CN109686576A - 一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法 - Google Patents

一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法 Download PDF

Info

Publication number
CN109686576A
CN109686576A CN201811529224.6A CN201811529224A CN109686576A CN 109686576 A CN109686576 A CN 109686576A CN 201811529224 A CN201811529224 A CN 201811529224A CN 109686576 A CN109686576 A CN 109686576A
Authority
CN
China
Prior art keywords
mos
dimensional
fiber
compound porous
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811529224.6A
Other languages
English (en)
Inventor
程博闻
鞠敬鸽
康卫民
吕仪
邓南平
王利媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201811529224.6A priority Critical patent/CN109686576A/zh
Publication of CN109686576A publication Critical patent/CN109686576A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法,该方法包括以下步骤:(1)反应液的配置:通过搅拌及超声等方式,将三维多孔碳纳米纤维基体材料均匀分散于蒸馏水中,并按一定比例加入一定质量的钼酸铵和硫脲,制得反应液;(2)水热合成三维MoS2@C复合多孔纤维:将反应液转入水热反应釜中,钼酸铵和硫脲反应生成具有片状纳米花球结构的MoS2,并均匀填充生长在三维多孔碳纳米纤维骨架上,再经多次水洗、无水乙醇洗以及抽滤、真空烘干后,获得了三维MoS2@C复合多孔纤维。本发明制得的MoS2@C复合多孔纤维,三维多孔碳纳米纤维骨架有效的提高了MoS2的导电性,避免了MoS2循环过程中体积膨胀造成的结构坍塌,且制备方法操作简便、可控性与重复性好,易于规模化生产。

Description

一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制 备方法
技术领域
本发明涉及一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法,特别是提供一种简单易行、环境友好型、可量产的在具有通孔结构的三维碳纳米纤维基体上生长片状纳米花球结构的MoS2的制备方法,且制得复合纤维具有三维结构、比表面积大、材料之间结合能力强、稳定性好等优势。
技术背景
全球变暖和化石燃料的日益枯竭迫使人们大力发展可持续和可再生能源,太阳能和风能作为最有前景的能源而引起了广泛关注。然而,太阳能在夜晚不能工作,风能也具有不确定性,因此电化学储能装置在实际应用中尤为重要。具有较高能量密度(150-200W hkg-1)的锂离子电池(Lithiumion Batteries,LIBs) 以及具有高功率密度(>10kW kg-1)和长循环寿命(104-105循环)的电化学容器(Electrochemical Capacitors,ECs)引起了广泛关注。但LIBs的功率密度较低(<1000W kg-1)、循环稳定性较差(<1000times),ECs能量密度较低(<10W h kg-1),因此迫切需求一种类似LIBs具有高能量密度且类似ECs具有高功率密度和长循环寿命的一种理想的能量储存装置。
锂离子电容器(也称为锂离子混合超级电容器Lithium-ion Capacitors,LICs)一般由高能量LIB负极、高功率的EC正极与锂盐电解质构成,其成功结合了电池和电容器能量储存机制的优点,具有比LIBs更高的功率密度、更长的循环寿命以及比SCs更高的能量密度,被认为是最有前景的能量存储器件之一。
二硫化钼(MoS2)是一种层状结构的金属硫化物,因其较高的理论比容量 (669-1675mAh g-1)在电极材料领域均表现出优越的应用前景。然而,MoS2的电子导电率较低、循环性能与倍率性能较差,限制了其应用。而碳基材料具有高比表面积、高电子传导率等优势,将两者相结合有望获得兼具MoS2电极材料的高容量并具有碳基材料的稳定性、导电性的复合材料。许多学者(Chaonan Wang,Dasen Ren,Ho Seok Park,Zegang Dong,YinyeYang,Qingwei Ren,XuYu. Electron-spun 2D MoS2-decorated carbon nanofibers aspseudocapacitive electrode material into lithium ion battery[J].Journal ofAlloys and Compounds,2017,728: 767-772.Chen Chen,Guoqing Li,Yao Lu,JiadengZhu,Mengjin Jiang,Yi Hu, Linyou Cao,Xiangwu Zhang.Chemical vapor depositedMoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries[J]. Electrochimica Acta,2016,222:1751-1760.Xiaoqin Xiong,Wei Luo,Xianluo Hu, Chaoji Chen,Long Qie,Dongfang Hou,Yunhui Huang.Flexible Membranes of MoS2/C Nanofibers by Electrospinning asBinder-Free Anodes for High-Performance Sodium-Ion Batteries[J].ScientificReports,2015,5:9254.)已成功利用碳纳米纤维负载MoS2并应用于LIB、钠离子电池中,缓冲了MoS2的体积变化,有效地增强了电化学性能,但碳纳米纤维孔隙较少,难以负载高含量的MoS2。Wang等 (Rutao Wang,Shijie Wang,Dongdong Jin,Yabin Zhang,Yaojun Cai,Jianmin Ma, Li Zhang.Engineering layer structure of MoS2-graphene compositeswith robust and fast lithium storage for high-performance Li-ion capacitors[J].Energy Storage Materials,2017,9:195-205)设计制备了MoS2/石墨烯复合材料,并将其作为负极构建了具有优异电化学性能的锂离子电容器,但石墨烯成本较高,难以实现大规模生产。多孔碳纳米纤维是一种具有丰富孔隙的一维纳米碳材料,具有比碳纳米纤维更丰富的孔隙与更大的表面积,申请人在前期授权专利(中国发明专利CN105161722A)的基础上,将制备的多级孔碳纳米纤维作为MoS2的优良载体材料,为高性能LIC负极材料的开发提供一种新思路。
发明内容
本发明的目的是提供一种能够连续制备三维MoS2@C复合多孔纤维的方法,使用三维多孔碳纳米纤维作为碳基体,通过水热法将MoS2片状纳米花球生长于三维碳纳米纤维骨架上,且制备方法与常规方法相比操作简便、可控性与重复性好,易于规模化生产。采用本发明制备的三维MoS2@C复合多孔纤维,长径比大,表面及内部含有大量孔洞,MoS2均匀分布,三维多孔碳纳米纤维的引入避免了MoS2循环过程中体积膨胀造成的结构坍塌,有效地改善了倍率性能与循环稳定性。
本发明所提供的一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法,包括如下步骤:
(1)反应液的配置
通过搅拌及超声等方式,将三维多孔碳纳米纤维基体材料均匀分散于蒸馏水中,并按一定比例加入一定质量的钼酸铵和硫脲,制得反应液;
(2)水热合成三维MoS2@C复合多孔纤维
将反应液转入水热反应釜中,钼酸铵和硫脲反应生成具有片状纳米花球结构的MoS2,并均匀填充生长在三维多孔碳纳米纤维骨架上,再经多次水洗、无水乙醇洗以及抽滤、真空烘干后,获得了三维MoS2@C复合多孔纤维。
优选的,步骤(2)的具体过程为:将三维多孔碳纳米纤维基体材料通过搅拌或超声方式均匀分散于蒸馏水中,以钼酸铵∶三维多孔碳纳米纤维基体材料摩尔比为1∶1-6∶1加入钼酸铵,并以钼酸铵∶硫脲摩尔比为1∶28加入硫脲,置入水热反应釜中,控制水热反应温度为180-240℃,水热反应时间为2-24h,经抽滤、水洗、乙醇洗,去掉表面多余杂质,真空烘干后,获得了三维MoS2@C复合多孔纤维,且所述MoS2为片状纳米花球结构的MoS2,均匀填充于三维多孔碳纳米纤维的通孔结构中,被多孔碳纳米纤维骨架包裹,形成纤维结构。
图文简单描述
图1是制备MoS2@C复合多孔纤维的原理图
图2是MoS2@C复合多孔纤维高倍扫描电镜图片
图3是MoS2@C复合多孔纤维高倍透射电镜图片
图4是MoS2@C复合多孔纤维低倍扫描电镜图片
图5是MoS2@C复合多孔纤维低倍透射电镜图片
图6是MoS2@C复合多孔纤维元素分布图片
具体实施方式
下面通过具体实施方式,对本发明的实现方法进行详细阐述。
实施例1
本发明首先以本课题组已申请的发明专利:一种锂硫电池正极材料用多孔碳纳米纤维膜及其制备方法(CN105161722A)为基础,制备三维多孔碳纳米纤维基体材料。
通过搅拌及超声等方式,将三维多孔碳纳米纤维基体材料均匀分散于蒸馏水中,以钼酸铵∶三维多孔碳纳米纤维基体材料摩尔比为4∶1加入钼酸铵,并以钼酸铵∶硫脲摩尔比为1∶28加入硫脲,制得反应液,并转入水热反应釜中,控制水热反应温度为200℃,水热反应时间为6h,经抽滤、水洗、乙醇洗,去掉表面多余杂质,真空烘干后,获得了三维MoS2@C复合多孔纤维,其比表面积为 81.67m2g-1,导电率为22.32S cm-1,嵌锂后作为负极组装为锂离子电容器,在功率密度为0.075kW kg-1时能量密度可达75.5Wh kg-1,5000次循环后容量保持率为~78.0%。
实施例2
本发明首先以本课题组已申请的发明专利:一种锂硫电池正极材料用多孔碳纳米纤维膜及其制备方法(CN105161722A)为基础,制备三维多孔碳纳米纤维基体材料。
通过搅拌及超声等方式,将三维多孔碳纳米纤维基体材料均匀分散于蒸馏水中,以钼酸铵∶三维多孔碳纳米纤维基体材料摩尔比为2∶1加入钼酸铵,并以钼酸铵∶硫脲摩尔比为1∶28加入硫脲,制得反应液,并转入水热反应釜中,控制水热反应温度为180℃,水热反应时间为4h,经抽滤、水洗、乙醇洗,去掉表面多余杂质,真空烘干后,获得了三维MoS2@C复合多孔纤维,其比表面积为 155.26m2g-1,导电率为32.05S cm-1,嵌锂后作为负极组装为锂离子电容器,在功率密度为0.075kW kg-1时能量密度达55.7Wh kg-1,5000次循环后容量保持率为~87.2%。
实施例3
本发明首先以本课题组已申请的发明专利:一种锂硫电池正极材料用多孔碳纳米纤维膜及其制备方法(CN105161722A)为基础,制备三维多孔碳纳米纤维基体材料。
通过搅拌及超声等方式,将三维多孔碳纳米纤维基体材料均匀分散于蒸馏水中,以钼酸铵∶三维多孔碳纳米纤维基体材料摩尔比为5∶1加入钼酸铵,并以钼酸铵∶硫脲摩尔比为1∶28加入硫脲,制得反应液,并转入水热反应釜中,控制水热反应温度为240℃,水热反应时间为12h,经抽滤、水洗、乙醇洗,去掉表面多余杂质,真空烘干后,获得了三维MoS2@C复合多孔纤维,其比表面积为69.23m2g-1,导电率为12.79S cm-1,嵌锂后作为负极组装为锂离子电容器,在功率密度为0.075kW kg-1时能量密度可达82.3Wh kg-1,5000次循环后容量保持率为~69.8%。

Claims (4)

1.一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法,其特征包括以下步骤:
(1)反应液的配置
通过搅拌及超声等方式,将三维多孔碳纳米纤维基体材料均匀分散于蒸馏水中,并按一定比例加入一定质量的钼酸铵和硫脲,制得反应液;
(2)水热合成三维MoS2@C复合多孔纤维
将反应液转入水热反应釜中,钼酸铵和硫脲反应生成具有片状纳米花球结构的MoS2,并均匀填充生长在三维多孔碳纳米纤维骨架上,再经多次水洗、无水乙醇洗以及抽滤、真空烘干后,获得了三维MoS2@C复合多孔纤维。
2.根据权利要求1所述的三维MoS2@C复合多孔纤维制备方法,其特征在于加入钼酸铵和三维多孔碳纳米纤维基体材料的摩尔比为1∶1-6∶1,加入钼酸铵和硫脲的摩尔比为1∶28。
3.根据权利要求1所述的三维MoS2@C复合多孔纤维制备方法,其特征在于水热反应温度为180-240℃,反应时间为2-24h。
4.根据权利要求1所述的三维MoS2@C复合多孔纤维,其特征在于所述MoS2为片状纳米花球结构的MoS2,均匀填充于三维多孔碳纳米纤维的通孔结构中,被多孔碳纳米纤维骨架包裹,形成纤维结构。
CN201811529224.6A 2018-12-11 2018-12-11 一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法 Pending CN109686576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811529224.6A CN109686576A (zh) 2018-12-11 2018-12-11 一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811529224.6A CN109686576A (zh) 2018-12-11 2018-12-11 一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法

Publications (1)

Publication Number Publication Date
CN109686576A true CN109686576A (zh) 2019-04-26

Family

ID=66186634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811529224.6A Pending CN109686576A (zh) 2018-12-11 2018-12-11 一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法

Country Status (1)

Country Link
CN (1) CN109686576A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110787814A (zh) * 2019-11-07 2020-02-14 汕头大学 一种分层中空ZnCdS/MoS2异质结笼及其制备与应用
CN111640587A (zh) * 2020-06-08 2020-09-08 广东黄宝石电子科技有限公司 一种无极性调压大容量电解电容器及其制备方法
CN113451054A (zh) * 2021-06-28 2021-09-28 鹏盛国能(深圳)新能源集团有限公司 一种锂离子电容电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966817A (zh) * 2014-12-01 2015-10-07 天津大学 二硫化钼与碳的三维多孔网络复合材料及制备方法
CN105056983A (zh) * 2015-07-25 2015-11-18 复旦大学 一种二硫化钼纳米片/氮掺杂碳纤维杂化材料及其制备方法
CN105161722A (zh) * 2015-10-16 2015-12-16 天津工业大学 一种锂硫电池正极材料用多孔碳纳米纤维膜及其制备方法
CN105529448A (zh) * 2016-01-22 2016-04-27 西北工业大学 柔性锂离子电池负极材料的制备方法
CN107681142A (zh) * 2017-09-29 2018-02-09 合肥工业大学 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966817A (zh) * 2014-12-01 2015-10-07 天津大学 二硫化钼与碳的三维多孔网络复合材料及制备方法
CN105056983A (zh) * 2015-07-25 2015-11-18 复旦大学 一种二硫化钼纳米片/氮掺杂碳纤维杂化材料及其制备方法
CN105161722A (zh) * 2015-10-16 2015-12-16 天津工业大学 一种锂硫电池正极材料用多孔碳纳米纤维膜及其制备方法
CN105529448A (zh) * 2016-01-22 2016-04-27 西北工业大学 柔性锂离子电池负极材料的制备方法
CN107681142A (zh) * 2017-09-29 2018-02-09 合肥工业大学 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110787814A (zh) * 2019-11-07 2020-02-14 汕头大学 一种分层中空ZnCdS/MoS2异质结笼及其制备与应用
CN110787814B (zh) * 2019-11-07 2022-11-08 汕头大学 一种分层中空ZnCdS/MoS2异质结笼及其制备与应用
CN111640587A (zh) * 2020-06-08 2020-09-08 广东黄宝石电子科技有限公司 一种无极性调压大容量电解电容器及其制备方法
CN113451054A (zh) * 2021-06-28 2021-09-28 鹏盛国能(深圳)新能源集团有限公司 一种锂离子电容电池及其制备方法

Similar Documents

Publication Publication Date Title
Gao et al. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors
Wang et al. 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries
Gao et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries
Wu et al. NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor
Wang et al. Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance
Wang et al. Nitrogen-doped porous carbon derived from ginkgo leaves with remarkable supercapacitance performance
El-Sabban et al. Facile one-pot synthesis of template-free porous sulfur-doped g-C3N4/Bi2S3 nanocomposite as efficient supercapacitor electrode materials
CN104299797A (zh) 一种基于NiCo2S4及其复合材料的水系不对称型超级电容器
CN106057478B (zh) 在泡沫镍表面生成粗糙CuS纳米片阵列的制备方法及其应用
CN105776182A (zh) 一种中空管状生物碳的制备方法及应用
CN104021948B (zh) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
CN109686576A (zh) 一种锂离子电容器负极材料用三维MoS2@C复合多孔纤维的制备方法
CN113517143B (zh) 一种复合电极材料及其制备方法与用途
CN106971860A (zh) 一种MnO2@石墨烯纤维超级电容器电极材料的制备方法
CN109524247A (zh) 3d-石墨烯/泡沫镍及其制备方法和应用
CN105321726B (zh) 高倍率活性炭/活性石墨烯复合电极材料及其制备方法
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
CN109637843A (zh) 一种以芹菜为电极原料制备超级电容器的方法
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Gupta et al. Recent technological advances in designing electrodes and electrolytes for efficient zinc ion hybrid supercapacitors
Bai et al. Rapeseed meal-derived N, S self-codoped porous carbon materials for supercapacitors
CN110444407A (zh) 一种基于金属有机框架核壳多孔硫化镍电极材料的制备方法及其应用
Huang et al. Regulating the pore structure and heteroatom doping of hollow carbon fiber based on a trifunctional template method for high-performance lithium-ion capacitors
Ding et al. Highly porous heteroatom doped-carbon derived from orange peel as electrode materials for high-performance supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190426

WD01 Invention patent application deemed withdrawn after publication