CN109679991A - 一种苯乙醇苷含量提高的转基因植株及生产方法 - Google Patents

一种苯乙醇苷含量提高的转基因植株及生产方法 Download PDF

Info

Publication number
CN109679991A
CN109679991A CN201910048501.XA CN201910048501A CN109679991A CN 109679991 A CN109679991 A CN 109679991A CN 201910048501 A CN201910048501 A CN 201910048501A CN 109679991 A CN109679991 A CN 109679991A
Authority
CN
China
Prior art keywords
gene
plant
transgenic plant
benzyl carbinol
rgpal1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910048501.XA
Other languages
English (en)
Other versions
CN109679991B (zh
Inventor
谢峻
汤宁
谷燕
夏灿
吴永军
李豪
徐祎
陈荣华
张坤灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Teachers College
Original Assignee
Maanshan Teachers College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Teachers College filed Critical Maanshan Teachers College
Priority to CN201910048501.XA priority Critical patent/CN109679991B/zh
Publication of CN109679991A publication Critical patent/CN109679991A/zh
Application granted granted Critical
Publication of CN109679991B publication Critical patent/CN109679991B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种苯乙醇苷含量提高的转基因植株及生产方法,属于生物技术领域。所述转基因植株中转入的基因包括RgPAL1基因和RgTyrDC基因,转基因植株包括红花钓钟柳,生产方法如下:1)制备含RgPAL1和RgTyrDC基因的植物表达载体;2)将植物表达载体转化工程菌,将得到的菌株共转化植株;3)验证转基因植株,测定苯乙醇总苷,筛选苯乙醇总苷含量提高的转基因植株。本发明的转基因植株中苯乙醇总苷含量是非转化植株的约1.6倍,三种苯乙醇苷(毛蕊花糖苷、松果菊苷、金石蚕苷)含量也分别提高了约1.85倍,1.41倍和1.40倍,极大提高了苯乙醇苷的含量,利于推广。

Description

一种苯乙醇苷含量提高的转基因植株及生产方法
技术领域
本发明属于生物技术领域,更具体地涉及一种苯乙醇苷含量提高的转基因植株及生产方法。
背景技术
苯乙醇苷通常是以β-葡萄糖为母核,分别与苯丙烯酸酯化、与α羟基苯乙基苷化;中心葡萄糖基上常连有乙酰基、咖啡酰基、阿魏酰基、香豆酰基、桂皮酰基、香草酰基或鼠李糖、阿拉伯糖、芹糖、葡萄糖等糖基的一系列化合物,包括红景天苷(salidroside)、毛蕊花糖苷(acteoside)、松果菊苷(echinacoside)、金石蚕苷(poliumoside)、连翘酯苷(forsythiaside)、米团花苷(leucosceptoside)、角胡麻苷(martynoside)等200余种,具有抗氧化、抗衰老、保肝、免疫调节、神经保护等作用。
由于苯乙醇苷具有多种良好的生物学活性,为获得富含苯乙醇苷的食材或药材,人们广泛开展了前体饲喂的研究。Liu等(Liu,Guo et al.,Improved accumulation ofphenylethanoid glycosides by precursor feeding to suspension culture ofCistanche salsa.Biochem.Eng.J.,2007,33,88-93)通过给盐生肉苁蓉Cistanche salsa的悬浮细胞外源添加酪氨酸、苯丙氨酸、咖啡酸、黄瓜汁,可增加苯乙醇苷的积累量;Hu等(Hu,Jiaet al.,Effects of feeding tyrosine and phenylalanine ontheaccumulation of phenylethanoid glycosides to Cistanchedeserticola cell suspensionculture.Chin.J.Nat.Med.,2014,12(5),0367-0372)和Cheng等(Cheng,Wei etal.,Cistanchedeserticola cell suspension cultures:Phenylethanoid glycosidesbiosynthesis and antioxidant activity.ProcessBiochem.,2005,40,3119-3124)分别给肉苁蓉Cistanchedeserticola外源饲喂酪氨酸、苯丙氨酸、椰子汁、酪蛋白水解物和脯氨酸,也可不同程度提高苯乙醇苷的积累量;闫(闫小慧,狭叶松果菊组织培养、毛状根诱导及其松果菊苷和绿原酸积累的研究[D]重庆,西南大学,2007)发现在狭叶松果菊Echinaceaangustifolia根悬浮培养基中外源添加苯丙氨酸,亦有利于苯乙醇苷的积累。王等(王丰青,索艳飞等,一种利用地黄毛状根生产毛蕊花糖苷的方法,CN201610554590.1)发现经水杨酸处理地黄毛状根能够在短时间内提高毛蕊花糖苷生物合成关键基因的表达从而完成毛蕊花糖苷的积累。
近年来,Chung等(Chung,Kim et al.,Production of three phenylethanoids,tyrosol,hydroxytyrosol,and salidroside,using plant genes expressing inEscherichia coli.Sci.Rep.,2017,7,2578)和Wang等(Wang,Mahajani et al.,Engineering a bacterial platform for total biosynthesis of caffeic acidderivedphenethyl esters and amides.Metab.Eng.,2017,44,89-99)已可利用微生物的代谢工程合成简单的苯乙醇苷(红景天苷)和咖啡酸衍生苯乙酯和胺,但结构相对复杂一些的各种苯乙醇苷尚无能为力。可喜的是,Sun等(Sun,Rai et al.,Comparativetranscriptome analyses of three medicinal Forsythiaspecies and prediction ofcandidate genes involved in secondarymetabolisms.J.Nat.Med.,2018,72,867-881)通过转录组比较分析预测多种酰基转移酶和葡糖基转移酶可能在连翘属植物(Forsythiaspecies)中参与毛蕊花糖苷和连翘酯苷的生物合成;
Wang等(Wang,Zhi et al.,Transcriptomeanalysis of salicylic acidtreatment in Rehmanniaglutinosahairy roots using RNA-seq technique foridentification of genes involved in acteosidebiosynthesis.Front Plant Sci.,2017,8,787)和周等(周延清,王向楠等,毛蕊花糖苷生物合成途径及其合成酶相关基因,CN201610849755.8)提示PAL、4CL、TyDC、C4H、C3H等十几个基因可能参与地黄(Rehmanniaglutinosa)或地黄毛状根中毛蕊花糖苷的生物合成。
中国专利申请号CN201410628062.7,公开日期为2015.02.18的申请案公开了一种转RgPAL1基因提高地黄中毛蕊花糖苷含量的方法,该申请案的方法在转基因地黄中实现了毛蕊花糖苷的富集,但并没有实现多种苯乙醇苷的快速富集。
虽然Ellis(Ellis,Production of hydroxyphenylethanol glycosides insuspension cultures of Syringa vulgaris.Phytochem.,1983,22(9),1941-1943)对欧丁香Syringa vulgaris和Saimaru等(Saimaru,Orihara et al.,Biosynthesis ofacteoside in cultured cells of Oleaeuropaea.J.Nat.Med.,2010,64,139-145)对橄榄Oleaeuropaea的同位素标记饲喂研究结果一致认为毛蕊花糖苷的生物合成是由酪氨酸(Tyrosine)经多巴胺(dopamine)途径/酪胺(tyramine)途径到3,4-二羟基苯乙醛(DHPA,3,4-dihydroxy-phenylacetaldehyde,也即3,4-dihydroxytyrosol)和由苯丙氨酸经苯丙烷途径到咖啡酰基/阿魏酰基部分的共同作用。然而,他们在由酪氨酸到DHPA产生了分歧。Ellis认为,酪氨酸和酪胺是酪醇(tyrosol)和DHPA的高效前体,且单羟基化的酪胺远较双羟基化的L-多巴和多巴胺能更为高效地参与毛蕊花糖苷的生物合成;而Saimaru等认为酪氨酸是经酪氨酸羟化酶催化生成L-多巴,再经酪氨酸脱羧酶脱羧生成多巴胺,多巴胺通过先氧化成相应的醛,再还原为醇,最后β-糖基化与咖啡酰部分缩合才是毛蕊花糖苷生物合成的主流。此外,Torrens等(Torrens,Gillaspy et al.,Biochemical evaluation of aparsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehydesynthase enzyme.Biochem.Bioph.Res.Co.,2012,418:211-216)通过茉莉酸诱导表达比较欧芹Petroselinum crispum和黄唐松草Thalictrumflavum的酪氨酸脱羧酶活性,认为欧芹酪氨酸脱羧酶可直接催化酪氨酸生成4-羟基苯乙醛(4-HPAA,4-hydroxyphenylacetaldehyde)或可直接催化L-多巴生成DHPA。这样看来,苯乙醇苷生物合成途径中的多种相关基因在不同植物物种中以及不同苯乙醇苷的生物合成中扮演的角色以及它们之间的相互关系未必相同,而上述这些研究也均未能利用代谢工程实现各种苯乙醇苷的快速积累。
红花钓钟柳(Penstemonbarbatus)为玄参科(Scrophulariaceae)钓钟柳属(Penstemon)植物,多年生草本,原产美洲。因其花期长,株形秀丽,花色鲜艳,耐旱、耐寒、耐盐碱,易于繁殖,现已被广泛引种于我国,其组织培养和离体快繁体系也已经建立(莫秀媚,吴秀华等,红花钓钟柳的组织培养及离体快速繁殖。西南大学学报(自然科学版),2014,36(6),62-66)。本发明人前期研究发现红花钓钟柳中毛蕊花糖苷(Xie,Tan et al.,Separation,purification and quantification of verbascoside fromPenstemonbarbatus(Cav.)Roth.Food Chem.,2012,135,2536-2541)和松果菊苷(Xie,Denget al.,Separation and purification of echinacoside from Penstemonbarbatus(Can.)Roth by recycling high-speed counter-currentchromatography.J.Chromatogr.B,2010,878,2665-2668)起始丰度均较高,有进一步深入开发利用的价值。
发明内容
1.要解决的问题
针对于现有技术中提高苯乙醇苷含量的方法上存在成本高、种类单一等不足的问题,本发明提供了一种苯乙醇苷含量提高的转基因植株及生产方法。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明提供了一种苯乙醇苷含量提高的转基因植株,所述转基因植株中转入的基因包括RgPAL1基因和RgTyrDC基因。
作为本发明更进一步的改进,所述转基因植株的植株包括红花钓钟柳。
作为本发明更进一步的改进,所述的苯乙醇苷含量提高的转基因植株的生产方法,包括如下步骤:
1)分别获得地黄RgPAL1基因和RgTyrDC基因;
2)将地黄RgPAL1基因和RgTyrDC基因连接于表达调控序列,分别形成含RgPAL1基因和RgTyrDC基因的植物表达载体;
3)将分别含RgPAL1基因和RgTyrDC基因的植物表达载体转化工程菌,获得含RgPAL1和RgTyrDC基因植物表达载体的工程菌菌株;
4)将步骤3)中得到的工程菌菌株共转化植株,获转基因植株;
5)验证步骤4)中得到的转基因植株、测定转基因植株中的苯乙醇总苷含量、筛选苯乙醇总苷含量提高的植株。
作为本发明更进一步的改进,所述方法还包括对转基因植株中的毛蕊花糖苷、松果菊苷、金石蚕苷进行定量分析,筛选毛蕊花糖苷、松果菊苷、金石蚕苷含量均提高的转基因植株。
作为本发明更进一步的改进,所述工程菌为根癌农杆菌。
作为本发明更进一步的改进,所述步骤5)中采用PCR技术对转基因植株进行验证。
作为本发明更进一步的改进,所述毛蕊花糖苷、松果菊苷、金石蚕苷的定量分析采用HPLC-PDA的方法,色谱柱为反相色谱柱。
作为本发明更进一步的改进,所述毛蕊花糖苷、松果菊苷、金石蚕苷的定量分析前处理包括以下步骤:将植株于烘箱中烘至恒重、研磨成粉,过筛,取粉末加入甲醇、乙醇或正丁醇超声提取。
作为本发明更进一步的改进,所述步骤1)中的地黄RgPAL1基因和RgTyrDC基因采用基因克隆方法获得。
作为本发明更进一步的改进,所述的苯乙醇苷含量提高的转基因植株用于制备抗氧化、美白、护肤、抗衰老、保肝、免疫调节、神经保护的食材、药材、化妆品。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的苯乙醇苷含量提高的转基因植株,植株内共转化了RgPAL1基因和RgTyrDC基因,该两种基因在植株代谢产生苯乙醇苷的过程中发挥了较好的协同作用,植株生产所得的苯乙醇总苷含量是非转化植株的约1.6倍,而单独转化RgPAL1基因及RgTyrDC基因的植株生产的苯乙醇总苷含量则分别较未转化植株提高了约1.3倍、1.1倍,苯乙醇苷含量显著提高,而且三种苯乙醇苷(毛蕊花糖苷、松果菊苷、金石蚕苷)含量也分别提高了约1.85倍,1.41倍和1.40倍,本发明的转基因植株不仅能够提高苯乙醇总苷含量,而且可以同时提高多种类型的苯乙醇苷的含量,利于推广。
(2)本发明的苯乙醇苷含量提高的转基因植株,共转化的RgPAL1基因和RgTyrDC基因由于两种在苯乙醇苷代谢中的发挥的协同作用效果更为显著,本发明的植株与共转化的RgPAL1基因和EaC4H1基因的转基因植株相比,苯乙醇苷含量提高的效果更为显著,在同等条件下,本发明的RgPAL1基因和RgTyrDC共转化转基因植株约是RgPAL1基因和EaC4H1基因公转化植株中苯乙醇苷产量的1.2倍,因此可以得出苯乙醇苷生物合成途径中的多种相关基因作用关系较为复杂,多种相关基因是否存在协同作用及协同作用的大小难以预测,基于苯乙醇苷在抗氧化、抗衰老、保肝、免疫调节、神经保护等作用,本发明的转基因植株具有较好的药用价值,因此本发明的转基因植株可以作为苯乙醇苷制药领域一项重大的贡献,缩小了苯乙醇苷生产成本,利于推广。
(3)本发明的苯乙醇苷含量提高的转基因植株,筛选所得的转基因红花钓钟柳不仅可以作为优良的观赏花卉,花期过后,还可以再利用,作为药物资源,具有多种利用价值。
(4)本发明的苯乙醇苷含量提高的转基因植株的生产方法,相比于微生物苯乙醇苷代谢工程仅能实现结构相对简单的苯乙醇苷(红景天苷)和咖啡酸衍生苯乙酯和胺的合成,尚不能实现结构较为复杂的苯乙醇苷的富集;相比于转基因地黄仅能实现毛蕊花糖苷的富集;本发明仅需要共转化RgPAL1基因及RgTyrDC基因,然后筛选含量提高的植株即可以实现苯乙醇总苷的快速积累,而且根据定量分析结果,该方法不仅能够提高苯乙醇总苷含量,同时能够提高毛蕊花糖苷、松果菊苷、金石蚕苷的快速积累,本发明的方法不仅操作简单,而且能提高的苯乙醇苷的种类更加丰富,利于推广。
(5)本发明的苯乙醇苷含量提高的转基因植株的生产方法,相比于外源添加水杨酸处理、利用地黄毛状根完成毛蕊花糖苷的富集,本方法无须毛状根无菌化发酵生产,田间种植即可,简单方便,成本低廉;本方法可促使苯乙醇苷持续富集,产量稳定,无须再添加任何诱导子(如水杨酸)。
附图说明
图1分别为三种苯乙醇苷标准品、非转化红花钓钟柳提取液和共转化红花钓钟柳提取液的HPLC-PDA对比图谱;
图2为苯乙醇苷化学结构式;
图中:R1=H,R2=H,R3=Glc,R4=Rha为松果菊苷;R1=H,R2=H,R3=Rha,R4=Rha为金石蚕苷;R1=H,R2=H,R3=H,R4=Rha为毛蕊花糖苷。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1
本实施例为采用地黄RgPAL1基因和RgTyrDC基因共转化红花钓钟柳的实施例。
1)地黄RgPAL1基因和RgTyrDC基因的克隆
采用常规方法从地黄中提取总RNA后,利用商品化反转录试剂盒得第一链cDNA,根据地黄RgPAL1基因(GenBank:AF401636)和RgTyrDC基因(GenBank:KU640395)的编码序列,设计引物,表1为引物序列表,并在引物上分别均引入限制性内切酶位点(NcoⅠ和SpeⅠ),然后对RgPAL1基因和RgTyrDC基因进行扩增,连接T载体送测序公司测序。测序结果表明,所克隆的cDNA序列与GenBank中所报道的基因编码序列一致。
表1引物序列表
2)载体构建与转化
工程菌构建
以pCAMBIA1305.1为表达载体,用NcoⅠ和SpeⅠ双酶切实施例1中得到的含RgPAL1基因的T载体、含RgTyrDC基因的T载体以及pCAMBIA1305.1,回收RgPAL1基因片段和RgTyrDC基因片段,将其分别与酶切后的线性pCAMBIA1305.1大片段连接,转化,挑取单克隆,提取质粒做PCR检测和酶切验证。
通过冻融法,将pCAMBIA1305.1-RgPAL1载体和pCAMBIA1305.1-RgTyrDC载体分别转入根癌农杆菌EHA105(市场公开出售的生物材料),得EHA105-pCAMBIA1305.1-RgPAL1工程菌和EHA105-pCAMBIA1305.1-RgTyrDC工程菌。
3)RgPAL1基因和RgTyrDC基因共转化红花钓钟柳
将红花钓钟柳组培苗叶片切成1cm大小的片段,转到含100μmol/L乙酰丁香酮的MS培养基中,加入活化好的含RgPAL1基因植物表达载体的根癌农杆菌工程菌和含RgTyrDC基因植物表达载体的根癌农杆菌工程菌的MS悬液,使外植体与菌液充分接触5分钟后用灭菌滤纸吸取外植体表面的菌液,然后将外植体置于MS诱导培养基上共培养48小时。
将共培养结束后的外植体立即转入含400mg/L头孢噻肟钠,2mg/L6-苄氨基腺嘌呤(6-BA)和0.2mg/L萘乙酸(NAA)的抑菌MS固体培养基中培养,直至再生成植株。
至再生出丛生芽后,转接入含有4mg/L潮霉素的纯MS固体培养基中生根,直至再生成植株获得转基因红花钓钟柳。
4)PCR验证转基因植株
采用常规十六烷基三甲基溴化胺法提取转基因红花钓钟柳植株DNA,根据目的基因所在表达盒pCAMBIA1305.1-RgPAL1-GUS和pCAMBIA1305.1-RgTyrDC-GUS分别设计正向和反向引物对跨RgPAL1、RgTyrDC和GUS进行检测。
结果表明,利用所设计的PCR特异引物,以含RgPAL1和RgTyrDC基因的植株基因组DNA为模板时,均能扩增出相对应的特异DNA片段,而以非转化红花钓钟柳基因组DNA为模板时,没有扩增出任何片段,说明RgPAL1基因和RgTyrDC基因已成功转入红花钓钟柳植株。
对比例A
本对比例操作步骤基本同实施例1,不同之处在于:本对比例中仅采用单独的RgPAL1基因转化红花钓钟柳植株,最终得到仅转入RgPAL1基因的红花钓钟柳植株。
对比例B
本对比例操作步骤基本同实施例1,不同之处在于:本对比例中仅采用单独的RgTyrDC基因转化红花钓钟柳植株,最终得到仅转入RgTyrDC基因的红花钓钟柳植株。
对比例C
本实施例为单独采用狭叶松果菊EaC4H1基因转化红花钓钟柳的对比例。
a)根据克隆并构建的含狭叶松果菊EaC4H1基因(GenBank:EU676019)的pCAMBIA1305.1-EaC4H1载体,通过冻融法,将pCAMBIA1305.1-EaC4H1载体转入根癌农杆菌EHA105,得EHA105-pCAMBIA1305.1-EaC4H1工程菌。
b)将红花钓钟柳组培苗叶片切成1cm大小的片段,转到含100μmol/L乙酰丁香酮的MS培养基中,加入活化好的含EaC4H1基因植物表达载体的根癌农杆菌工程菌的MS悬液,使外植体与菌液充分接触5分钟后用灭菌滤纸吸取外植体表面的菌液,然后将外植体置于MS诱导培养基上共培养48小时。
c)将共培养结束后的外植体立即转入含400mg/L头孢噻肟钠,2mg/L 6-BA和0.2mg/L NAA的抑菌MS固体培养基中培养,直至再生成植株。至再生出丛生芽后,转接入含有4mg/L潮霉素的纯MS固体培养基中生根,直至再生成植株获得转基因红花钓钟柳。
d)采用常规十六烷基三甲基溴化胺法提取转基因红花钓钟柳植株DNA,根据目的基因所在表达盒pCAMBIA1305.1-EaC4H1-GUS设计正向和反向引物对跨EaC4H1和GUS进行检测。结果表明,利用所设计的PCR特异引物,能扩增出相对应的特异DNA片段,而以非转化红花钓钟柳基因组DNA为模板时,没有扩增出任何片段,说明EaC4H1基因已成功转入红花钓钟柳植株。
对比例D
本实施例为采用地黄RgPAL1基因和狭叶松果菊EaC4H1基因共转化红花钓钟柳的对比例。
1)含狭叶松果菊EaC4H1基因工程菌的构建
根据克隆并构建的含狭叶松果菊EaC4H1基因(GenBank:EU676019)的pCAMBIA1305.1-EaC4H1载体,通过冻融法,将pCAMBIA1305.1-EaC4H1载体转入根癌农杆菌EHA105,得EHA105-pCAMBIA1305.1-EaC4H1工程菌。
2)RgPAL1基因和EaC4H1基因共转化红花钓钟柳
将红花钓钟柳组培苗叶片切成1cm大小的片段,转到含100μmol/L乙酰丁香酮的MS培养基中,加入活化好的含地黄RgPAL1基因植物表达载体的根癌农杆菌工程菌和含狭叶松果菊EaC4H1基因植物表达载体的根癌农杆菌工程菌的MS悬液,使外植体与菌液充分接触5分钟后用灭菌滤纸吸取外植体表面的菌液,然后将外植体置于MS诱导培养基上共培养48小时。
将共培养结束后的外植体立即转入含400mg/L头孢噻肟钠,2mg/L 6-苄氨基腺嘌呤(6-BA)和0.2mg/L萘乙酸(NAA)的抑菌MS固体培养基中培养,直至再生成植株。至再生出丛生芽后,转接入含有4mg/L潮霉素的纯MS固体培养基中生根,直至再生成植株获得转基因红花钓钟柳。
3)PCR验证转基因植株
采用常规十六烷基三甲基溴化胺法提取转基因红花钓钟柳植株DNA,根据目的基因所在表达盒pCAMBIA1305.1-RgPAL1-GUS和pCAMBIA1305.1-EaC4H1-GUS分别设计正向和反向引物对跨RgPAL1、EaC4H1和GUS进行检测。
结果表明,利用所设计的PCR特异引物,以含RgPAL1和EaC4H1基因的植株基因组DNA为模板时,均能扩增出相对应的特异DNA片段,而以非转化红花钓钟柳基因组DNA为模板时,没有扩增出任何片段,说明RgPAL1基因和EaC4H1基因已成功转入红花钓钟柳植株。
实施例2
本实施例为苯乙醇总苷测定的过程,包括以下步骤:
1)分别取非转化红花钓钟柳植株,仅转化RgTyrDC基因的红花钓钟柳植株、仅转化转化RgPAL1基因、仅转化EaC4H1基因的红花钓钟柳植株、共转化RgPAL1基因和RgTyrDC基因的红花钓钟柳植株、共转化RgPAL1基因和EaC4H1基因的红花钓钟柳植株,于40℃烘箱中烘至恒重,后研磨成粉,过三号筛(50目)。
2)精密称定1g粉末于锥形瓶中,加25mL质量浓度为50%的甲醇,超声提取30min。超声完毕,将上清转至25mL容量瓶,定容至刻度。
3)称定50mg毛蕊花糖苷标准品,用质量浓度为50%的甲醇定容至50mL。用毛蕊花糖苷标准品溶液,取步骤1)中各转基因红花钓钟柳植株的提取液,于190~360nm处进行紫外扫描,三者均在333nm处有最大吸收,因此确定最大吸收波长为333nm。
分别对非转化的红花钓钟柳植株及经过不同基因转化的红花钓钟柳植株中的苯乙醇总苷进行测定,结果如下:
相比于非转化红花钓钟柳中的苯乙醇总苷含量11.53mg/g±0.26mg/g,仅转化RgPAL1基因的红花钓钟柳,仅转化RgTyrDC基因的红花钓钟柳和共转化RgPAL1基因和RgTyrDC基因的红花钓钟柳的苯乙醇总苷含量分别为15.13mg/g±0.46mg/g,12.86mg/g±0.25mg/g和18.75mg/g±0.52mg/g;
仅转化EaC4H1基因的红花钓钟柳的苯乙醇总苷含量为12.11mg/g±0.21mg/g,共转化地黄RgPAL1基因和狭叶松果菊EaC4H1基因的红花钓钟柳的苯乙醇总苷含量为15.05mg/g±0.39mg/g。
实施例3
本实施例为多种苯乙醇苷的定量分析。
称定50mg毛蕊花糖苷、松果菊苷、金石蚕苷标准品,用质量浓度为50%的甲醇定容至50mL,然后分别稀释至2.5、5、10、20和100μg/mL的标准溶液,并作标准曲线,线性回归分析毛蕊花糖苷(Y=56858X-51820,R2=0.9995)、松果菊苷(Y=32194X-19475,R2=0.9994)、金石蚕苷(Y=17994X-5142.9,R2=0.9995)浓度在2.5μg/mL至100μg/mL范围内均有良好的线性关系。
色谱条件为:色谱柱:PhenomenexC18-ODS柱,流动相由A相(甲醇:乙腈,3:2,v:v)和B相(0.1%磷酸溶液)按照不同体积比混合组成,
洗脱方式为:在0~8min,90%~70%B,8~15min,70%~30%B,15~30min,30%~70%B,30~45min,70%~90%B;柱温35℃;流速1.0mL/min,检测波长为190~360nm,进样量10μL。
分别取非转基因红花钓钟柳和转基因红花钓钟柳植株,于40℃烘箱中烘至恒重,后研磨成粉,过三号筛(50目),精密称定1g粉末于锥形瓶中,加25mL质量浓度为50%的甲醇,超声提取30min。超声完毕,将上清转至25mL容量瓶,定容至刻度。
图1分别为三种苯乙醇苷标准品、非转化红花钓钟柳提取液和共转化红花钓钟柳提取液的HPLC-PDA对比图谱;所述的三种苯乙醇苷标准品分别为毛蕊花糖苷、松果菊苷和金石蚕苷标准品。图中:(A)为毛蕊花糖苷、松果菊苷、金石蚕苷标准品HPLC-PDA图谱;(B)为非转化红花钓钟柳提取液HPLC-PDA图谱;(C)为RgPAL1和RgTyrDC共转化红花钓钟柳提取液HPLC-PDA图谱。
经检测,非转基因红花钓钟柳植株中毛蕊花糖苷、松果菊苷、金石蚕苷的含量分别为5.22±0.21mg/g,2.14±0.13mg/g和2.22±0.11mg/g,而转基因红花钓钟柳植株中毛蕊花糖苷、松果菊苷、金石蚕苷的含量分别为9.65±0.29mg/g,3.03±0.17mg/g和3.11±0.22mg/g,分别提高了约1.85倍,1.41倍和1.40倍,说明本方法可以明显提高红花钓钟柳中多种苯乙醇苷的含量。
图2为苯乙醇苷化学结构式,根据结构式可知,所述的苯乙醇苷或苯乙醇总苷是指以β-葡萄糖为母核,同时与α羟基苯乙基苷化、与苯丙烯酸酯化;中心葡萄糖基上连有乙酰基、咖啡酰基、阿魏酰基、香豆酰基、桂皮酰基、香草酰基或鼠李糖、阿拉伯糖、芹糖、葡萄糖等糖基的一系列化合物。其中,毛蕊花糖苷中的R1=H,R2=H,R3=H,R4=Rha,松果菊苷中的R1=H,R2=H,R3=Glc,R4=Rha,金石蚕苷中的R1=H,R2=H,R3=Rha,R4=Rha。
表2为不同的基因转化的红花钓钟柳植株中苯乙醇苷含量对比表
表2不同的基因转化的红花钓钟柳植株中苯乙醇苷含量对比表

Claims (10)

1.一种苯乙醇苷含量提高的转基因植株,其特征在于:所述转基因植株中转入的基因包括RgPAL1基因和RgTyrDC基因。
2.根据权利要求1所述的苯乙醇苷含量提高的转基因植株,其特征在于:所述转基因植株的植株包括红花钓钟柳。
3.一种苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述方法将RgPAL1基因和RgTyrDC基因转入植株,获得转基因植株。
4.根据权利要求3所述的苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述方法包括如下步骤:
1)分别获得地黄RgPAL1基因和RgTyrDC基因;
2)将地黄RgPAL1基因和RgTyrDC基因连接于表达调控序列,分别形成含RgPAL1基因和RgTyrDC基因的植物表达载体;
3)将分别含RgPAL1基因和RgTyrDC基因的植物表达载体转化工程菌,获得含RgPAL1和RgTyrDC基因植物表达载体的工程菌菌株;
4)将步骤3)中得到的工程菌菌株共转化植株,获转基因植株;
5)验证步骤4)中得到的转基因植株、测定转基因植株中的苯乙醇总苷含量、筛选苯乙醇总苷含量提高的植株。
5.根据权利要求4所述的苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述方法还包括对转基因植株中的毛蕊花糖苷、松果菊苷、金石蚕苷进行定量分析,筛选毛蕊花糖苷、松果菊苷、金石蚕苷含量均提高的转基因植株。
6.根据权利要求5所述的苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述工程菌为根癌农杆菌。
7.根据权利要求5或6所述的苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述毛蕊花糖苷、松果菊苷、金石蚕苷的定量分析采用HPLC-PDA的方法,色谱柱为反相色谱柱。
8.根据权利要求7所述的苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述毛蕊花糖苷、松果菊苷、金石蚕苷的定量分析前处理包括以下步骤:将植株于烘箱中烘至恒重、研磨成粉,过筛,取粉末加入甲醇、乙醇或正丁醇超声提取。
9.根据权利要求4所述的苯乙醇苷含量提高的转基因植株的生产方法,其特征在于:所述步骤1)中的地黄RgPAL1基因和RgTyrDC基因采用基因克隆方法获得。
10.权利要求1所述的苯乙醇苷含量提高的转基因植株的应用,其特征在于:所述植株用于制备抗氧化、美白、护肤、抗衰老、保肝、免疫调节、神经保护的食材、药材、化妆品。
CN201910048501.XA 2019-01-18 2019-01-18 一种苯乙醇苷含量提高的转基因植株及生产方法 Expired - Fee Related CN109679991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910048501.XA CN109679991B (zh) 2019-01-18 2019-01-18 一种苯乙醇苷含量提高的转基因植株及生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910048501.XA CN109679991B (zh) 2019-01-18 2019-01-18 一种苯乙醇苷含量提高的转基因植株及生产方法

Publications (2)

Publication Number Publication Date
CN109679991A true CN109679991A (zh) 2019-04-26
CN109679991B CN109679991B (zh) 2020-11-03

Family

ID=66193697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910048501.XA Expired - Fee Related CN109679991B (zh) 2019-01-18 2019-01-18 一种苯乙醇苷含量提高的转基因植株及生产方法

Country Status (1)

Country Link
CN (1) CN109679991B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507686A (zh) * 2022-02-16 2022-05-17 河南工业大学 一种产地黄源红景天苷酵母工程菌的构建及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206786A1 (en) * 2010-02-23 2011-08-25 Brett Justin West Acai and Iridoid Based Formulations
CN104357480A (zh) * 2014-11-10 2015-02-18 安徽工业大学 转RgPAL1基因提高地黄中毛蕊花糖苷含量的方法
CN106148453A (zh) * 2016-07-14 2016-11-23 河南农业大学 一种利用地黄毛状根生产毛蕊花糖苷的方法
CN106498009A (zh) * 2016-09-26 2017-03-15 河南师范大学 毛蕊花糖苷生物合成途径及其合成酶相关基因

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206786A1 (en) * 2010-02-23 2011-08-25 Brett Justin West Acai and Iridoid Based Formulations
CN104357480A (zh) * 2014-11-10 2015-02-18 安徽工业大学 转RgPAL1基因提高地黄中毛蕊花糖苷含量的方法
CN106148453A (zh) * 2016-07-14 2016-11-23 河南农业大学 一种利用地黄毛状根生产毛蕊花糖苷的方法
CN106498009A (zh) * 2016-09-26 2017-03-15 河南师范大学 毛蕊花糖苷生物合成途径及其合成酶相关基因

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIE JUN等: "Separation, purification and quantification of verbascoside from Penstemon barbatus (Cav.) Roth", 《FOOD CHEMISTRY》 *
莫秀媚等: "红花钓钟柳的组织培养及离体快速繁殖", 《西南大学学报》 *
谢峻等: "苯乙醇苷合成的研究进展", 《中草药》 *
贾亚敏著: "《肉从蓉对肠炎及肠癌小鼠模型的治疗作用研究》", 31 July 2018 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507686A (zh) * 2022-02-16 2022-05-17 河南工业大学 一种产地黄源红景天苷酵母工程菌的构建及应用
CN114507686B (zh) * 2022-02-16 2022-09-20 河南工业大学 一种产地黄源红景天苷酵母工程菌的构建及应用

Also Published As

Publication number Publication date
CN109679991B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
Murthy et al. Ginsenosides: prospective for sustainable biotechnological production
KR101671435B1 (ko) 진세노사이드 생물전환능을 갖는 균주 및 이를 이용한 발효홍삼 추출물의 제조방법
Palazón et al. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor
CN107058446A (zh) 一组糖基转移酶及其应用
KR20000062140A (ko) 효소(酵素)로 인삼 사포닌 당기(糖基)를 변화시켜서 종류의 토양물을 이용한 곡식으로 만든 면류
CN110438099A (zh) 糖基转移酶及其相关材料在构建产人参皂苷Rb1和Rg1的工程菌中的应用
Delgado De La Torre et al. Characterization and comparison of wine lees by liquid chromatography–mass spectrometry in high-resolution mode
CN107308195A (zh) 一种通过固体动态发酵技术制备高活性人参皂苷的方法
Yu et al. Purification and characterization of gypenoside-α-l-rhamnosidase hydrolyzing gypenoside-5 into ginsenoside Rd
Barz et al. Plant cell cultures and their biotechnological potential
CN106011213A (zh) 一种生物转化降解黄芪甲苷制备环黄芪醇的方法
KR20210058416A (ko) 진세노사이드 컴파운드 케이 전환 효소를 생산하는 신규 누룩균 아스퍼질러스 나이거 c2-2 균주 및 이의 이용
Wu et al. An efficient preparation and biocatalytic synthesis of novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside through using resting cells and macroporous resins
CN109679991A (zh) 一种苯乙醇苷含量提高的转基因植株及生产方法
CN117247842B (zh) 一种转化人参皂苷Rb1的间座壳属真菌X-Z-5及其应用
CN101376669B (zh) 6-O-β-D-葡萄糖基-3,6,16,25-四羟基环菠萝蜜烷的制备方法
JP2008212137A (ja) 生物転換法を利用したペリヌスリンテウス菌糸体の液体培養による人参からの新規のジンセノサイド製造方法
CN105002106B (zh) 平板霉素和平板素的高产工程菌株及其发酵和分离纯化工艺
CN109468359A (zh) 一种人参皂苷Rk6的制备方法
KR101777673B1 (ko) 효소를 이용한 진세노사이드 Rd의 제조방법
CN102382866A (zh) 脑苷脂的制备、纯化及含量检测方法
CN107686492A (zh) 一种使用大孔吸附树脂提取纯化发酵液中红景天苷的方法
CN105481932A (zh) 三萜皂苷类化合物及其制备方法和用途
CN109943547B (zh) 一种茶树蔗糖合酶CsSUS587、制备方法及应用
KR101833207B1 (ko) 진세노사이드 생물전환능을 갖는 균주와 물로 추출한 삼 추출물을 이용한 화합물 k의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201103

CF01 Termination of patent right due to non-payment of annual fee