CN109668816B - 一种测定微纳米炸药晶体粉末比表面积的方法 - Google Patents

一种测定微纳米炸药晶体粉末比表面积的方法 Download PDF

Info

Publication number
CN109668816B
CN109668816B CN201910101962.9A CN201910101962A CN109668816B CN 109668816 B CN109668816 B CN 109668816B CN 201910101962 A CN201910101962 A CN 201910101962A CN 109668816 B CN109668816 B CN 109668816B
Authority
CN
China
Prior art keywords
micro
crystal powder
explosive crystal
nano
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910101962.9A
Other languages
English (en)
Other versions
CN109668816A (zh
Inventor
白亮飞
宋攀奇
屠小青
孙光爱
龚建
邱丽莉
闫冠云
田强
曾贵玉
彭梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Original Assignee
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics filed Critical Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority to CN201910101962.9A priority Critical patent/CN109668816B/zh
Publication of CN109668816A publication Critical patent/CN109668816A/zh
Application granted granted Critical
Publication of CN109668816B publication Critical patent/CN109668816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • G01N23/202Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering using neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/054Investigating materials by wave or particle radiation by diffraction, scatter or reflection small angle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/106Different kinds of radiation or particles neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/62Specific applications or type of materials powders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种测定微纳米炸药晶体粉末比表面积的方法。该方法包括如下步骤:首先将待测微纳米炸药晶体粉末装入石英样品盒,然后做小角散射测试,并对小角散射实验数据进行处理获得绝对强度散射曲线,然后通过Porod拟合和计算获得微纳米炸药晶体粉末的比表面积。本发明的测定微纳米炸药晶体粉末比表面积的方法是一种快速无损测定微纳米炸药晶体粉末比表面积的方法,具有快速、安全、绿色环保的优点。本发明测定的微纳米炸药晶体粉末比表面积是表征微纳米炸药晶体粉末微观形态特征的重要参数,可用于进一步深入探索炸药晶体粉末形态特征对其宏观感度、力学性能、爆燃特性等的影响。

Description

一种测定微纳米炸药晶体粉末比表面积的方法
技术领域
本发明属于核技术应用领域,具体涉及一种测定微纳米炸药晶体粉末比表面积的方法。
背景技术
炸药晶体粉末是含能材料(推进剂、焰火剂、混合炸药和聚合物粘结炸药等)爆炸做功过程的主要能量来源,广泛应用于军事和国民经济的各领域。特别是微纳米炸药晶体粉末作为一种新型功能材料,在应用中具有显著优势:(1)感度可选择;(2)能量释放速率更快;(3)临界直径更小;(4)燃烧更快更充分。微纳米炸药晶体粉末一般通过溶液重结晶生长出来或者机械球磨制备,微纳米炸药晶体粉末是粒径几十纳米到几百微米粒径的颗粒物,这就导致成型的微纳米炸药晶体粉末不可避免带有许多表面开孔和裂纹缺陷,开孔和裂纹还可能会在后续加工、使用等过程的温度和力学载荷作用下发生演化。微纳米炸药晶体粉末中的开孔缺陷一方面会显著影响炸药晶体本身的感度和力学性能,另一方面则会通过影响炸药的爆燃特性进而影响做功过程。对微纳米炸药晶体粉末表面特征的准确表征是深入研究其对感度、力学性能、爆燃特性等宏观性能影响关系的重要基础,是表征微纳米炸药晶体粉末微观形态特征的一个重要方面。
目前,对微纳米炸药晶体粉末比表面积的常见测定方法有BET法、压汞法等。BET法需要对样品进行高温脱气等预处理,需要的样品量较大,并且测量时间较久,微纳米炸药晶体粉末易团聚给测试带来误差(预处理干燥过程中形成晶桥,使得部分微纳米炸药晶体粉末结块成粒径较大的团聚体,表面积减少),并且高温预处理微纳米炸药晶体粉末还具有一定的危险性。压汞法需要的样品量也较大,该方法更适用于大孔材料的测定,由于在高压条件下许多孔洞发生变形或塌陷,因此对于纳米级孔洞的测量准确度不高,测试完成后样品无法继续使用,而且使用后的汞为不易处理的有毒重金属,容易带来环境污染。
综上,现有的微纳米炸药晶体粉末常规比表面积测定方法仍不能完全满足实践中对无损、快速、安全、绿色环保等需求,需要发展新的测试方法。
发明内容
本发明所要解决的技术问题是提供一种测定微纳米炸药晶体粉末比表面积的方法。
本发明的测定微纳米炸药晶体粉末比表面积的方法包括如下步骤:
a.称取待测微纳米炸药晶体粉末并记录重量;
b.将称取的待测微纳米炸药晶体粉末置于光程为0.5mm~5mm的小角散射专用样品容器中,并轻轻震荡直至装填均匀,记录装填高度,得到待测微纳米炸药晶体样品;
c.对待测微纳米炸药晶体样品进行小角散射测试,获得待测微纳米炸药晶体样品的小角散射实验数据;
d.对小角散射实验数据依次进行扣背底修正和绝对强度修正,获得绝对强度散射曲线;
e.对绝对强度散射曲线做Porod拟合,计算获得微纳米炸药晶体粉末比表面积的绝对数值。
所述的装填均匀是指待测炸药晶体粉末分散均匀,无分层断层。
所述的小角散射为中子小角散射、X射线小角散射、超小角中子散射、超小角X射线散射中的一种或两种及以上。
本发明的测定微纳米炸药晶体粉末比表面积的方法涉及到操作微纳米炸药晶体粉末,是一种含能材料,故所有实验过程一定要遵守含能材料相关的安全操作规程和注意事项,相关操作都由具备资质的人员在特定的场所完成。
本发明的测定微纳米炸药晶体粉末比表面积的方法,具有如下优点:
1.待测微纳米炸药晶体粉末样品制备过程简单,整个测试过程对待测炸药晶体样品无损伤,不带来任何宏观和微观的结构破坏或改变,测试完后待测微纳米炸药晶体粉末可直接回收再使用。
2.能够快速给出待测微纳米炸药晶体粉末的比表面积信息,还可以通过进一步分析绝对强度散射曲线获得待测微纳米炸药晶体粉末的表面分型特征。
3.待测微纳米炸药晶体粉末样品的测试区域为厘米级范围,能够给出待测微纳米炸药晶体粉末的体相统计平均信息。
4.获得的微纳米炸药晶体粉末的比表面积绝对数值是表征炸药晶体微观形态特征的重要参数,可用于进一步深入探索微纳米炸药晶体粉末表面形态特征对其宏观感度、力学性能、爆燃特性的影响关系。
本发明的测定微纳米炸药晶体粉末比表面积的方法是一种快速无损测定微纳米炸药晶体粉末比表面积的方法,具有快速、安全、绿色环保的优点。
附图说明
图1为实施例1中的微纳米炸药晶体粉末样品的绝对强度散射曲线;
图2 为实施例3中的微纳米炸药晶体粉末样品的绝对强度散射曲线;
图3 为实施例6中的微纳米炸药晶体粉末样品的绝对强度散射曲线;
图4 为实施例7中的微纳米炸药晶体粉末样品的绝对强度散射曲线。
具体实施方式
下面结合具体实例对本发明作进一步说明,但本发明并不限于以下实例。下述实例中如无特别说明,所述方法均为常规方法。下述实例中所用的待测微纳米炸药晶体粉末均可通过商业途径购买或由特定生产单位定制合成获得。
实施例1
本实施例的待测微纳米炸药晶体粉末为第一种TATB炸药晶体粉末,命名为μTATB-1,小角散射专用样品容器为光程为1mm的石英比色皿,小角散射测试仪器为中国绵阳研究堆的狻猊中子小角散射谱仪,具体步骤如下:
a.称取待测微纳米炸药晶体粉末并记录重量;
b.将称取的待测微纳米炸药晶体粉末置于光程为1mm的小角散射专用样品容器中,并轻轻震荡直至装填均匀,记录装填高度,得到待测微纳米炸药晶体样品;
c.对待测微纳米炸药晶体样品进行小角散射测试,获得待测微纳米炸药晶体样品的小角散射实验数据;
d.对小角散射实验数据依次进行扣背底修正和绝对强度修正,获得绝对强度散射曲线;
e.对绝对强度散射曲线做Porod拟合,计算获得微纳米炸药晶体粉末比表面积的绝对数值。
Porod拟合为,在Porod区(大Q区)待测炸药晶体粉末的绝对散射强度与散射矢量的负四次方成正比,其中比例系数正比于待测炸药晶体粉末的比表面积,具体如公式所示
Figure DEST_PATH_IMAGE001
式中,
Figure 952664DEST_PATH_IMAGE002
为绝对散射强度,
Figure DEST_PATH_IMAGE003
为待测炸药晶体粉末与空气的中子散射长度密度差,
Figure 869804DEST_PATH_IMAGE004
为散射矢量,以上数值均由小角散射测试仪器给出或标准数据库查询获得;最终计算出的
Figure DEST_PATH_IMAGE005
为单位质量待测炸药晶体粉末的比表面积。
本实施例的装填均匀是指待测炸药晶体粉末分散均匀,无分层断层。
本实施例的小角散射为X射线小角散射、超小角中子散射、超小角X射线散射中的一种,或中子小角散射、X射线小角散射、超小角中子散射、超小角X射线散射中两种及以上。
本实施例获得的绝对强度散射曲线,如图1所示,可知μTATB-1样品的散射强度曲线在散射矢量为0.06nm-1~0.9nm-1区间内均满足Porod定理,说明炸药晶体表面为光滑界面,不存在表面分形特征。本实施例获得的待测炸药晶体粉末的比表面积的绝对数值见表1。
实施例2
本实施例与实施例1的实施方式基本相同,主要区别见表1。本实施例获得的待测微纳米炸药晶体粉末的比表面积的绝对数值见表1。
实施例3
本实施例与实施例1的实施方式基本相同,主要区别见表1。本实施例获得的绝对强度散射曲线,如图2所示,可知nTATB-1样品的散射强度曲线在散射矢量为0.06nm-1~1nm-1区间内均满足Porod定理,说明炸药晶体表面为光滑界面,不存在表面分形特征。本实施例获得的待测微纳米炸药晶体粉末的比表面积的绝对数值见表1。
实施例4
本实施例与实施例1的实施方式基本相同,主要区别见表1。本实施例获得的待测微纳米炸药晶体粉末的比表面积的绝对数值见表1。
实施例5
本实施例与实施例1的实施方式基本相同,主要区别见表1。本实施例获得的待测微纳米炸药晶体粉末的比表面积的绝对数值见表1。
实施例6
本实施例与实施例1的实施方式基本相同,主要区别见表1。本实施例获得的绝对强度散射曲线,如图3所示,可知RDX样品的散射强度曲线在散射矢量为0.06nm-1~0.38nm-1区间内均满足Porod定理,说明炸药晶体表面为光滑界面,不存在表面分形特征。本实施例获得的待测微纳米炸药晶体粉末的比表面积的绝对数值见表1。
实施例7
本实施例与实施例1的实施方式基本相同,主要区别见表1。本实施例获得的绝对强度散射曲线,如图4所示,可知LLM-105样品的散射强度曲线在散射矢量为0.06nm-1~0.35nm-1区间内均满足Porod定理,说明炸药晶体表面为光滑界面,不存在表面分形特征。本实施例获得的待测微纳米炸药晶体粉末的比表面积的绝对数值见表1。
表1为各实施例的测试条件和porod拟合后获得的待测微纳米炸药晶体粉末的比表面积的绝对数值表,可知两种μTATB具有相同数量级的比表面积,三种nTATB具有相同数量级的比表面积,其中LLM-105样品具有最小的比表面积0.0773 m2/g,nTATB-2样品具有最大的比表面积10.2 m2/g。
Figure 587224DEST_PATH_IMAGE006
Figure 920117DEST_PATH_IMAGE008

Claims (3)

1.一种测定微纳米炸药晶体粉末比表面积的方法,其特征在于,所述的方法包括如下步骤:
a.称取待测微纳米炸药晶体粉末并记录重量;
b.将称取的待测微纳米炸药晶体粉末置于光程为0.5mm~5mm的小角散射专用样品容器中,并轻轻震荡直至装填均匀,记录装填高度,得到待测微纳米炸药晶体样品;
c.对待测微纳米炸药晶体样品进行小角散射测试,获得待测微纳米炸药晶体样品的小角散射实验数据;
d.对小角散射实验数据依次进行扣背底修正和绝对强度修正,获得绝对强度散射曲线;
e.对绝对强度散射曲线做Porod拟合,计算获得微纳米炸药晶体粉末比表面积的绝对数值。
2.根据权利要求1所述的测定微纳米炸药晶体粉末比表面积的方法,其特征在于:所述的装填均匀是指待测炸药晶体粉末分散均匀,无分层断层。
3.根据权利要求1所述的测定微纳米炸药晶体粉末比表面积的方法,其特征在于:所述的小角散射为中子小角散射、X射线小角散射、超小角中子散射、超小角X射线散射中的一种或两种及以上。
CN201910101962.9A 2019-02-01 2019-02-01 一种测定微纳米炸药晶体粉末比表面积的方法 Active CN109668816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910101962.9A CN109668816B (zh) 2019-02-01 2019-02-01 一种测定微纳米炸药晶体粉末比表面积的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910101962.9A CN109668816B (zh) 2019-02-01 2019-02-01 一种测定微纳米炸药晶体粉末比表面积的方法

Publications (2)

Publication Number Publication Date
CN109668816A CN109668816A (zh) 2019-04-23
CN109668816B true CN109668816B (zh) 2021-06-11

Family

ID=66150874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910101962.9A Active CN109668816B (zh) 2019-02-01 2019-02-01 一种测定微纳米炸药晶体粉末比表面积的方法

Country Status (1)

Country Link
CN (1) CN109668816B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307844B (zh) * 2020-04-03 2022-09-23 中国工程物理研究院核物理与化学研究所 一种基于小角中子散射的橡胶结构测定方法
CN113834833B (zh) * 2021-03-31 2023-06-06 中国工程物理研究院材料研究所 一种ods钢磁性粉末中纳米相的表征方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318511A (zh) * 2018-01-26 2018-07-24 中国工程物理研究院核物理与化学研究所 一种表征聚合物粘结炸药多相界面的方法
CN108414552A (zh) * 2018-03-30 2018-08-17 中国工程物理研究院核物理与化学研究所 一种检测聚合物粘结炸药热稳定性的方法
CN108535163A (zh) * 2018-04-28 2018-09-14 中国工程物理研究院核物理与化学研究所 一种测定炸药晶体比表面积的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318511A (zh) * 2018-01-26 2018-07-24 中国工程物理研究院核物理与化学研究所 一种表征聚合物粘结炸药多相界面的方法
CN108414552A (zh) * 2018-03-30 2018-08-17 中国工程物理研究院核物理与化学研究所 一种检测聚合物粘结炸药热稳定性的方法
CN108535163A (zh) * 2018-04-28 2018-09-14 中国工程物理研究院核物理与化学研究所 一种测定炸药晶体比表面积的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"小角散射(SAS)技术在含能材料结构表征中的应用";曾贵玉,李长智;《含能材料》;20050430;第13卷(第2期);第128-131页 *

Also Published As

Publication number Publication date
CN109668816A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN109668816B (zh) 一种测定微纳米炸药晶体粉末比表面积的方法
Kirkland Quantitative application of potassium bromide disk technique in infrared spectroscopy
Wensrich et al. Measurement and analysis of the stress distribution during die compaction using neutron diffraction
Moravkar et al. Traditional and advanced flow characterization techniques: a platform review for development of solid dosage form
CN108535163B (zh) 一种测定炸药晶体比表面积的方法
CN103604678A (zh) 一种使痕量组份在固体块状基质中均匀分布的制样方法
CN106896124A (zh) 一种轴承钢材料热处理过程中所对应残余奥氏体含量的测定方法
CN116879026A (zh) 一种tatb/氟橡胶界面微力学行为测试方法
Liu Breakage and deformation mechanisms of crushable granular materials
Guo et al. Experimental investigation on the flow properties of sand granules in the process of sand mold printing
CN109470577A (zh) 力-热作用下表征tatb基pbx内应力的方法
CN109060699B (zh) 一种工业水淬渣玻璃体含量测定方法
Hunn AGR-2 fuel compacts information summary: prepared for the NRC MELCOR project
CN110487815B (zh) 基于激光散射技术的炸药晶体内部缺陷定量表征方法
Ohishi A new photoelastic method for evaluating durability of plastics
RU2537105C2 (ru) Способ измерения деформаций
Zhao et al. Modelling of the Flocculated Polydisperse Microstructure of Fresh Cement Paste
CN102297820B (zh) 聚乙烯共聚物中短支链含量的测定方法
Stasiak et al. Breaking tester for examining strength of consolidated starch
Kercher et al. Results from ORNL Characterization of Nominal 350? m LEUCO Kernels (LEU03) from the BWXT G73V-20-69303 Composite
Dańko Influence of the Matrix Grain Size on the Apparent Density and Bending Strength of Sand Cores
Assumin-Gyimah et al. Imaging of PbWO4 crystals for G experiment test masses using a laser interferometer
CN117494592A (zh) 一种火炸药制备用双螺杆混合塑化设备等效放大设计方法
Zafar et al. Applications and Case Studies
CN108569868B (zh) 一种改性相似材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant