CN109678519B - 一种基于聚合物前驱体陶瓷的高温压力传感器 - Google Patents

一种基于聚合物前驱体陶瓷的高温压力传感器 Download PDF

Info

Publication number
CN109678519B
CN109678519B CN201811525806.7A CN201811525806A CN109678519B CN 109678519 B CN109678519 B CN 109678519B CN 201811525806 A CN201811525806 A CN 201811525806A CN 109678519 B CN109678519 B CN 109678519B
Authority
CN
China
Prior art keywords
layer
ceramic
temperature
pressing layer
polymer precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811525806.7A
Other languages
English (en)
Other versions
CN109678519A (zh
Inventor
高燕
黄思杰
刘金铃
刘佃光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201811525806.7A priority Critical patent/CN109678519B/zh
Publication of CN109678519A publication Critical patent/CN109678519A/zh
Application granted granted Critical
Publication of CN109678519B publication Critical patent/CN109678519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0681Protection against excessive heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种基于聚合物前驱体陶瓷的高温压力传感器,包括从上到下依次设置的上压层、中间层和下压层;上压层和下压层外表面均喷涂有铂层;上压层和下压层的上方和下方均接触设置有金属导电层;上压层、中间层和下压层外设置在封装壳内;中间层上表面向上延伸出封装壳形成压头;上压层对应导电层和下压层对应导电层中均外接导线;所述中间层和压头为氧化锆制备;上压层、下压层和封装壳均为聚合物前驱体陶瓷制备;本发明制备得到的传感器可在超过800℃条件下使用,并且使用寿命高。

Description

一种基于聚合物前驱体陶瓷的高温压力传感器
技术领域
本发明涉及一种高温压力传感器技术领域,具体涉及一种基于聚合物前驱体陶瓷的高温压力传感器。
背景技术
随着微电子与电力工程技术领域的迅速发展,对可用于航天发动机和重型燃气轮机等高温系统中在线监测的长寿命高精度高温压力传感器需求增加;这类传感器主要用于监测系统的动态温度、压力、热流量、以及结构的应力/应变等物理参数;所得参数将用于系统的反馈控制、优化设计和安全监测;进而提高系统的效率、安全性和降低污染;高温传感器是下一代发动机和燃气轮机的核心技术,是目前世界各主要国家都将其列为优先发展的领域之一。
目前的长寿命(>500小时)高温压力传感器研发主要集中在以下三类:基于光纤的光学传感器,这类传感器使用温度高(最高可达1500℃)但它缺乏足够的精度,信号处理困难,设备庞大,并易于受环境因素的干扰,不易于测量转动和隐蔽部位;另一种技术是陶瓷微小传感器,如SiC或Si3N4微传感器,其测量精度高,但使用温度低(600℃以下)、制备困难、成本高;还有一类是基于功能陶瓷的传感器(如热敏陶瓷、压电陶瓷等),这类传感器具有高精度,但受限于材料的居里点,使用温度在500℃以下,也无法用于转动部件和隐蔽部位的无线测量;现有高温传感器无法满足航空发动机和重型燃气轮机对长寿命高精度高温压力传感器的苛刻要求。
发明内容
本发明提供一种基于超高压阻系数的聚合物前驱体陶瓷的长寿命高温压力传感器。
本发明采用的技术方案是:一种基于聚合物前驱体陶瓷的高温压力传感器,包括从上到下依次设置的上压层、中间层和下压层;上压层和下压层外表面均喷涂有铂层;上压层和下压层的上方和下方均接触设置有金属导电层;上压层、中间层和下压层外设置在封装壳内;中间层上表面向上延伸出封装壳形成压头;上压层对应导电层和下压层对应导电层中均外接导线;所述中间层和压头为氧化锆制备;上压层、下压层和封装壳均为聚合物前驱体陶瓷制备。
进一步的,所述聚合物前驱体陶瓷制备方法如下:
步骤1:在聚碳硅氮烷前驱体溶液中加入4wt%的过氧化二异丙苯,充分混合;
步骤2:在高纯氮气条件下在150℃条件下保温1h,然后在350℃条件下保温2h;
步骤3:将步骤2得到的材料球磨、造粒后压制成型,然后在300MPa下冷等静压得到样品;
步骤4:将步骤3得到的样品在900℃条件下裂解,得到陶瓷A;
步骤5:将步骤4得到的陶瓷进入溶解4wt%过氧化二异丙苯的前驱体溶液中,真空浸渍30min,在150℃条件下保温1h,在350℃条件下保温2h,然后在900℃条件下裂解;
步骤6:重复步骤2~5n次后,得到陶瓷B;
步骤7:将陶瓷B在1400℃条件下裂解得到所需聚合物前驱体陶瓷。
进一步的,所述聚合物前驱体陶瓷制备方法如下:
步骤1:在聚碳硅氮烷前驱体溶液中加入5wt%的光固化剂,在60℃条件下磁力搅拌0.5h,然后脱泡;
步骤2:将步骤1得到的溶液进行光固化;
步骤3:将步骤2固化得到的固体在150℃条件下保温1h,然后在350℃条件下保温2h;然后在1400℃条件下裂解得到所需聚合物前驱体陶瓷。
进一步的,所述前驱体为聚碳硅氮烷,其结构如下:
Figure BDA0001904428190000021
式中:Me为甲基,Vi为乙烯基。
本发明的有益效果是:
(1)本发明采用聚合物前驱体陶瓷作为传感器材料,可在1000℃以上仍能长时间保持高压阻系数;采用该材料制备得到的高温压力传感器能在900℃长时间使用;
(2)本发明制备得到的高温压力传感器使用温度高于800℃,使用寿命大于50小时,为航空发动机和重型燃气轮机等高温系统的在线监测和检测奠定基础。
附图说明
图1为本发明中高温压力传感器的结构示意图。
图2为本发明实施例1制备得到的聚合物前驱体陶瓷在300℃条件下的压阻曲线。
图3为本发明实施例1制备得到的聚合物前驱体陶瓷在500℃条件下的压阻曲线。
图4为本发明实施例1制备得到的聚合物前驱体陶瓷在700℃条件下的压阻曲线。
图5为本发明实施例1制备得到的聚合物前驱体陶瓷在900℃条件下的压阻曲线。
图6为本发明实施例1制备得到的聚合物前驱体陶瓷在不同温度条件下的高温K值曲线。
图中:1-中间层,2-压头,3-上压层,4-下压层,5-导电层,6-封装壳,7-导线。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
如图1所示,一种基于聚合物前驱体陶瓷的高温压力传感器,包括从上到下依次设置的上压层3、中间层1和下压层4;上压层3和下压层4外表面均喷涂有铂层;上压层3和下压层4的上方和下方均接触设置有金属导电层5;上压层3、中间层1和下压层4外设置在封装壳6内;中间层1上表面向上延伸出封装壳6形成压头2;上压层3对应导电层和下压层4对应导电层中均外接导线7;所述中间层1和压头2为氧化锆制备;上压层3、下压层4和封装壳6均为聚合物前驱体陶瓷制备。
上压层3和下压层4通过键合工艺组装在一起;为了减少由于热膨胀系数带来的热失配造成传感器失效问题,提高传感器寿命和对抗环境的能力;对传感器灵敏度和测量范围的影响和优化,降低封装对传感器材料本身性能的影响;封装壳6选择低电导率的PDC材料;上压层3和下压层4表面喷涂一层铂浆,通过Pt导线7外接为半惠斯通电路;上压层3可以平衡掉温度对测试带来的影响。
上压层3、下压层4所用的聚合物前驱体陶瓷采用下述制备方法制备,封装壳6采用的聚合物前驱体陶瓷最好也采用下述制备方法制备,当然也可以采用其他现有的制备技术制备。
聚合物前驱体陶瓷也称为聚合物转化陶瓷PDC,成分为硅基陶瓷,结构为无定型/非晶态;其压阻性能是由陶瓷内部石墨碳相在外界压力作用下发生隧穿效应所带来的;通过增长陶瓷在裂解过程中生成石墨碳相的大小和增加石墨碳相的含量来提升其压阻性能;目前现有的聚合物前驱体陶瓷在由有机物朝无机陶瓷裂解过程中伴随着大量小分子挥发导致无法得到致密块体陶瓷从而造成压阻系数降低,无法满足实际需要。
可采用光固化方法或粉末烧结浸渍法制备:
粉末烧结浸渍法制备过程如下:
步骤1:在聚碳硅氮烷前驱体溶液中加入4wt%的过氧化二异丙苯,充分混合;过氧化二异丙苯质量占前驱体溶液质量的4%。
步骤2:在高纯氮气条件下在150℃条件下保温1h,然后在350℃条件下保温2h;
在高温管式炉中进行保温,在350℃条件下保温2h进行热固化;少量掺杂过氧化二异丙苯可以增加前驱体中碳链长度促进链状芳香族碳转变为六圆环的石墨碳相从而提高石墨碳相含量。
步骤3:将步骤2得到的材料球磨、造粒后压制成型,然后在300MPa下冷等静压得到样品;
热固化后固体进行球磨,得到平均粒径为900nm左右的粉体;球磨后的粉体进行造粒后在7MPa的压力下保温1min压成直径为12nm的圆片;然后在300MPa条件下冷等静压。
步骤4:将步骤3得到的样品在900℃条件下裂解,得到陶瓷A;
将样品置于高温管式炉中在900℃条件下进行裂解得到不致密陶瓷A。
步骤5:将步骤4得到的陶瓷进入溶解4wt%过氧化二异丙苯的前驱体溶液中,真空浸渍30min,在150℃条件下保温1h,在350℃条件下保温2h,然后在在900℃条件下裂解;
将得到的陶瓷在真空浸渍罐中完全进入已溶解4wt%过氧化二异丙苯的前驱体溶液中,保持真空浸渍30min;浸渍后的陶瓷在高温管式炉中150℃条件下保温1h,在350℃条件下保温2h进行热固化,然后在900℃条件下裂解。
步骤6:重复步骤2~5n次后,得到陶瓷B;重复4次后得到的陶瓷B致密度达到96.36%。
步骤7:将陶瓷B在1400℃条件下裂解得到所需聚合物前驱体陶瓷。
上述制备方法可以增加生成石墨碳相的大小;烧结过程中全程通入高纯氮气尽量减少氧的污染,最后得到增大石墨碳相浓度及大小和致密度良好的陶瓷。
光固化方法:
所述聚合物前驱体陶瓷制备方法如下:
步骤1:在聚碳硅氮烷前驱体溶液中加入5wt%的光固化剂,在60℃条件下磁力搅拌0.5h,在脱泡机中脱泡1h。
步骤2:将步骤1得到的溶液进行光固化;将得到的液体倒入聚四氟乙烯模具中在紫外线固化箱中进行光固化。
步骤3:将步骤2固化得到的固体,完全固化后玻璃出样品在150℃条件下保温1h,然后在350℃条件下保温2h;然后在1400℃条件下裂解得到所需聚合物前驱体陶瓷。
前驱体为聚碳硅氮烷,本发明所用为中国科学化学研究所提供,其结构如下:
Figure BDA0001904428190000041
式中:Me为甲基,Vi为乙烯基。
实施例
将4.8gSiCN前驱体溶液加入0.2g过氧化二异丙苯在高纯氮气的保护下在高温管式炉中150℃保温1h,在350℃条件下保温2h进行热固化;将固化后块体使用摆振球磨机球磨30min得到粉体,粉体造粒后在7MPa的压力下保温1min压成直径为12mm的圆片;并在300MPa条件下冷等静压;将得到的样品在高温管式炉中在900℃条件下裂解得到不致密陶瓷;将得到的陶瓷在真空浸渍罐中完全浸入已溶解4wt%过氧化二异丙苯的前驱体中保持真空浸渍30min;浸渍之后的陶瓷在高温管式炉中150℃保温1h,在350℃条件下保温2h进行热固化,然后在900℃保温2h进行裂解;反复重复四次可以得到致密度96.36%的陶瓷;最后将陶瓷在1400℃保温2h裂解得到所需要的聚合物前驱体陶瓷。
将本实施例制备得到的陶瓷进行压阻性能测试,图2到图5为压敏陶瓷在300℃~900℃电阻与施加应力关系图,随着施加应力增大,电阻随之减少。图6为各个温度下压阻系数示意图,在300℃条件下压阻系数最高为9100,是SiC材料的240倍;在500℃条件下压阻系数为4600,是SiC材料的120倍;在900℃条件下压阻系数仍高达2600,远远超过现有高温聚合物转化陶瓷压阻研究。
采用本发明制备得到的聚合物前驱体陶瓷用于制备高温压力传感器,经测试,在高于800℃条件下,其实用寿命大于500小时;为航空发动机和重型燃气轮机等高温系统的在线监测和检测奠定了基础。

Claims (1)

1.一种基于聚合物前驱体陶瓷的高温压力传感器,其特征在于,包括从上到下依次设置的上压层(3)、中间层(1)和下压层(4);上压层(3)和下压层(4)外表面均喷涂有铂层;上压层(3)和下压层(4)的上方和下方均接触设置有金属导电层(5);上压层(3)、中间层(1)和下压层(4)外设置在封装壳(6)内;中间层(1)上表面向上延伸出封装壳(6)形成压头(2);上压层(3)对应导电层和下压层(4)对应导电层中均外接导线(7);所述中间层(1)和压头(2)为氧化锆制备;上压层(3)和下压层(4)通过键合工艺组装在一起;上压层(3)、下压层(4)和封装壳(6)均为聚合物前驱体陶瓷制备,所述聚合物前驱体陶瓷采用方法1或者方法2制备;
方法1:
步骤1:在聚碳硅氮烷前驱体溶液中加入4wt%的过氧化二异丙苯,充分混合;
步骤2:在高纯氮气条件下在150℃条件下保温1h,然后在350℃条件下保温2h;
步骤3:将步骤2得到的材料球磨、造粒后压制成型,然后在300MPa下冷等静压得到样品;
步骤4:将步骤3得到的样品在900℃条件下裂解,得到陶瓷A;
步骤5:将步骤4得到的陶瓷浸入 溶解4wt%过氧化二异丙苯的前驱体溶液中,真空浸渍30min,在150℃条件下保温1h,在350℃条件下保温2h,然后在900℃条件下裂解;
步骤6:重复步骤2~5 n次后,得到陶瓷B;
步骤7:将陶瓷B在1400℃条件下裂解得到所需聚合物前驱体陶瓷;
方法2:
步骤1:在聚碳硅氮烷前驱体溶液中加入5wt%的光固化剂,在60℃条件下磁力搅拌0.5h,然后脱泡;
步骤2:将步骤1得到的溶液进行光固化;
步骤3:将步骤2固化得到的固体在150℃条件下保温1h,然后在350℃条件下保温2h;然后在1400℃条件下裂解得到所需聚合物前驱体陶瓷;
所述聚碳硅氮烷结构如下:
Figure DEST_PATH_IMAGE002
式中:Me为甲基,Vi为乙烯基。
CN201811525806.7A 2018-12-13 2018-12-13 一种基于聚合物前驱体陶瓷的高温压力传感器 Active CN109678519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811525806.7A CN109678519B (zh) 2018-12-13 2018-12-13 一种基于聚合物前驱体陶瓷的高温压力传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811525806.7A CN109678519B (zh) 2018-12-13 2018-12-13 一种基于聚合物前驱体陶瓷的高温压力传感器

Publications (2)

Publication Number Publication Date
CN109678519A CN109678519A (zh) 2019-04-26
CN109678519B true CN109678519B (zh) 2021-09-07

Family

ID=66187637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811525806.7A Active CN109678519B (zh) 2018-12-13 2018-12-13 一种基于聚合物前驱体陶瓷的高温压力传感器

Country Status (1)

Country Link
CN (1) CN109678519B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058019B (zh) * 2021-11-15 2023-02-07 中国人民解放军国防科技大学 一种可熔融纺丝的超高温陶瓷先驱体及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487155A (zh) * 2013-09-13 2014-01-01 厦门大学 一种SiCN陶瓷无线无源温度传感器及其制备方法
CN104995496A (zh) * 2013-02-21 2015-10-21 埃普科斯股份有限公司 压力传感器系统
CN106500884A (zh) * 2016-11-28 2017-03-15 中国电子科技集团公司第四十八研究所 一种压力传感器芯体及其制备方法
CN108801536A (zh) * 2018-05-31 2018-11-13 西安交通大学 一种薄片式高灵敏度压力传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995496A (zh) * 2013-02-21 2015-10-21 埃普科斯股份有限公司 压力传感器系统
CN103487155A (zh) * 2013-09-13 2014-01-01 厦门大学 一种SiCN陶瓷无线无源温度传感器及其制备方法
CN106500884A (zh) * 2016-11-28 2017-03-15 中国电子科技集团公司第四十八研究所 一种压力传感器芯体及其制备方法
CN108801536A (zh) * 2018-05-31 2018-11-13 西安交通大学 一种薄片式高灵敏度压力传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication of dense polymer-derived silicon carbonitride ceramic bulks by precursor infiltration and pyrolysis processes without losing piezoresistivity;Baisheng Ma et al.;《Journal of the American Ceramic Society》;20180731;第101卷(第7期);第2752-2759页 *
聚合物先驱体转化法制备陶瓷MEMS器件;吕红映等;《中国胶粘剂》;20081130;第17卷(第11期);全文 *

Also Published As

Publication number Publication date
CN109678519A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Cramer et al. Additive manufacturing of ceramic materials for energy applications: Road map and opportunities
CN108620594A (zh) 一种陶瓷/金属梯度结构高温封装材料及其制备方法
CN109678519B (zh) 一种基于聚合物前驱体陶瓷的高温压力传感器
CN202024834U (zh) 一种引线低温固化连接的ntc热敏电阻温度传感器
CN105441767B (zh) 一种抗高温氧化损伤ZrB2‑SiC‑ZrC‑W复相陶瓷的制备方法
Nagaiah et al. Novel polymer derived ceramic-high temperature heat flux sensor for gas turbine environment
CN110954234A (zh) 一种聚合物前驱体陶瓷薄膜rtd及其制备方法
CN106747349B (zh) 原位生成SiC增强氧化铝基陶瓷型芯的方法
Zhang et al. Improved output voltage of 0–3 cementitious piezoelectric composites with basalt fibers
CN103556071B (zh) 高温耐辐照磁致伸缩合金
Alisin et al. Tribology of carbon-containing materials at high temperatures
Xie et al. The sintering process and vibration characteristics for leadless package structure of pressure sensors
CN115628820A (zh) 一种聚合物前驱体陶瓷薄膜热电偶及其制作方法
Ding et al. Preparation of C/SiC composites by hot pressing, using different C fiber content as reinforcement
Dong et al. Development and evaluation of temperature sensing smart skin for high-temperature measurements in pipes
CN108801536A (zh) 一种薄片式高灵敏度压力传感器
Ubertini et al. Novel nanocomposite clay brick for strain sensing in structural masonry
CN109764984B (zh) 一种N和P共掺杂SiC纳米线压力传感器
Tian et al. Design and fabrication of leadless package structure for pressure sensors
Chen et al. Conformal Fabrication of Polymer-Derived Ceramics Thin Film Heat Flux Sensor
CN115321977B (zh) 一种用于氧化锆陶瓷间烧结连接的制备方法
CN109764954A (zh) 一种高灵敏度、高频响、抗过载的碳化硅高温振动传感器
CN204883410U (zh) 一种用于高压水热体系的电化学控氧装置
CN115183932A (zh) 一种薄膜型压力传感器及其制备方法
CN116907673B (zh) 一种聚合物前驱体高温陶瓷薄膜传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant