用于发光器件或者光电探测器的空穴供给和p-接触结构。
所述空穴供给和p-接触结构包括:
p型III族氮化物结构;以及
空穴供给和p-接触层,在所述p型III族氮化物结构上形成,并且处于双轴面内张应力应变下,所述空穴供给和p-接触层由含Al的III族氮化物制成,
其中,所述空穴供给和p-接触层的厚度在0.6-10nm的范围内,并且所述p型III族氮化物结构形成在发光器件或者光电探测器的有源区上。
所述空穴供给和p-接触层的室温受主激活率可以大于1%。
所述空穴供给和p-接触层的受主激活能可以在0.1至0.5eV的范围内,并且所述空穴供给和p-接触层中的极化感应电场在3×105V/cm至3×107V/cm的范围内。
所述空穴供给和p-接触层可以由AlxGa1-xN制成,0.7≤x≤1。
所述空穴供给和p-接触层可以由AlN制成,并且全应变地(coherently)形成在所述p型III族氮化物结构上。
所述空穴供给和p-接触层可以具有比所述p型III族氮化物结构的Al组分更高的Al组分。
所述空穴供给和p-接触层可以掺杂有浓度为1.0×1020cm-3至1.0×1021cm-3的Mg。
所述空穴供给和p-接触层可以与低功函数金属形成欧姆接触。
所述空穴供给和p-接触层可以与功函数大于5.2eV的沉积态金属(as-depositedmetals)形成欧姆接触,诸如Pd(钯)、Pt(铂)和Os(锇)等。
所述发光器件可以是发光二极管或者激光二极管。
本发明的另一方面提供了一种发光二极管。
所述发光二极管包括:
n型AlGaN结构;
p型AlGaN结构;
多量子阱有源区,其夹设在所述n型AlGaN结构与所述p型AlGaN结构之间;以及
空穴供给和p-接触层,在所述p型AlGaN结构上形成,由含Al的III族氮化物制成,
其中,所述空穴供给和p-接触层具有比所述p型AlGaN结构、多量子阱有源区和n型AlGaN结构中的Al组分更高的Al组分,并且厚度为0.6nm到10nm。
所述空穴供给和p-接触层可以由c面AlxGa1-xN制成,0.7≤x≤1。
所述空穴供给和p-接触层可以掺杂有浓度为1.0×1020cm-3至1.0×1021cm-3的Mg。
所述p型AlGaN结构可以包括:
空穴注入和电子阻挡层,与所述多量子阱有源区接触;
第一沟道层,形成在所述空穴注入和电子阻挡层上;
p型势垒,形成在第一沟道层上;以及
第二沟道层,形成在p型势垒上,
其中,所述空穴供给和p-接触层形成在所述第二沟道层上。
所述第一和第二沟道层可以分别由p型AlyGa1-yN制成,0≤y≤0.1,并且厚度可以分别在0.5-1.5nm的范围内。
所述p型势垒可以由p型AlN制成,并且厚度可以在1-3nm的范围内。
所述p型AlGaN结构包括多对交替堆叠的p型势垒和第一沟道层。
所述空穴注入和电子阻挡层可以是p型AlGaN层,或者p型AlGaN超晶格结构,或者p型AlGaN多层结构。
所述发光二极管还包括形成在所述空穴供给和p-接触层上的p-欧姆接触,其与所述空穴供给和p-接触层形成欧姆接触。
所述p-欧姆接触可以由Ni、Au、Pd、Pt、Rh、Os或者W层,或者它们的组合制成。
所述发光二极管还包括透明介电层,其与所述p-欧姆接触并排形成在所述空穴供给和p-接触层上。
可以移除所述多量子阱有源区、p型AlGaN结构、空穴供给和p-接触层,以及p-欧姆接触的一部分以形成暴露出n型AlGaN结构的凹陷,并且n-欧姆接触设置在与所述n型AlGaN结构接触的凹陷中。
所述n型AlGaN结构可以包括:
n型AlGaN电流扩散层;
重度掺杂n型AlGaN屏蔽层;以及
轻度掺杂n型AlGaN层,
其中,所述轻度掺杂n型AlGaN层与所述多量子阱有源区接触,所述重度掺杂n型AlGaN屏蔽层夹设在所述n型AlGaN电流扩散层与所述轻度掺杂n型AlGaN层之间。
所述n型AlGaN电流扩散层的厚度可以在2-5微米的范围内,并且具有2.0×1018-5.0×1018cm-3的掺杂剂。
所述重度掺杂n型AlGaN屏蔽层的厚度可以在0.2-0.5微米的范围内,并且具有8.0×1018-2.0×1019cm-3的掺杂剂。
所述轻度掺杂n型AlGaN层的厚度可以在0.1-0.5微米的范围内,并且具有2.5×1017-2.0×1018cm-3的掺杂剂。
本发明的再一方面提供了一种UV光电探测器。
所述UV光电探测器包括:
n型AlGaN结构;
p型AlGaN结构;
光吸收层,其夹设在所述n型AlGaN结构与所述p型AlGaN结构之间;以及
空穴供给和p-接触层,在所述p型AlGaN结构上形成,由含Al的III族氮化物制成,
其中,所述空穴供给和p-接触层的厚度为0.6nm到10nm。
所述空穴供给和p-接触层可以由AlxGa1-xN制成,0.7≤x≤1。
所述空穴供给和p-接触层可以掺杂有浓度为1.0×1020cm-3至1.0×1021cm-3的Mg。
所述p型AlGaN结构可以包括:
空穴注入和电子阻挡层,与所述光吸收层有源区接触;
第一沟道层,形成在所述空穴注入和电子阻挡层上;
p型势垒,形成在第一沟道层上;以及
第二沟道层,形成在p型势垒上,
其中,所述空穴供给和p-接触层形成在所述第二沟道层上。
所述第一和第二沟道层可以分别由p型AlyGa1-yN制成,0≤y≤0.1,并且厚度可以分别在0.5-1.5nm的范围内。
所述p型势垒可以由p型AlN制成,并且厚度可以在1-3nm的范围内。
所述p型AlGaN结构可以包括多对交替堆叠的p型势垒和第一沟道层。
所述空穴注入和电子阻挡层可以是p型AlGaN层,或者p型AlGaN超晶格结构,或者p型AlGaN多层结构。
所述n型AlGaN结构可以包括:
n型AlGaN电流扩散层;
重度掺杂n型AlGaN屏蔽层;以及
轻度掺杂n型AlGaN层,
其中,所述轻度掺杂n型AlGaN层与所述光吸收层接触,所述重度掺杂n型AlGaN屏蔽层夹设在所述n型AlGaN电流扩散层与所述轻度掺杂n型AlGaN层之间。
所述n型AlGaN电流扩散层的厚度可以在2-5微米的范围内,并且剂量为2.0×1018-5.0×1018cm-3
所述重度掺杂n型AlGaN屏蔽层的厚度可以在0.2-0.5微米的范围内,并且剂量为8.0×1018-2.0×1019cm-3
所述轻度掺杂n型AlGaN层的厚度可以在0.1-0.5微米的范围内,并且剂量为2.5×1017-2.0×1018cm-3
附图说明
附图提供对本发明的进一步的理解,并且构成本申请的一部分,这些附图示出了本发明的实施例,并且与说明书一起来解释本发明的原理。在所有附图中,相同的附图标记表示相同的元件,层可表示相同功能关联的一组层。
图1示出了(0001)方向的AlInGaN层的极化感应表面电荷和电场;
图2A绘制了在完全弛豫的(0001)方向的AlxGa1-xN层上形成的全应变(coherentlystrained)AlN层内的作为Al组分(x)的函数的极化电场;
图2B绘制了在完全弛豫的(0001)方向的Al0.55Ga0.45N层上形成的全应变AlxGa1-xN层内的作为Al组分(x)的函数的极化电场;
图3示出了在极化电场的辅助下受主限定(acceptor-bounded)的空穴隧穿到价带的原理;
图4绘制了在不同的电场强度的辅助下来自不同的受主激活能(0.1–0.5eV)的受主的空穴隧穿至价带的隧穿概率;
图5示出了根据本发明的实施例的UV LED外延的层状结构;
图6A示出了根据本发明的一个实施例的UV LED的截面图;
图6B示出了根据本发明的一个实施例的UV LED的截面图;
图6C示出了接触701和透明介电层703的面内布置的两个示例;
图7示出了根据本发明的一个实施例的UV LED的截面图;
图8示出了根据本发明的一个实施例的从UVC LED的表面至多量子阱区域的TEM图像;
图9绘制了根据本发明的一个实施例的从UV LED的表面至多量子阱区域的元素Al、Ga、N、C的深度分布曲线;
图10绘制了根据本发明的一个实施例的一个常规不透明UVC LED和一个透明UVCLED的UV-可见光透射光谱;
图11绘制了根据本发明的一个实施例的透明UVC LED的晶片上铟-点-接触(on-wafer indium-dots-contact)电致发光光谱曲线;
图12比较了根据本发明的一个实施例的一个常规不透明UVC LED和一个透明UVCLED的晶片上铟-点-接触光功率持续性;
图13绘制了根据本发明的一个实施例的一个常规不透明UVC LED和一个透明UVCLED的晶片上铟-点-接触电流-电压曲线;
图14绘制了根据本发明的一个实施例制作的形成在重度Mg掺杂的1nm厚的AlN层上的沉积态Pd同心圆形接触焊盘(as-deposited Pd-concentric circular contactpads)的IV曲线;
图15比较了根据本发明的实施例的两个不同架构UVC LED的UV光功率值;
图16示出了根据本发明的实施例的UV光电探测器外延层结构。
具体实施方式
贯穿本说明书,术语“III族氮化物”通常是指具有从元素周期表IIIA族中选择的具有阳离子的金属氮化物。也就是说,III氮化物包括AlN、GaN、InN及其三元(AlGaN、InGaN、InAlN)和四元(AlInGaN)合金。在本说明书中,如果III族元素中的一个元素极小使得其存在不会影响由这种材料制成的层的预期功能,则为了简化起见,可以将四元减至三元。例如,如果四元AlInGaN中的In组分极小,小于1%,那么该AlInGaN四元可以被简化为三元AlGaN。同理,如果III族元素中的一个元素极小,那么可以将三元简化为二元。例如,如果三元InGaN中的In组分极小,小于1%,那么该InGaN三元可以被简化为二元GaN。III族氮化物还可以包括少量的诸如TiN、ZrN、HfN的过渡金属氮化物,诸如摩尔分数不大于10%的TiN、ZrN、HfN。例如,III族氮化物或者氮化物可以包括AlxInyGazTi(1-x-y-z)N、AlxInyGazZr(1-x-y-z)N、AlxInyGazHf(1-x-y-z)N,其中,(1-x-y-z)≤10%。
众所周知,诸如发光二极管(LED)和激光二极管的发光器件通常采用包含量子阱有源区的层压结构、用于将电子注入有源区中的n型III族氮化物结构和有源区的另一侧上的用于将空穴注入有源区中的p型III族氮化物结构。
根据本发明的实施例的用于发光器件的空穴供给和p-接触结构包括p型III族氮化物结构,诸如UV透明p型结构,和由在所述p型III族氮化物结构上形成的含Al的III族氮化物制成的且处于双轴面内张应力应变(biaxial in-plane tensile strain)下的空穴供给和p-接触层。也可以在光电探测器,诸如UV光电探测器,中使用所述空穴供给和p-接触层。
所述空穴供给和p-接触层可以是Al组分在0.26-1的范围内的UV透明的,并且至少在一些实施例中,可以与高功函数金属和低功函数金属形成欧姆接触。所述空穴供给和p-接触层的厚度可以在0.6-10nm的范围内。
所述p型III族氮化物结构可以是在诸如UV LED和UV激光二极管等常规发光器件中使用的p型结构。在下文中,将纤锌矿c面氮化物发光器件或者结构用作示例以阐明本发明的原理和精神。在本说明书中由以下实施例提供的教导可以应用于非c面氮化物半导体、II-VI半导体和其它半导体器件。
图1中的示意图示出了c面((0001)方向的或者c方向的)AlInGaN层的极化感应表面电荷和电场。极性半导体具有自发极化,若在应变下还具有压电极化。在文献(例如在“Spontaneous and piezoelectric polarization in nitride hetero structures”,byE.T.Yu,chapter 4,III-V Nitride Semiconductors:Applications and Devices,editedby E.T.Yu,and O.Manasreh,published in 2003by Taylor&Francis)中可以找到关于AlInGaN极化参数和特性的综述。如图1所示,对于(0001)方向的AlInGaN层,自发极化将分别在(0001)表面和表面中诱导表面负电荷和表面正电荷。如果该层处于双轴面内张应力应变下,则得到的压电极化(Ppz)将加强自发极化(Psp)。压电极化与双轴面内应变(ε)关系式:其中,eij和cij分别是压电系数和弹性张量系数,以及其中,asub和aepi分别是弛豫衬底常数和外延层晶格常数。如所看到的,对于双轴面内张应力应变(ε>0),压电极化对自发极化有建设性的帮助,而对于双轴面内压缩应变(ε<0),压电极化不利于自发极化。根据以下公式,极化(P)与表面电荷密度(σ)相关:其中,是表面法线。对于较大的半导体平板,可以通过计算出表面电荷感应电场(F),其中,∈是介电常数。
例如,如果薄A1N层全应变地(完全应变地)形成在厚且弛豫的AlxGa1-xN模板层上,则在所述薄A1N层内存在电场,该电场建设性地得益于AlN层的自发极化和压电极化。通过使用上面解释的参数和方法,图2A绘制了薄AlN层中的极化电场关于完全弛豫的(0001)方向的AlxGa1-xN模板层的Al组分(x)的函数。电场沿c方向指向(参见图1),且当模板层由GaN制成时,达到最大值1.6×107V/cm(然而,如果模板层由InGaN制成,则由于双轴面内应变和压电极化的增加,电场将随着In组分持续增加)。
在图2B中,外延模板层固定含有55%的Al组分(多用于270-280nm的UV LED),薄外延层具有不同的Al组分x。如所看到的,薄相干AlxGa1-xN外延层内的电场随x线性增加,达到最大值1.27×107V/cm。
图2A和图2B显示了强度在106V/cm到107V/cm(或者0.1V/nm到1V/nm)的范围内的、呈现在c方向全应变薄AlGaN层中的、沿c方向指向的巨大电场。根据本发明,可以利用该巨大电场来形成UV透明空穴供给和p型接触层。其原理在图3中示出并且解释如下。
如图3所示,根据本发明的一个实施例的空穴供给和p-接触层601II族氮化物处于极化电场F下,其价带和导带边缘在电场F下产生倾斜。限制在层60中的受主上的空穴感受到进行激活/电离的势垒减小。如先前解释的,如果不存在使带边缘倾斜的电场,则具有较大激活能(诸如500meV)的受主在室温下电离的概率很小,诸如不超过10-4。所述极化电场将激活能势垒从其原始恒定势垒EA减小到三角形势垒V(x),并且V(x)=EA-eFx,其中,e是电子元电荷,并且x是沿着F-方向(也是c-方向)距受主的距离。通过Fowler-Nordheim公式给出了空穴隧穿通过三角形势垒到达价带的隧穿概率(T):其中,mh和分别是空穴的有效质量和减小的普朗克常数。
如所看到的,对于一个给定的EA,电场F的存在极大地增强了空穴的隧穿(激活)概率。对于InGaN、GaN、AlGaN和AlN中的受主,激活能(EA)和空穴有效质量(mh)随带隙宽度而增加,使得空穴激活越来越困难,从而需要越来越大的电场来辅助空穴进行隧穿。在图4中,针对电场强度绘制了具有一些示例性激活能(EA)和有效质量(mh)的空穴的电场辅助隧穿概率。这些示例包括在InGaN(EA=0.1eV、mh=0.4m0)、GaN(EA=0.2eV、mh=0.8m0)、AlGaN(EA=0.3eV、mh=2m0以及EA=0.4eV、mh=3m0)和AlN(EA=0.5eV、mh=3.53m0)中的受主的情况,其中,m0是电子在自由空间中的质量。如所看到的,针对这些InGaN、GaN、AlGaN、AlGaN和AlN示例性层实现1%的隧穿概率所需电场强度分别为3.0×105、1.2×106、3.5×106、7.0×106和1.0×107V/cm。如果受主浓度(NA)等于1020cm-3,则1%的隧穿概率意味着空穴浓度为1018cm-3。针对这些InGaN、GaN、AlGaN、AlGaN和AlN示例性层实现10%的隧穿概率所需电场强度分别为6.0×105、2.4×106、7.0×106、1.3×107和2.0×107V/cm。如果受主浓度(NA)等于1020cm-3,则10%的隧穿概率意味着空穴浓度为1019cm-3。如果电场高于1.0×108V/cm,则无论外延层是InGaN、GaN、AlGaN还是AlN,在室温下可以激活几乎100%的受主。
AlInGaN材料具有较强的自发极化和压电极化。图2A和图2B中的绘图表明,高Al组分AlGaN层或者AlN层通常具有范围从高到低为106到107V/cm的极化电场。对于弛豫的厚Al0.55Ga0.45N层上的全应变薄AlN层的情况,图2B显示了高达1.27×107V/cm的极化电场。如果AlN层适当地掺杂有浓度为2×1020cm-3的受主(Mg),则图4中示出的3%的电场辅助激活概率将导致空穴浓度为6×1018cm-3!因此,根据本发明的该高空穴浓度层对于UV LED的透明空穴供给层是理想的。进一步地,继续参照图3,被激活的空穴将被电场扫掠到层60的顶面,从而使费米能级(EF)渗透到表面附近的价带中并且产生表面简并二维空穴气(2DHG)。表面高密度2DHG可以与许多金属形成良好的欧姆接触,不仅与诸如镍(Ni)、钨(W)、钯(Pd)、铂(Pt)、铱(Ir)、锇(Os)、铑(Rh)和金(Au)的高功函数金属,而且还与一些诸如UV反射金属铝(Al)和可见光反射银(Ag)的低功函数金属。在本说明书中,高功函数意味着功函数大于5.0eV,并且低功函数意味着功函数小于5.0eV。同样,如此设计的层60是理想的透明空穴供给层和p型接触层。
图5中图示了根据本发明的UV LED结构的截面示意图。结构从UV透明衬底10开始。可以从蓝宝石、AlN、SiC等中选择衬底10。形成在衬底10上的是模板20,该模板可以由厚AlN层制成,例如,厚度为0.3-4.0μm。尽管在图5中未示出,但诸如Al组分渐变AlGaN层或者AlN/AlGaN超晶格组的应变管理结构可以形成在模板20上。形成在模板20上的是用于电子供应和n型欧姆接触形成的厚n-AlGaN结构30。结构30可以包括用于电流扩散的厚(2.0-5.0μm,诸如3.0μm,n=2.0×1018–5.0×1018cm-3)n型N-AlGaN层31、用于MQW有源区极化场屏蔽的重度n型掺杂的(0.2-0.5μm,诸如0.30μm,n=8×1018-2×1019cm-3)N+-AlGaN层33,以及用于减少电流拥塞并且将电流均匀注入后续AlbGa1-bN/AlwGa1-wN MQW有源区40中的轻度掺杂的N--AlGaN层35(0.1-0.5μm,诸如0.15μm,n=2.5×1017-2×1018cm-3)。MQW 40由多次交替堆叠的n-AlbGa1-bN势垒和AlwGa1-wN势阱制成,例如3至8次。势垒厚度在8-16nm的范围内,并且势阱厚度为2-5nm。MQW 40的总厚度通常小于200nm,例如为75nm、100nm或者150nm。n-AlbGa1-bN势垒和AlwGa1-wN势阱可以分别具有在0.3-1.0和0.0-0.85的范围内的Al组分,并且势垒和势阱的Al组分差异至少为0.15左右,以便确保至少400meV的势垒-势阱带隙宽度差(ΔEg)以保证量子限制效应。在MQW 40之后是p型AlGaN结构50。结构50与MQW有源区40接触的部分为p-AlGaN层或者p-AlGaN超晶格结构或者为p-AlGaN多层结构,作为空穴注入和电子阻挡层(EBL)51。在EBL 51之后是空穴扩散结构523,其包括p型Mg掺杂AlGaN或GaN沟道层52和p型AlN势垒53。势垒53和沟道层52在沟道层52中形成用于横向电流扩散的二维空穴气。沟道层52中的Al组分可以较小或者没有,例如Al组分可以在0至0.1(10%)或者0至0.05(5%)的范围内。并且势垒53和沟道层52的厚度可以分别为1-3nm和0.5-1.5nm。进一步地,势垒53和沟道层52可以多次交替地形成(例如,1-8次或者3-7次),但始终使沟道层52的一层接触EBL51并且使沟道层52的另一层接触空穴供给和p-接触层60。p型AlGaN结构50的总厚度通常小于100nm,例如为50nm或者70nm。
p型AlGaN结构50和其上形成的空穴供给和p-接触层60构成空穴供给和p-接触结构。
根据先前解释的原理来设计空穴供给和p-接触层60。层60可以重度掺杂有Mg,使其浓度高于1020cm-3,例如从1.0×1020cm-3到1.0×1021cm-3或者从2.0×1020cm-3到6.0×1020cm-3。对于UVB/UVC LED(辐射波长范围从200nm到315nm),层60优选地具有大于9.0×106V/cm的极化电场,根据图2B,这意味着层60优选的是具有大于0.7的Al组分的或者说具有从0.7至1.0的Al组分的Mg掺杂AlGaN层。换言之,为了利用AlInGaN的自发和压电极化,层60的Al组分优选等于或者高于p-AlGaN结构50的空穴注入和电子阻挡层(EBL)51、沟道层52和势垒53的Al组分、等于或者高于MQW 40的n-AlbGa1-bN势垒和AlwGa1-wN势阱的Al组分,以及等于或者高于N-AlGaN结构30的厚n型N-AlGaN层31、重度n型掺杂N+-AlGaN层33和轻度掺杂N--AlGaN层35的Al组分。层60的这种Al组分选择自动使层60对来自MQW有源区40的辐射透明。
进一步地,在高效UV LED中,N-AlGaN结构30因其厚度较大而设置外延晶格常数模板,位于其上的相对较薄的层,诸如MQW 40和p-AlGaN结构50,外延、全应变地形成在N-AlGaN结构30上,且不具有面内晶格常数弛豫和位错生成或者至少不具有显著的面内晶格常数弛豫和位错生成。在本发明的一些实施例中,层60因其厚度较薄(0.6至10nm),优选地根据N-AlGaN结构30的面内晶格常数使其充分应变,以利用压电极化。
影响层60的性能的另一因子是其厚度。继续参照图3,被激活的空穴被极化电场扫掠到(0001)表面,从而导致在表面附近形成空穴累积并且在距表面附近较远的体区域中耗尽。由于因此可以从费米能级到价带(EF-Ev)的分离中看出空穴累积和耗尽。耗尽的体区域电阻会很高。如果耗尽区域的厚度过厚,则在施加正偏压时,无法容易地将空穴注入p型AlGaN结构50中。根据本发明的一些实施例,层60的厚度被限制到一定水平,使得层60足够导电以实现充分的空穴注入,例如层60的厚度可以在从0.6到10nm,或者从1.0到6.0nm,或者从1.0到3.0nm的范围内。
p型AlGaN结构50的结构可以与图5中示出的结构不同。进一步地,如果MQW有源区40发出更长波长的辐射,例如UVA辐射(315nm-400nm)或者可见光辐射,而非UVB/UVC辐射,则层60可以具有较少的Al组分。如上文所教导的并且在图2A、2B和图4中所例示的,形成适合的空穴供给和p型接触层60的设计概念首先要确定层60中的受主能(EA),然后确定所需的极化电场以辅助受主以期望的概率被激活,然后为层60选择适合的组分。鉴于透明性以及压电极化对自发极化的建设性贡献的优点,层60的带隙宽度(或者就AlGaN而言,取决于其Al组分)优选地等于或者大于p-AlGaN结构50、MQW有源区40和N-AlGaN结构30的带隙宽度。
根据图6A、图6B和图7,图5中示出的LED结构可以制成LED器件。如图6A所示,蚀刻出台面以暴露出N-AlGaN结构30,并且由金属层制成的n-欧姆接触801形成在N-AlGaN结构30上。N-欧姆接触801可以由非常薄的金属层堆叠而制成,例如可以由层厚度分别为30-40/70-80/10-20/80-100nm(例如35/75/15/90nm)的钛/铝/钛/金(Ti/Al/Ti/Au))制成。如图6A所示,n-欧姆接触801优选地形成在重度n型掺杂N+-AlGaN层33上。形成在n-欧姆接触801上的是由金属层制成的n-接触焊盘80,该n-接触焊盘可以由厚(2-5μm)金层制成。形成在空穴供给和p-接触层60上的是p-欧姆接触701。如先前解释的,由于层60的表面具有简并空穴气,因此可以使用高功函数金属以及低功函数金属来形成p-欧姆接触701。例如,接触701可以由厚度为2-20nm的薄Ni层,或者厚度为2-20nm的薄Pd层(Pd可以具有高达40%的UVC反射率),或者厚度为2-20nm的薄Pt层或者厚度为2-20nm的薄Rh层(Rh可以具有高达65%的UVC反射率),或者厚度为2-20nm的薄W层,或者厚度为2-20nm的薄Os层,或者它们的任意组合制成。
在一些实施例中,如图6A所示,接触701覆盖层60的完整表面区域。在一些其它实施例中,接触701不覆盖层60的完整表面区域。如图6B和图6C所示,p-欧姆接触701覆盖层60的部分表面区域,并且透明介电层703覆盖层60的剩余表面区域。接触701和透明介电层703形成指状组合型(interdigital)或者互连的二维网络,或者接触701和透明介电层703可以形成二维晶格结构。图6C示出了两种示例性的接触701和透明介电层703的面内布置。在一个实施例中,接触701和透明介电层703为带形且交替、并行布置。在另一实施例中,孤岛状的接触701被连续的透明介电层703围住。接触701和透明介电层703的表面积比的布置是为了优化器件的电光转化效率,或者等价地,优化器件的光提取效率与其工作电压的倒数的乘积。透明介电层703可以由UV透明低折射率材料制成,诸如气隙、SiO2、AlF3、CaF2、和MgF2等制成。具体地,这样形成气隙。首先,用一些诸如光致抗蚀剂的有机溶剂可溶性材料(表示成703’)将待形成气隙的地方密封。在接触701和溶剂可溶性材料703’的顶部形成UV反射器702之后,采用有机溶剂去除可溶性材料,从而形成由UV反射器702、接触701和层60包围的气隙,如图6B所示。形成在透明介电层703上的UV反射器702构造成具有增强的反射率的全向反射器以便实现更好的UV光提取。透明介电层703可以具有与p-欧姆接触701相同的厚度或者可以更厚。为了获得最佳反射率,透明介电层703的厚度等于或者接近其中,λ是相关光的波长,并且n是光在其中传播的透明介电层703的折射率。此外,透明介电层703也可以是一个多透明介电层的结构,诸如UV分布式布拉格反射器(DBR)。
形成在p-欧姆接触701和透明介电层703上的是UV反射器702。按照其最简单的形式,UV反射器702可以是厚Al层,例如厚度为100-800nm的Al层。可替代地(尽管在图6A、图6B和图7中未明确示出),UV反射器702可以由多层多介电层制成,该多层多介电层形成UV分布式布拉格反射器(DBR)以实现增强的UV反射率。当UV反射器702是UV DBR时,其可以仅形成在透明介电层703上,留下p-欧姆接触701以便用于电注入。最后,p-接触焊盘70(可选地由金制成)覆盖UV反射器702或者被UV反射器702暴露的p-欧姆接触701。
与常规UV LED相比,图6A和图6B中示出的实施例没有UV自吸收。传播至器件的p侧的UV辐射将被p-欧姆接触701和UV反射器702反射回来,并且从衬底10中被提取,从而极大地增强UV光提取效率(LEE)。然而,由于衬底10与模板20之间的界面和在衬底10与空气之间的界面,由于它们之间的折射率的差异较大,仍然具有全内反射(TIR),因此图6A和图6B中示出的实施例在LEE上仍然具有限制。
在图7中示出了另一实施例,在该实施例中的各种层和层组分与图6A和图6B中示出的各种层和层组分非常相似。主要区别在于,在图7中,衬底10被移除,并且模板20被粗糙化而变成模板20’。移除衬底10并且粗糙化模板20可以消除全内反射。因此,图7中示出的实施例具有非常高的光提取效率(LEE),从而确保LEE高达90%。进一步地,利用UV透明隔离层802来防止电短路。隔离层802可以由UV透明低折射率材料制成,诸如SiO2、AlF3、CaF2、和MgF2等材料。虽然图7示出了从量子阱的同一侧接入P和N接触焊盘,但本领域的技术人员应该认识到,若需要,也可以从粗糙化的模板20’的一侧接入N-欧姆接触。
在下文中,将展示使用根据图5中给出的实施例的透明空穴供给和p-接触层60的UVC LED的一些材料/器件特征(与常规UVC LED的一些材料/器件特征平行比较),以显示根据本发明制作的UVC LED的优越性。
根据图5中示出的实施例,通过使用金属有机化学气相沉积(MOCVD)来制作UVCLED晶片。将c面蓝宝石用作衬底(10),用3.5μm厚的AlN充当AlN模板20。N-AlGaN层31由掺杂有Si(2.5×1018cm-3的掺杂程度)的2.5μm厚Al0.58Ga0.42N制成,并且与N-AlGaN层31具有相同组分的N+-AlGaN层33和N--AlGaN层35的厚度分别为200nm和100nm并且分别掺杂有8.5×1018cm-3和3.5×1017cm-3的Si。所使用的MQW 40是一个五对多量子阱,其势垒厚度和Al组分分别为11.0nm和55%,并且势阱厚度和Al组分分别为4.0nm和55%。进一步地,势垒掺杂有3.0×1018cm-3的Si,并且势阱未掺杂。所使用的EBL 51是AlGaN/AlGaN多层结构,该EBL 51由2nm-Al0.76Ga0.24N/0.5nm-Al0.56Ga0.44N/2nm-Al0.76Ga0.24N/1.0nm-Al0.56Ga0.44N/4nm-Al0.76Ga0.24N/1.5nm-Al0.56Ga0.44N/4nm-Al0.76Ga0.24N/2.0nm-Al0.56Ga0.44N/4nm-Al0.76Ga0.24N/2.5nm-Al0.56Ga0.44N/4nm-Al0.76Ga0.24N/3.0nm-Al0.56Ga0.44N/4nm-Al0.76Ga0.24N/3.5nm-Al0.56Ga0.44N/4nm-Al0.76Ga0.24N的层堆叠组成,按照从MQW的最后一层势垒开始的顺序。在EBL 51之后的是空穴扩散结构523,其由5对沟道层52和势垒53组成,该沟道层由0.5nm的GaN制成,势垒53由1.2nm的AlN制成。应该注意,EBL 51和空穴扩散结构523都掺杂有Mg,预期掺杂程度为2.5×1020cm-3。然而,由于III族氮化物中Mg掺杂的表面偏析效应,所得到的Mg掺杂程度可能与预期掺杂程度不同。在掺杂开始时,真实的Mg掺杂程度可能非常小(大约5*1018cm-3),并且可能会缓慢上升到某些较大的值(大约5*1019cm-3)。形成在空穴扩散结构523上的是6nm厚的重度Mg掺杂的AlN层,该AlN层充当透明空穴供给和p-接触层60。对于某些应用,具有真实Mg浓度等于或者高于1.0×1020cm-3的层60才具有实际重要性。在本样本中,通过掺杂分布测量测得的层60中的Mg浓度为2.0×1020cm-3
用一些材料表征方法来实施晶片。在晶片的表面附近拍摄透射电子显微镜(TEM)图像并且在图8中示出。如图所示,形成在厚N-AlGaN结构30上的是5周期MQW40,其势垒/阱厚度分别为11.4和3.9nm。形成在MQW 40上的EBL 51是AlGaN多层结构,随后是空穴扩散结构523(由于其超薄的厚度,TEM分辨率无法区分沟道层52和势垒53)。p型AlGaN结构50,包括EBL 51和空穴扩散结构523,的总厚度总计为50nm。形成在空穴扩散结构523上的是重度Mg掺杂的p型AlN层,其充当透明空穴供给和p-接触层60,本处其厚度为6nm。
在TEM测量期间,还通过能谱仪(EDS)记录了不同元素(C、Al、Ga、N)的组分深度分布,并且在图9中绘制了结果。应该注意,EDS只能区分原子百分比大于1%的元素,因此图9中缺少了诸如Mg和Si的掺杂剂分布。在样本表面处检测到的强碳信号由在TEM样本制备中使用的导电胶引起,因此可以使用碳分布曲线来识别样本表面,如图9所标记的。如可以看到的,在表面和表面以下约6nm处仅检测到Al和N信号。该层与透明空穴供给和p-接触层60对应。在层60之下,Al、Ga和N信号全部被检测到,其中,Al信号峰与Ga信号谷对应,反之亦然,从而显示了p-AlGaN结构50和MQW 40的多AlGaN层结构。
针对如根据图5中示出的实施例制作的,具有透明空穴供给和p-接触层60的UVCLED晶片记录了光透射谱,所述透射谱呈现在图10中,并标记为“透明UVC LED”,以便与使用200nm厚的p-GaN作为p-接触层的常规UVC LED晶片的(标记为“不透明UVC LED”)透射光谱相比较。如所看到的,对于常规UVC LED晶片,存在两处吸收截止,一个在与p-GaN的吸收边缘对应的~365nm处,另一个在与N-AlGaN的吸收边缘对应的~262nm处。位于MQW(40)下方的N-AlGaN(30)用于电子供应和n-欧姆接触形成。因为p-GaN将吸收波长小于365nm的光,因此由MQW辐射的波长范围为265-280nm的UVC光将被p-GaN吸收,从而严格限制了常规UVCLED的光提取。与之形成鲜明对比的是,采用透明空穴供给和p-接触层60的透明UVC LED对265-280nm的波长仅有较少吸收,并且实际上对280nm及以上的波长没有吸收,从而极大地改善了UVC LED的LEE。
通过快速电致发光(QEL)测量评估透明UVC LED的电特性和辐射特性。对于QEL测量,直径为0.5mm的铟(In)点形成在作为p-接触的晶片表面(层60)上,并且较大面积(~1cm2)的铟膜被焊接并扩散至晶片边缘,充当n-接触。图11中绘制了在不同的正向电流下的EL光谱,在266nm处显示了纯净且强烈的UVC辐射。应该注意,即使铟-点接触并不UV反射,但来自透明UVC LED晶片的晶片上铟-点测试的UVC光功率是来自常规不透明UVC LED晶片的UVC光功率的2倍以上。进一步地,如图12所示,即使在80mA的正向电流(电流密度~40A/cm2)下,来自透明UVC LED的光功率也非常稳定。光功率在80mA下在超过30小时的持续时间内几乎保持不变。反之,即使在40mA的较小电流(电流密度~20A/cm2)下,来自常规不透明UVC LED的光功率在晶片上铟-点测试下也是衰减的。衰减机制被推测为来自常规UVC LED中使用的p-GaN接触层的衰减,由于p-AlGaN结构50与p-GaN接触层之间的较大的晶格失配(>1.1%)而引起的许多位错,使得该p-GaN接触层的晶体质量较差。
在图13中比较了透明UVC LED和常规UVC LED的晶片上铟-点电流-电压特征。如所看到的,针对透明UVC LED测得20mA下的7.6V的电压,该电压小于针对常规UVC LED测得的20mA下的电压(8.9V)。这证明根据本发明制作的透明空穴供给和p-接触层60传导性高并且适合于空穴供给和p型接触形成。从我们的校准中应该注意的是,具有真空沉积和退火欧姆接触的真实LED的电压将比QEL铟-点测试电压的电压小至少2.5伏。
还在层60上对层60的电阻率进行直接测量。对于该测量,除了顶层60由1nm厚的,而非6nm厚的重度Mg掺杂(2.0×1020cm-3)的AlN制成之外,晶片结构与上述的晶片结构相同。如图14所示,15nm厚的Pd金属层沉积在层60上,从而形成同心圆形接触焊盘,其中,内部接触焊盘的半径为r1=100μm,并且圆形间隙分离为10μm(即,r2=110μm)。接触焊盘通过沉积而成,不进行任何后续退火。同样在图14中示出的是通过偏置两个同心圆形接触焊盘而测得的电流-电压(IV)特征曲线。如所看到的,参照线性IV曲线,沉积的金属Pd与层60形成良好的欧姆接触。由于Pd具有~5.2eV的功函数,因此推测功函数大于5.2eV的任何金属将与空穴供给和p-接触层60形成欧姆接触,无需沉积后的退火。这些金属包括Pd(钯)、Pt(铂)和Os(锇)等。
层60的电阻率(ρ)估计为如下。
两个焊盘之间的电压降V12经由以下公式与导电性(σ)和电场(E)有关:其中,j、I和t分别是层60的电流密度、电流和厚度。由于IV曲线呈线性,并且0.2mA处的电压是7.8V,因此计算得到的电阻率是ρ=(1/σ)=0.257Ωcm。由于金属-半导体接触电阻率也被包括进来作为层60的体电阻率,因此该计算高估了层60的电阻率。在任何情况下,0.257Ωcm的电阻率已经非常小。如果假设空穴的迁移率为4cm2/v.s,则空穴浓度为6.0×1018cm-3。作为参考,常规p型GaN的电阻率约为1.0Ωcm。
图15比较了根据本发明的实施例的两个不同的架构UV LED的UV光功率值。如所看到的,来自其中一个完全封装的(不具有透镜)的常规不透明UVC LED的测得功率是在350mA下为77mW。并且通过模拟效率曲线对其内部量子效率(IQE)和LEE进行解码,分别得到在350mA(J~40A/cm2)下为80%和6%。按照常规UVC LED 80%的IQE,使用图7中示出的架构的透明UVC LED可以具有不低于80%的预期LEE,从而确保传送给UVC的光功率在350mA下不低于1031mW。
总之,QEL晶片上测试表明,根据本发明的结合透明空穴供给和p-接触层60的UVCLED具有较高的光输出和外部量子效率以及优异的电流-电压特征和器件可靠性。
本发明已经将UV LED用作示例性实施例。应该注意,透明空穴供给和p-接触层60还可以用于其它光学器件,诸如激光二极管和光电探测器。在激光二极管和光电探测器以及LED的情况下,层60的应用可以极大地改善这些光学器件的外部量子效率,这是由于不存在UV吸收p型层(p-GaN、p-InGaN和低Al含量p-AlGaN)。
上述层60也可以应用在光电探测器中,诸如UV光电探测器中。光电探测器和LED的主要区别在于其有源区。LED的有源区通常由MQW制成,用于限制电子和空穴以增强辐射复合率,而光电探测器的有源区是光吸收厚半导体层,用于生成光子诱导的电子和空穴,该电子和空穴被PN结的反向偏置分开以生成用于光子探测的光电流。
图16中示出了根据本发明的一个实施例的使用透明空穴供给和p-接触层60的光电探测器的示意性层结构。如所看到的,光电探测器可以形成在高质量模板层或者窗口层20上,模板层或窗口层继而可以形成在衬底10上。对于日盲型应用,衬底10可以是蓝宝石或者AlN晶片,模板层20可以是AlN层或者AlGaN层,具有足够高的Al组分以确保UV光透射到光吸收层40’(光电探测器的有源区),该光吸收层可以由厚度为100-500nm,诸如200-300nm,的本征AlGaN制成。光吸收层40’的厚度被布置为使得能够吸收足够的光子并且生成光电流。实际上,窗口层20的Al组分可以比光吸收层40’的Al组分多出至少20%,或者30%,或者50%。例如,窗口层20的Al组分可以在0.6-1.0的范围内,而光吸收层40’的Al组分为0.46,用于280nm及更短波长的探测。N-AlGaN结构30可以是对目标探测波长透明的Si掺杂AlGaN层,其Al组分在0.5-0.7的范围内。对于280nm和更短波长的日盲探测,用于光吸收层40’的本征AlGaN材料的目标Al组分不小于0.46(此处通过假定GaN和AlN带隙能分别为3.42和6.2eV,并且AlGaN带隙能的弯曲参数为-1而计算得到),例如0.46至1.0或者0.47至0.55。形成在光吸收层40’上的是p-AlGaN结构50,该p-AlGaN结构可以是Al组分大于或者等于N-AlGaN结构30的Al组分的p型AlGaN层。N-AlGaN结构30和p-AlGaN结构50也可以与在UV LED结构(诸如图5所示)中找到的对应物相同或者相似。形成在p-AlGaN结构50上的是根据本发明的先前描述的实施例制作的空穴供给和p-接触层60。虽然在图16中未示出,但可以在层60上制作反射p-接触,与UV LED实施例(图6A、图6B和图7)中示出的类似。空穴供给和p-接触层60以及反射p-接触的应用允许光子在光吸收层40’中具有增加的吸收率,从而导致光子响应度和外部量子效率增加。
尽管使用示例性实施例对本发明进行了描述,然而应理解,本发明的范围不限于所公开的实施例。相反,本发明旨在涵盖本领域技术人员在没有创造性劳动或无需过度试验就能得到的各种改进和类似结构或等同物。因此,权利要求的范围应符合最广泛的解释,以便涵盖所有这些改进和类似结构或等同物。

Claims (16)

1.一种用于发光器件或光电探测器的空穴供给和p-接触结构,包括:
p型III族氮化物结构;以及
空穴供给和p-接触层,在所述p型III族氮化物结构上形成,并且处于双轴面内张应力应变下,所述空穴供给和p-接触层由含Al的III族氮化物制成,
其中,所述空穴供给和p-接触层的厚度在0.6-10nm的范围内,并且所述p型III族氮化物结构形成在所述发光器件或者光电探测器的有源区上。
2.根据权利要求1所述的空穴供给和p-接触结构,其中,所述空穴供给和p-接触层的受主激活能在0.1至0.5eV的范围内,并且所述空穴供给和p-接触层中的极化感应电场在3×105V/cm至3×107V/cm的范围内;可选地,所述空穴供给和p-接触层的室温受主激活率大于1%。
3.根据权利要求1所述的空穴供给和p-接触结构,其中,所述空穴供给和p-接触层由AlxGa1-xN制成,0.7≤x≤1;可选地,所述空穴供给和p-接触层全应变地形成在所述p型III族氮化物结构上;可选地,所述空穴供给和p-接触层由AlN制成。
4.根据权利要求1所述的空穴供给和p-接触结构,其中,所述空穴供给和p-接触层具有比所述p型III族氮化物结构的Al组分更高的Al组分。
5.根据权利要求1所述的空穴供给和p-接触结构,其中,所述空穴供给和p-接触层掺杂有浓度为1.0×1020cm-3至1.0×1021cm-3的Mg。
6.根据权利要求1所述的空穴供给和p-接触结构,其中,所述空穴供给和p-接触层可以与低功函数金属形成欧姆接触。
7.一种发光二极管,包括:
n型AlGaN结构;
p型AlGaN结构;
多量子阱有源区,其夹设在所述n型AlGaN结构与所述p型AlGaN结构之间;以及
空穴供给和p-接触层,在所述p型AlGaN结构上形成,由含Al的III族氮化物制成,
其中,所述空穴供给和p-接触层具有比所述p型AlGaN结构、多量子阱有源区和n型AlGaN结构的Al组分更高的Al组分,并且厚度为0.6nm到10nm。
8.根据权利要求7所述的发光二极管,其中,所述空穴供给和p-接触层由c面AlxGa1-xN制成,0.7≤x≤1;可选地,所述空穴供给和p-接触层掺杂有浓度为1.0×1020cm-3至1.0×1021cm-3的Mg。
9.根据权利要求7所述的发光二极管,其中,所述p型AlGaN结构包括:
空穴注入和电子阻挡层,与所述多量子阱有源区接触;
第一沟道层,形成在所述空穴注入和电子阻挡层上;
p型势垒,形成在第一沟道层上;以及
第二沟道层,形成在p型势垒上,
其中,所述空穴供给和p-接触层形成在所述第二沟道层上。
10.根据权利要求9所述的发光二极管,其中,所述第一和第二沟道层分别由p型AlyGa1- yN制成,0≤y≤0.1,并且厚度分别在0.5-1.5nm的范围内。
11.根据权利要求9所述的发光二极管,其中,所述p型势垒由p型AlN制成,并且厚度在1-3nm的范围内。
12.根据权利要求9所述的发光二极管,其中,所述p型AlGaN结构包括多对交替堆叠的p型势垒和第一沟道层。
13.根据权利要求9所述的发光二极管,其中,所述空穴注入和电子阻挡层为p型AlGaN层,或者p型AlGaN超晶格结构,或者p型AlGaN多层结构。
14.根据权利要求7所述的发光二极管,还包括形成在所述空穴供给和p-接触层上的p-欧姆接触,与所述空穴供给和p-接触层形成欧姆接触;可选地,所述p-欧姆接触由选自Pd,Pt,Rh和Os的金属或者金属合金制成。
15.根据权利要求14所述的发光二极管,还包括透明介电层,其与所述p-欧姆接触并排形成在所述空穴供给和p-接触层上。
16.一种UV光电探测器,包括:
n型AlGaN结构;
p型AlGaN结构;
光吸收层,其夹设在所述n型AlGaN结构与所述p型AlGaN结构之间;以及
空穴供给和p-接触层,在所述p型AlGaN结构上形成,由含Al的III族氮化物制成,
其中,所述空穴供给和p-接触层的厚度为0.6nm到10nm。
CN201810657741.5A 2017-10-18 2018-06-25 极化电场辅助的空穴供给和p型接触结构、使用该结构的发光器件和光电探测器 Active CN109686822B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762574083P 2017-10-18 2017-10-18
US62/574,083 2017-10-18
US15/813,082 US10276746B1 (en) 2017-10-18 2017-11-14 Polarization electric field assisted hole supplier and p-type contact structure, light emitting device and photodetector using the same
US15/813,082 2017-11-14

Publications (2)

Publication Number Publication Date
CN109686822A true CN109686822A (zh) 2019-04-26
CN109686822B CN109686822B (zh) 2021-09-03

Family

ID=66096151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810657741.5A Active CN109686822B (zh) 2017-10-18 2018-06-25 极化电场辅助的空穴供给和p型接触结构、使用该结构的发光器件和光电探测器

Country Status (2)

Country Link
US (1) US10276746B1 (zh)
CN (1) CN109686822B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681958A (zh) * 2020-05-29 2020-09-18 华南理工大学 一种新型异质结构镁扩散制备常关型hemt器件的方法
CN111769187A (zh) * 2020-07-31 2020-10-13 佛山紫熙慧众科技有限公司 一种紫外led芯片结构
CN111785797A (zh) * 2020-08-11 2020-10-16 中国科学院长春光学精密机械与物理研究所 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法
CN113823722A (zh) * 2020-06-18 2021-12-21 丰田合成株式会社 发光元件及其制造方法
CN114207845A (zh) * 2019-07-15 2022-03-18 Slt科技公司 功率光电二极管结构、制造方法和使用方法
KR102663685B1 (ko) 2019-07-15 2024-05-10 에스엘티 테크놀로지스 인코포레이티드 파워 포토다이오드 구조, 제조 방법, 및 사용 방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6636459B2 (ja) 2014-05-27 2020-01-29 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd 半導体構造と超格子とを用いた高度電子デバイス
DE102017119931A1 (de) * 2017-08-30 2019-02-28 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
WO2019193487A1 (en) 2018-04-06 2019-10-10 Silanna UV Technologies Pte Ltd Semiconductor structure with chirp layer
US20200035862A1 (en) * 2018-07-26 2020-01-30 Bolb Inc. Light-emitting device with optical power readout
US11569398B2 (en) 2019-07-15 2023-01-31 SLT Technologies, Inc Power photodiode structures and devices
US11575055B2 (en) 2019-07-15 2023-02-07 SLT Technologies, Inc Methods for coupling of optical fibers to a power photodiode
GB201910788D0 (en) * 2019-07-29 2019-09-11 Univ Oxford Innovation Ltd Improving hole mobility in electronic devices
EP3772105A1 (en) * 2019-07-30 2021-02-03 Bolb Inc. Light-emitting device with optical power readout
US11322647B2 (en) 2020-05-01 2022-05-03 Silanna UV Technologies Pte Ltd Buried contact layer for UV emitting device
JP7469150B2 (ja) 2020-06-18 2024-04-16 豊田合成株式会社 発光素子
CN111599902B (zh) * 2020-06-23 2022-02-11 东南大学 一种具有空穴注入结构电子阻挡层的发光二极管
WO2023038129A1 (ja) * 2021-09-09 2023-03-16 国立大学法人三重大学 Iii族窒化物発光デバイス、iii族窒化物エピタキシャルウエハ、iii族窒化物発光デバイスを作製する方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090236586A1 (en) * 2006-08-15 2009-09-24 Institute of Physics, Chinese Academy of Science Epitaxial material used for gan based led with low polarization effect and manufacturing method thereof
CN103035706A (zh) * 2013-01-04 2013-04-10 电子科技大学 一种带有极化掺杂电流阻挡层的垂直氮化镓基异质结场效应晶体管
US20140138618A1 (en) * 2012-11-19 2014-05-22 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9401455B1 (en) * 2015-12-17 2016-07-26 Bolb Inc. Ultraviolet light-emitting device with lateral tunnel junctions for hole injection
CN105895759A (zh) * 2016-06-24 2016-08-24 太原理工大学 一种duv led外延片结构
US20170117438A1 (en) * 2015-10-23 2017-04-27 Sensor Electronic Technology, Inc. Optoelectronic Device with a Nanowire Semiconductor Layer
CN106784210A (zh) * 2016-11-24 2017-05-31 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制作方法
US20170263814A1 (en) * 2016-03-08 2017-09-14 Genesis Photonics Inc. Semiconductor structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831277A (en) 1997-03-19 1998-11-03 Northwestern University III-nitride superlattice structures
JP3642157B2 (ja) 1997-05-26 2005-04-27 ソニー株式会社 p型III族ナイトライド化合物半導体、発光ダイオードおよび半導体レーザ
EP2507820B1 (en) 2009-12-04 2016-06-01 Sensor Electronic Technology, Inc. Semiconductor material doping
WO2012174367A2 (en) * 2011-06-15 2012-12-20 Sensor Electronic Technology, Inc. Device with inverted large scale light extraction structures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090236586A1 (en) * 2006-08-15 2009-09-24 Institute of Physics, Chinese Academy of Science Epitaxial material used for gan based led with low polarization effect and manufacturing method thereof
US20140138618A1 (en) * 2012-11-19 2014-05-22 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
CN103035706A (zh) * 2013-01-04 2013-04-10 电子科技大学 一种带有极化掺杂电流阻挡层的垂直氮化镓基异质结场效应晶体管
US20170117438A1 (en) * 2015-10-23 2017-04-27 Sensor Electronic Technology, Inc. Optoelectronic Device with a Nanowire Semiconductor Layer
US9401455B1 (en) * 2015-12-17 2016-07-26 Bolb Inc. Ultraviolet light-emitting device with lateral tunnel junctions for hole injection
US20170263814A1 (en) * 2016-03-08 2017-09-14 Genesis Photonics Inc. Semiconductor structure
CN105895759A (zh) * 2016-06-24 2016-08-24 太原理工大学 一种duv led外延片结构
CN106784210A (zh) * 2016-11-24 2017-05-31 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制作方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207845A (zh) * 2019-07-15 2022-03-18 Slt科技公司 功率光电二极管结构、制造方法和使用方法
KR102663685B1 (ko) 2019-07-15 2024-05-10 에스엘티 테크놀로지스 인코포레이티드 파워 포토다이오드 구조, 제조 방법, 및 사용 방법
CN111681958A (zh) * 2020-05-29 2020-09-18 华南理工大学 一种新型异质结构镁扩散制备常关型hemt器件的方法
CN113823722A (zh) * 2020-06-18 2021-12-21 丰田合成株式会社 发光元件及其制造方法
CN111769187A (zh) * 2020-07-31 2020-10-13 佛山紫熙慧众科技有限公司 一种紫外led芯片结构
CN111785797A (zh) * 2020-08-11 2020-10-16 中国科学院长春光学精密机械与物理研究所 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法
CN111785797B (zh) * 2020-08-11 2021-05-18 中国科学院长春光学精密机械与物理研究所 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法

Also Published As

Publication number Publication date
US10276746B1 (en) 2019-04-30
CN109686822B (zh) 2021-09-03
US20190115497A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
CN109686822A (zh) 极化电场辅助的空穴供给和p型接触结构、使用该结构的发光器件和光电探测器
USRE48943E1 (en) Group III nitride heterostructure for optoelectronic device
JP6896708B2 (ja) 2次元正孔ガスを組み込んだ紫外線発光デバイス
US10347790B2 (en) Group III-V nitride-based light emitting devices having multilayered P-type contacts
US8993996B2 (en) Superlattice structure
US9412901B2 (en) Superlattice structure
US20150280057A1 (en) Methods of forming planar contacts to pseudomorphic electronic and optoelectronic devices
KR102587949B1 (ko) 질화물 기반의 발광 장치에서 정공 주입을 위한 이종 터널링 접합
JP7262965B2 (ja) 半導体発光素子
Jang et al. Improved performance of GaN-based blue LEDs with the InGaN insertion layer between the MQW active layer and the n-GaN cladding layer
US20080078439A1 (en) Polarization-induced tunnel junction
US20210143298A1 (en) Semiconductor-metal contacts with spontaneous and induced piezoelectric polarization
US7238972B2 (en) Photodetector
US20190103509A1 (en) Semiconductor Heterostructure with P-type Superlattice
CN111341876B (zh) 光输出功率自感知发光器件
US9331237B2 (en) Semiconductor light emitting device, including a plurality of barrier layers and a plurality of well layers, and method for manufacturing the same
US11978824B2 (en) Buried contact layer for UV emitting device
KR100751632B1 (ko) 발광 소자
US9768349B2 (en) Superlattice structure
EP3699964B1 (en) Polarization electric field assisted hole supplier and p-type contact structure, light emitting device and photodetector using the same
US11784280B2 (en) Optoelectronic device with reduced optical loss
WO2013138571A1 (en) Superlattice structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant