CN109675063A - 靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法 - Google Patents

靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法 Download PDF

Info

Publication number
CN109675063A
CN109675063A CN201910105693.3A CN201910105693A CN109675063A CN 109675063 A CN109675063 A CN 109675063A CN 201910105693 A CN201910105693 A CN 201910105693A CN 109675063 A CN109675063 A CN 109675063A
Authority
CN
China
Prior art keywords
contrast agent
preparation
particle
oxide nano
agent according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910105693.3A
Other languages
English (en)
Inventor
张军
杜成娟
王剑虹
陈雨
耿道颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huashan Hospital of Fudan University
Original Assignee
Huashan Hospital of Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huashan Hospital of Fudan University filed Critical Huashan Hospital of Fudan University
Priority to CN201910105693.3A priority Critical patent/CN109675063A/zh
Publication of CN109675063A publication Critical patent/CN109675063A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种靶向致痫灶区域P‑糖蛋白的磁共振对比剂的制备方法;通过下述方法得到:将六水合三氯化铁、油酸钠分散于乙醇、水和正己烷的混合液中制得前驱体油酸铁;将该前驱体溶于油醇和二苯醚的混合溶液中,氮气保护下于110℃左右搅拌;再于氮气保护下升温至200℃左右,回流,得到油酸包裹的四氧化三铁纳米粒;将其分散于三氯甲烷中,加入过量磷脂聚乙二醇马来酰亚胺进行亲水性改性,改性后的四氧化三铁纳米粒分散于PBS中,最后嫁接能够对P‑gp特异性靶向的短肽Pepstatin A即可。本发明的磁共振对比剂不用跨越血脑屏障也可以达到对致痫灶的精确定位,可作为致痫灶早期诊断及定位的一类新型的核磁共振成像阳性对比剂。

Description

靶向致痫灶区域P-糖蛋白的磁共振对比剂的制备方法
技术领域
本发明属于分子影像技术领域,涉及一种靶向致痫灶区域P-糖蛋白的磁共振对比剂的制备方法。
背景技术
癫痫是多病因所致的慢性脑功能紊乱,其特征为间歇性、不可预测性、反复发作的皮层和(或)皮层下神经元异常放电导致大脑功能障碍。近年来,尽管不断有新的抗癫痫药物(antiepileptic drugs,AED)应用于临床,但难治性癫痫患者的发病率并没有下降。临床上,当难治性癫痫患者对一种AED耐药时,往往对其他AED也不敏感,尽管这些药物的作用机制、作用途径不同。早期手术切除致痫灶已被证实是一种有效的控制和治疗药物难治性癫痫的方法。但是手术患者的纳入和预后,依赖术前对致痫灶的精确定位。磁共振成像(Magnetic Resonance Imaging,MRI)具有组织分辨率高、多参数、多序列成像,并且没有射线辐射等优点,是临床上检测中枢神经系统疾病的主要影像手段。因此,制备可以特异性靶向致痫灶的MR分子探针,术前对致痫灶边界进行准确勾画,对辅助致痫灶的手术切除至关重要。分子影像学,指用影像学方法,在细胞和分子水平上对活体状态下的生物过程进行定性和定量研究。目前研究比较广泛的用于分子影像的有Gd基纳米粒子,例如NaGdF4,主要用于缩短T1值,提高T1加权图像(T1weighted image)上的病变组织和正常组织之间的对比度。但是Gd基纳米探针有其局限性,例如血液半衰期较短,对于肾功能不好的患者来说有引起肾源性系统性纤维化的潜在风险。另一大类用作磁共振成像对比剂的是磁性氧化铁纳米粒子(Ultrasmall Superparamagnetic Iron Oxide nanoparticles,USPIONs),主要作为T2-MR对比剂,用于增强T2加权图像对比度,在图像上显示暗的图像,但是容易和钙化、囊肿和出血等病变混淆。另一方面,据文献报道,在四氧化三铁纳米粒子粒径小于5nm的时候,其也可以用作T1-MR对比剂。并且相比于钆基纳米对比剂,磁性氧化铁纳米粒子有以下优点:(1)表面易改性和修饰其他靶向有机分子;(2)生物相容性高;(3)血液半衰期长;(4)制备方法简便易行。
血脑屏障(Blood Brain Barrier,简称BBB)是机体内最重要的屏障之一,其严格限制了药物由血液进入脑组织。P-糖蛋白(P-glycoprotein,P-gp)是表达在血脑屏障毛细血管内皮细胞近管腔侧的多药转运体,能识别多种抗癫痫药物,并将其泵出血脑屏障,减少病灶区域内神经元周围细胞外液抗癫痫药物的有效浓度,降低药物的效价,从而无法抑制癫痫发作。因此制备靶向P-gp的纳米探针,其不用跨过BBB即可对致痫灶进行精确成像,使致痫灶的勾画更加简单,对临床上定位致痫灶具有极其重要的意义。
发明内容
本发明的目的是提供一种靶向致痫灶区域P-糖蛋白的磁共振对比剂的制备方法;通过制备一种超小超顺磁性氧化铁纳米粒子(3~4nm),作为MR阳性对比剂,构建可以靶向脑毛细血管内皮细胞上过表达的P-gp的靶向策略,以解决现有癫痫定位中存在的对比剂缺乏靶向性、难跨过BBB、无法进行阳性成像和对机体有潜在毒性等问题。具体而言,先合成超小超顺磁性氧化铁纳米粒子作为MR阳性对比剂,对探针表面用DSPE-PEG-Mal进行亲水性改性,以提高血液半衰期和生物安全性,后嫁接具有靶向功能的短肽Pepstatin A(简称PA),该分子靶向纳米探针(记为PA-USPIONs)生物安全性高,并且可以不用跨越BBB,即可达到靶向致痫灶的功能,对致痫灶精确定位,有利于术前对难治性癫痫的准确影像诊断。
本发明的目的是通过以下技术方案的内容来实现的:
本发明涉及一种磁共振对比剂的制备方法,所述方法包括以下步骤:
S1、超小超顺磁性氧化铁纳米颗粒的合成:在正己烷、乙醇和去离子水存在的条件下,六水合三氯化铁和油酸钠在65~75℃搅拌反应,得油酸铁;在所述油酸铁中加入油醇和二苯醚,先加热到90~110℃除去空气和水,再升温至200~240℃反应0.5~1h,得油酸包裹的四氧化三铁纳米粒子;
S2、磷脂聚乙二醇马来酰亚胺亲水改性:在通氮气保护的条件下,以三氯甲烷为分散剂,所述油酸包裹的四氧化三铁纳米粒子和磷脂聚乙二醇马来酰亚胺混合,50W功率在20~37℃下超声10~30分钟;旋转蒸发除去体系中的三氯甲烷,蒸馏水超声分散,离心洗涤得纳米颗粒;
S3、表面嫁接短肽Pepstatin A:以N,N-二甲基甲酰胺为溶剂,所述纳米颗粒和短肽Pepstatin A搅拌12~24h,透析,得靶向致痫灶过表达的P-gp的纳米粒;
S4、表面嫁接荧光标记物:取所述靶向血脑屏障和脑致痫灶的纳米粒与荧光标记物溶液避光条件下搅拌12~24h,透析后得到靶向纳米荧光探针,即所述磁共振对比剂。
优选的,步骤S1中,所述六水合三氯化铁和油酸钠的质量比为1:3~1:5。更优选所述六水合三氯化铁和油酸钠的质量比为1:3.4。
优选的,步骤S1中,所述油酸铁、油醇和二苯醚的质量比为1:1.5~2:5~6。更优选所述油酸铁、油醇和二苯醚的质量比为1:1.8:5.6。
优选的,本发明的体系中,合成得到的超小超顺磁性氧化铁纳米颗粒(USPIONs),即步骤S1中的油酸包裹的四氧化三铁纳米粒子,直径在5nm以下。所述USPIONs生物安全性高,血液半衰期长,主要用于T1-MR成像,可与多种配体连接形成靶向对比剂,灵敏度、特异度高。
更优选的,所述油酸包裹的四氧化三铁纳米粒子的粒径为3~4纳米。
优选的,步骤S2中,所述升温是以10℃/min的速度继续加热到200℃。
优选的,步骤S2中,油酸包裹的四氧化三铁纳米粒子和磷脂聚乙二醇马来酰亚胺的质量比为1:9~1:12。更优选油酸包裹的四氧化三铁纳米粒子和磷脂聚乙二醇马来酰亚胺的质量比为1:10。
优选的,步骤S2中,所述磷脂聚乙二醇马来酰亚胺的Mw=2000~20000。更优选所述磷脂聚乙二醇马来酰亚胺的Mw=3400。
优选的,步骤S3中,所述纳米颗粒和短肽Pepstatin A的质量比为1:2~1:5。更优选所述纳米颗粒和短肽Pepstatin A的质量比为1:2。
优选的,步骤S4中,表面嫁接的是NHS-Cy5.5。用以进行共聚焦显微镜拍摄、流式细胞术以及活体荧光实验。
优选的,步骤S4中,所用透析袋分子量为3500~8000Da。
与现有技术相比,本发明具有如下有益效果:
1、本发明首先通过热分解法合成超小超顺磁性氧化铁纳米粒子,其粒径小,只有3~4nm,更容易跨越血脑屏障;接着通过DSPE-PEG-Mal改性,以提高血液半衰期和生物相容性,最后嫁接具有靶向功能的小分子多肽Pepstatin A;实验结果显示这种靶向纳米探针具有高度的分散性,可以高效靶向致痫灶,精确地勾画肿瘤边界,进行T1加权磁共振成像,而且增强时间至少持续4h,在难治性癫痫致痫灶定位的影像诊断和治疗等领域显示出广阔的应用前景。
2、本发明的制备工艺简单易行、效率高,得到的靶向超小超顺磁性氧化铁纳米颗粒分散性好、粒径均一,可以对致痫灶进行无创敏感地显像,是极具应用前景的分子影像对比剂。
3、以往的四氧化三铁纳米颗粒大多作为T2-MR成像,本发明所制备的超小四氧化三铁纳米探针是用作T1-MR成像,并且是首次用于脑部疾病成像,其粒径小,只有3-4nm,并且不用跨过BBB,更加提高了成像效率。
4、本发明中所制备的靶向纳米探针的纵向弛豫率达到4.16Mm-1s-1,达到了临床常用T1-MR对比剂Gd-DTPA的效果。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是亲水性超小超顺磁性氧化铁纳米粒(PA-USPIONs)分散于水中的TEM照片;
图2是疏水性超小超顺磁性氧化铁纳米粒的XPS、XRD和红外图谱以及磁滞回线图谱;其中,a为四氧化三铁的XRD图谱,b为四氧化三铁的XPS分峰图,c为四氧化三铁纳米探针的红外图谱,d为四氧化三铁的VSM图谱;
图3是本发明中水分散,对脑致痫灶特异性靶向的PA-USPIONs、对照组非靶向纳米对比剂和临床用钆基对比剂(Gd-DTPA)在临床3T磁共振仪上所测定的体外T1-MR图像;
图4是本发明中亲水性PA-USPIONs的1/T1-浓度曲线图,图中的横坐标是Fe的浓度,纵坐标为横向弛豫时间(T1)的倒数;
图5是本发明中亲水性PA-USPIONs的1/T2-浓度曲线图,图中的横坐标是Fe的浓度,纵坐标为纵向弛豫时间(T2)的倒数;
图6是本发明中细胞与亲水性PA-USPIONs共培养24h后的细胞存活率柱状图;其中,为BCECs细胞存活曲线;
图7是本发明中亲水性PA-USPIONs(5mg/kg)注入癫痫鼠前后脑部磁共振图像以及相关的对比图像;
图8是本发明中亲水性PA-USPIONs(5mg/kg)注入ICR老鼠后,鼠脑皮层、海马、纹状体组织HE染色切片图;
图9是本发明中亲水性PA-USPIONs(5mg/kg)注入ICR老鼠后,鼠心、肝、脾、肺、肾等器官的HE染色组织切片图。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及一种靶向致痫灶血脑屏障上过表达的P-gp的磁共振阳性对比剂的制备方法,包括如下步骤:
(1)油酸包裹的四氧化三铁纳米粒的制备:2.7g六水合三氯化铁加入100ml的圆底烧瓶中,再依次加入9.125g油酸钠,20ml乙醇,15ml的蒸馏水和35ml正己烷,在磁力搅拌器中以70℃加热4h,同时保持700转/min。待反应完成后冷却至室温。将反应后的液体用蒸馏水洗涤三次后烘干过夜,留下的蜡状液体即油酸铁;取出1.8g油酸铁加入三口烧瓶中,加入3.22g油醇和10g二苯醚,首先在氮气的保护下将反应体系加热到90℃保持2h,以除去溶液中水和空气,然后继续升温到200℃,保持30min,用乙醇沉淀以及正己烷溶解离心后得到黑色沉淀即四氧化三铁纳米颗粒,用三氯甲烷溶解保存备用。
(2)亲水性改性油酸包裹的四氧化三铁纳米粒:取出5mg四氧化三铁纳米粒到100ml圆底烧瓶中,加入10ml三氯甲烷和50mg DSPE-PEG-Mal后充氮气1min,之后以50W功率,25℃,超声10分钟,反应完成后旋转蒸发20min除去三氯甲烷,加入1ml去离子水超声分散,之后用分子量为8000的透析袋透析三天除去多余的PEG。
(3)对致痫灶特异性靶向的纳米探针(PA-USPIONs,也称:纳米磁共振对比剂)的制备:将步骤(2)中改性后的产物取出2mg,溶解在N,N-二甲基甲酰胺中,加入4mg PepstatinA,搅拌12-24h,得到的液体用分子量为8000的透析袋在PBS中透析3天,之后4℃保存备用。
图1是亲水性超小超顺磁性氧化铁纳米粒(PA-USPIONs)分散于水中的TEM照片,直观地显示出规整的球形形貌、均一的粒径和高度的分散性,内核平均直径3.5~4nm(随机测量TEM中100个颗粒得到)。
图2是疏水性超小超顺磁性氧化铁纳米粒的XRD、XPS、红外图谱以及磁滞回线图谱,由图2可见,所制得的为四氧化三铁纳米颗粒,和标准PDF卡片一致;由XPS结果也能看出所制备的纳米粒子为四氧化三铁纳米粒子,红外图谱显示成功改性以及Pepstatin A的成功嫁接,磁饱和强度不高,符合粒子颗粒小的特点。
实施例2
1:MR成像效果:
1.1实验材料及仪器:
实施例1中所制备的PA-USPIONs亲水纳米颗粒。
MR成像检测仪器型号:DiscoveryMR750,GE Medical System,3.0T
1.2.实验动物:C57/BL6鼠,平均体重20g,购自复旦大学医学院动物房。
1.3.难治性癫痫老鼠模型:3ul Kainic acid(KA,0.5mg/ml)用立体定位仪植入老鼠脑中,手术后24h-48h天可用。
1.4.实验方法:癫痫模型鼠用水合氯醛麻醉,通过尾静脉注入对比剂(5mg Fe/ml),观察核磁造影效果。
1.5.实验结果:图3是PA-USPIONs亲水性纳米颗粒的体外MR成像结果,图4可见所制备的亲水纳米颗粒具有较强的T1-MR造影功能,r1值为4.16mM-1s-1,图5是所制备的亲水纳米颗粒的r2值结果,为22.26mM-1s-1
图7是本发明中PA-USPIONs亲水性纳米颗粒注入癫痫鼠后的MR成像结果,由图可见,注射纳米颗粒后,在T1加权图像上,致痫灶信号有明显的增强,界线勾画得更清晰,说明上述亲水性纳米颗粒能够有效特异性靶向BBB上高表达的P-gp,在活体水平具有高效的术前对致痫灶进行核磁造影的效果。而注入非靶向纳米粒PEG-USPIONs和Gd-DTPA组,可以看到肿瘤信号增强效果不如靶向组。
2.毒性评价实验:
2.1体外细胞毒性实验:
2.1.1实验材料:
实施例1中所制备的PA-USPIONs亲水纳米颗粒。
2.1.2实验方法:
采用经典的CCK(Cell Counting Kit-8)法评价细胞存活率,具体实验方法为:首先将细胞接种于96孔板(104细胞/孔)。在细胞培养箱中培养24h后,吸出96孔板中旧的培养基,加入含不同浓度样品(0、12.5、25、50、100、200和500μg/ml)的培养基溶液,并继续培养24h。吸出旧培养基,在每个孔中加入100μL含10ul CCK-8的DMEM溶液,并继续培养1-4h后,在酶标仪检测各孔OD值(检测波长460nm),计算细胞存活率。
2.1.3实验结果:
图6是所制备的PA-USPIONs亲水纳米颗粒在不同浓度下的细胞毒性评价柱状图,图中为脑毛细血管内皮细胞(BCECs);由图中可见,该材料在500ug/ml的较高浓度下,共培养24h后细胞仍有高达85%左右的存活率,表明所制备的PA-USPIONs亲水纳米颗粒细胞毒性低。
2.2体内组织毒性实验
2.2.1实验材料:实施例1中所制备的PA-USPIONs亲水纳米颗粒。
2.2.2实验动物:ICR小鼠,平均体重20g,购自复旦大学医学院动物房。
2.2.3实验方法:将所制备的PA-USPIONs亲水纳米颗粒从尾静脉注入ICR小鼠体内。通过常规的H&E染色来观察注射前和注射后3、15和30天后的组织切片。
2.2.4实验结果:
图8是ICR小鼠在注入所制备的PA-USPIONs亲水纳米颗粒后,脑部各组织的切片结果,可见在注入纳米颗粒后(短期和长期结果),脑部各器官组织(脑皮层、海马、纹状体)均无明显毒性;图9为注入所制备的PA-USPIONs亲水纳米颗粒后,ICR小鼠心肝脾肺肾各器官组织的切片图,由图可见,心肝脾肺肾均无明显毒性反应;
综上所述,本发明首先通过热分解法合成超小超顺磁性氧化铁纳米粒子,其粒径小,只有3~4nm,更容易从肾代谢,血液半衰期更长;合出的四氧化三铁纳米颗粒接着通过DSPE-PEG-Mal进行亲水性改性,改性采用50W超声反应和最后旋转蒸发除去多余三氯甲烷的方法,整个过程只需要15-20分钟,后续可以进行其他靶向分子的嫁接,实验结果显示这种改性后的探针具有高度的分散性,并且分散性和稳定性可以保持一个月以上。此外,以往文献中制备的四氧化三铁纳米颗粒大多作为T2-MR成像,本发明所制备的超小四氧化三铁纳米探针是用作T1-MR成像,并且是首次用于脑部疾病成像。并且,本发明中所制备的靶向纳米探针的纵向弛豫率达到4.16Mm-1s-1,达到了临床常用T1-MR对比剂Gd-DTPA的效果因此本发明对难治性癫痫致痫灶的精确勾画具有广阔的应用前景。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (9)

1.一种磁共振对比剂的制备方法,其特征在于,所述方法包括以下步骤:
S1、超小超顺磁性氧化铁纳米颗粒的合成:在正己烷、乙醇和去离子水存在的条件下,六水合三氯化铁和油酸钠在65~75℃搅拌反应,得油酸铁;在所述油酸铁中加入油醇和二苯醚,先加热到90~110℃除去空气和水,再升温至200~240℃反应0.5~1h,得油酸包裹的四氧化三铁纳米粒子;
S2、磷脂聚乙二醇马来酰亚胺亲水改性:在通氮气保护的条件下,以三氯甲烷为分散剂,所述油酸包裹的四氧化三铁纳米粒子和磷脂聚乙二醇马来酰亚胺混合,50W功率在20~37℃下超声10~30分钟;旋转蒸发除去体系中的三氯甲烷,蒸馏水超声分散,离心洗涤得纳米颗粒;
S3、表面嫁接短肽Pepstatin A:以N,N-二甲基甲酰胺为溶剂,所述纳米颗粒和短肽Pepstatin A搅拌12~24h,透析,得靶向致痫灶高表达P-gp的纳米粒;
S4、表面嫁接荧光标记物:取所述靶向致痫灶高表达P-gp的纳米粒与荧光标记物溶液避光条件下搅拌12~24h,在PBS中透析后得到靶向纳米荧光探针,即所述磁共振对比剂。
2.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S1中,所述六水合三氯化铁和油酸钠的质量比为1:3~1:5。
3.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S1中,所述油酸铁、油醇和二苯醚的质量比为1:1.5~2:5~6。
4.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S1中,所述油酸包裹的四氧化三铁纳米粒子的粒径为3~4纳米。
5.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S2中,油酸包裹的四氧化三铁纳米粒子和磷脂聚乙二醇马来酰亚胺的质量比为1:9~1:12。
6.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S2中,所述磷脂聚乙二醇马来酰亚胺的Mw=2000~20000。
7.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S3中,所述纳米颗粒和短肽Pepstatin A的质量比为1:2~1:5。
8.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S4中,表面嫁接的是NHS-Cy5.5。
9.根据权利要求1所述的磁共振对比剂的制备方法,其特征在于,步骤S4中,所用透析袋分子量为3500~8000Da。
CN201910105693.3A 2019-02-01 2019-02-01 靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法 Pending CN109675063A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910105693.3A CN109675063A (zh) 2019-02-01 2019-02-01 靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910105693.3A CN109675063A (zh) 2019-02-01 2019-02-01 靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法

Publications (1)

Publication Number Publication Date
CN109675063A true CN109675063A (zh) 2019-04-26

Family

ID=66195615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910105693.3A Pending CN109675063A (zh) 2019-02-01 2019-02-01 靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法

Country Status (1)

Country Link
CN (1) CN109675063A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105497922A (zh) * 2014-09-25 2016-04-20 复旦大学附属华山医院 针对脑癫痫灶的靶向纳米磁共振对比剂及其制备与应用
CN108543082A (zh) * 2018-03-19 2018-09-18 浙江大学 pH响应型超小氧化铁纳米粒子组装体的制备方法及产品和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105497922A (zh) * 2014-09-25 2016-04-20 复旦大学附属华山医院 针对脑癫痫灶的靶向纳米磁共振对比剂及其制备与应用
CN108543082A (zh) * 2018-03-19 2018-09-18 浙江大学 pH响应型超小氧化铁纳米粒子组装体的制备方法及产品和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BYUNG HYO KIM ET AL: "Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents", 《J. AM. CHEM. SOC.》 *
JONGNAM PARK ET AL: "Ultra-large-scale syntheses of monodisperse nanocrystals", 《NATURE MATERIALS》 *
贾正阳: "肿瘤新生血管靶向的超小磁性Fe3O4纳米探针研究", 《中国优秀硕士学位论文全文数据库医药卫生科技辑》 *

Similar Documents

Publication Publication Date Title
Khademi et al. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study
Huang et al. Tumortropic adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and dual-modality therapy of orthotopic glioblastoma
CN103212093B (zh) 一种具有细胞靶向性的磁性纳米材料及其生物医学应用
CN107715121B (zh) 一种磁共振成像纳米药物载体、纳米载药系统及其制备方法
Bu et al. Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma
US20060204443A1 (en) Methods for tumor treatment using dendrimer conjugates
CN109395101A (zh) 靶向血脑屏障和脑胶质瘤的磁共振对比剂的制备方法
Wu et al. Reduction-active Fe3O4-loaded micelles with aggregation-enhanced MRI contrast for differential diagnosis of Neroglioma
Chen et al. Facile synthesis of β-lactoglobulin capped Ag 2 S quantum dots for in vivo imaging in the second near-infrared biological window
Wei et al. Biocompatible low-retention superparamagnetic iron oxide nanoclusters as contrast agents for magnetic resonance imaging of liver tumor
Huang et al. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications
CN102921022A (zh) 具核素成像、荧光成像与磁共振成像功能的载药纳米粒及其制法和用途
Xiao et al. Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma
WO2005067982A2 (en) Methods for imaging the lymphatic system using dendrimer-based contrast agents
Hu et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier
Henrich-Noack et al. In vivo visualisation of nanoparticle entry into central nervous system tissue
Cai et al. A transferrin-target magnetic/fluorescent dual-mode probe significantly enhances the diagnosis of non-small cell lung cancer
CN109481700A (zh) 一种用于肝癌早期诊断的分子探针及其制备方法
CN106310297B (zh) 多功能高分子前药纳米递药系统及制备方法和用途
Towner et al. Molecular magnetic resonance imaging approaches used to aid in the understanding of angiogenesis in vivo: implications for tissue engineering
CN101549161B (zh) 一种肝、脾脏特异性阳性核磁共振对比剂及其制备方法
CN109675063A (zh) 靶向致痫灶区域p-糖蛋白的磁共振对比剂的制备方法
JP2008266214A (ja) 金酸化鉄粒子を利用した複合粒子およびmri造影剤
CN114588279A (zh) 一种多功能纳米分子探针及其制备方法和其作为视网膜母细胞瘤诊疗制剂的应用
CN113786496A (zh) 一种靶向药物纳米体系及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190426