CN109650590A - 一种处理高毒性高cod废水的方法及系统 - Google Patents

一种处理高毒性高cod废水的方法及系统 Download PDF

Info

Publication number
CN109650590A
CN109650590A CN201910006944.2A CN201910006944A CN109650590A CN 109650590 A CN109650590 A CN 109650590A CN 201910006944 A CN201910006944 A CN 201910006944A CN 109650590 A CN109650590 A CN 109650590A
Authority
CN
China
Prior art keywords
waste water
cod
concentration
high toxicity
cod waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910006944.2A
Other languages
English (en)
Inventor
韩全
张恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Yeanovo Environmental Protection Co Ltd
Original Assignee
Guangdong Yeanovo Environmental Protection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Yeanovo Environmental Protection Co Ltd filed Critical Guangdong Yeanovo Environmental Protection Co Ltd
Priority to CN201910006944.2A priority Critical patent/CN109650590A/zh
Publication of CN109650590A publication Critical patent/CN109650590A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种处理高毒性高COD废水的方法和系统,所述方法包括以下步骤:1)将高毒性高COD废水经过加药处理;2)将经过加药处理后的废水进行RO膜浓缩处理;3)经过2)处理后的废水再进行电解;4)经过电解后的废水再进入RO膜浓缩处理,浓缩后的产水进行后续的生化处理,浓水回收至电解液中,再用于电解。本发明的方法通过二级加药的方法除去重金属,并将处理后的废水进行浓缩,对浓缩后的废水进行电解,并用膜浓缩的方法回收电解液。将高COD废水中的各种有机质降解并将重金属除去,达到深度处理的目的,本发明的系统操作简单,能够有效的将废水中的有毒金属离子和高COD有机质除去,达到短时间内深度降解的目的,且实现了资源的回收利用。

Description

一种处理高毒性高COD废水的方法及系统
技术领域
本发明涉及污染物处理技术领域,具体涉及一种处理高毒性高COD废水的方法及系统。
背景技术
高毒性高COD废水,不仅含有高浓度的有毒重金属,如Cr6+、Cd2+、Cr3+等,还含有大量的难降解有机物和生物成分,其COD的值通常>10000甚至更高。由于不同类型的高COD废水的成分差异巨大,而常规的单一水处理方法,通常仅能针对固定成分的废水进行处理,因此,现阶段,对这类废水的处理,并没有固定统一的方法,通常需要确定主要成分后,方能确定处理工艺。这也无形之中增加了处理成本和处理难度。
目前,对于高COD废水,主要有以下几种处理方法:
(1)吸附法。该方法主要是用各种比表面积大的材料,将污染物吸附到孔中,以达到去除污染物的目的。它的投入和运行成本较低。但是,由于吸附材料吸附能力有限,且吸附饱和后的材料难以二次利用。因此,该方法仅适用于低COD废水的处理。
(2)氧化法。该方法主要是通过投加强氧化性的化学药剂,如H2O2、KMnO4、Fenton试剂等,将有机物或微生物转化为低毒的、易处理的小分子化合物。其反应速度快,处理效率高,且能用于高COD废水的深度处理。但是,它需要消耗大量的化学药剂,还需要对后续的高盐废水进行进一步的处理。因此通常成本较高。
(3)萃取法。该方法主要是使用有机溶剂,将污染物转移到有机溶剂中,达到污染物与水分离的目的。其投资较少、操作简单、效率高,且还能回收部分有用物质。但是,它不能处理极性有机物,且萃取后的有机溶剂需要通过反萃取的方法进行回收,以降低工艺的物料成本。此外,有机溶剂通常具有一定的生物毒性。
(4)蒸发法。该方法主要是蒸发水的方法,将污染物进行浓缩并分离析出的方法。其操作简单,工艺成熟,还能回收部分结晶盐类物质,因此适合处理含盐有机废水。但是,它的缺点在于能耗极大,且需要对蒸发过程中挥发出来的有机污染物进行进一步处理,以防止二次污染。因此不适用于低沸点有机废水的处理。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种高毒性高COD废水处理的方法和系统,所述方法先通过加药的方法除去重金属,并将处理后的废水进行浓缩,随后加入电解液,对浓缩后的废水进行电解,并用膜浓缩的方法回收电解液。
为实现上述目的,本发明采取的技术方案为:一种处理高毒性高COD废水的方法,包括以下步骤:
1)将高毒性高COD废水经过加药处理;
2)经过1)处理后的废水再进行电解处理;
所述电解处理包括2a)加入纳米级的活性炭颗粒,形成无数三维电极;或/和2b)在废水中加入硫酸钴电解液,在电场的作用下进行电解。
本发明所述处理高毒性高COD废水的方法,首先将高毒性高COD废水,(COD>20000mg/L,并含有高浓度的有毒重金属离子Cr6+、Cd2+,以及Cr3+)通过加药反应处理,反应后,废水中的金属离子基本被除去,仅剩下高浓度COD,再进行电解,由于COD的浓度过高,为了提高电解效率,本发明采用了两种改性措施,一是电解液加入纳米级的活性炭颗粒,形成无数三维电极,(正负电极材料+颗粒微电极),代替了原先的二位电极方法。在同样的时间内,可提高电解效率约30~40%;二是在废水中加入硫酸钴电解液(CoSO4,wt%=2.4~3.0),在电场(U=24V,I=4~6A)的作用,将Co2+氧化为Co3+,而Co3+具有一定的氧化性,在电流的作用下,能氧化有机物,因此能显著提高降解效率。反应方程式如下:
2Co2+-2e-=2Co3+
Co3++CxHyOz→Co2++CO2+H2O;
在同样的时间内,可提高电解效率约20~30%。当两者同步使用,单位时间内可提高电解效率约55%~75%;从而将各种有机质降解为CO2或者小分子物质,实现了高COD的去除;
本发明的方法通过加药与电解为主体的工艺,将高COD废水中的各种有机质降解为CO2或者小分子物质,并将有毒金属离子通过沉淀的方法除去。达到深度处理的目的。
作为本发明处理高毒性高COD废水的方法的优选实施方式,所述步骤1)中的加药处理步骤包括添加过量的FeSO4,并不断通入压缩空气,加药处理1.5~2h,优选地,所述FeSO4用量为理论用量的1.5~2倍。
本发明所使用的除Cd药剂,是FeSO4,而不是现阶段常用的Na2S。其原因在于,Na2S价格高,且实际应用中会释放H2S气体,容易造成二次污染。而FeSO4多为工业废料,廉价易得,去除效果好,无二次污染,且过量的Fe2+可以通过后续加药去除。
本发明通过投加过量的FeSO4(理论用量的1.5~2倍),并不断通入压缩空气,以完全去除其中的Cd2+,并将Cr6+完全还原为Cr3+。其反应方程式为:
2Fe2++Cd2++2O2=Fe2CdO4↓;
3Fe2++Cr6+=Cr3++3Fe3+
反应1.5~2h后,Cd2+离子被完全除去,Cr6+完全被还原为Cr3+
作为本发明处理高毒性高COD废水的方法的优选实施方式,所述加药处理还包括经过FeSO4处理后的废水再加入NaOH,反应30~45min。
为了去除残留的Cr3+、Fe2+和Fe3+,需将废水进一步加药处理,所加药剂为NaOH,其反应方程式为:
Cr3++3OH-=Cr(OH)3↓;
Fe3++3OH-=Fe(OH)3↓;
4Fe2++8OH-+O2+2H2O=4Fe(OH)3↓;
反应30~45min后,废水中的金属离子基本被除去,仅剩下高浓度COD。
作为本发明处理高毒性高COD废水的方法的优选实施方式,所述步骤1)与步骤2)之间包括步骤:将经过加药处理后的废水进行RO膜浓缩处理,优选地,所述RO膜浓缩的倍数为15~20倍,膜浓缩时间为1.5~2.5h;优选地,所述单次电解所需的膜浓缩次数为6~8次。
由于废水水量大,若直接采用常规的电极进行电解,则电能消耗量较大。因此,本发明在加药处理后经过RO膜浓缩处理,将废水浓缩15~20倍,浓缩1.5~2.5h后的浓水直接进入电解,其COD>200000-300000mg/L,经过浓缩6~8次的进水后,可直接进行电解。经过浓缩处理工艺后的可以明显减少电解的次数,达到降低电能的目的(电能仅为原先的1/5左右)。
作为本发明处理高毒性高COD废水的方法的优选实施方式,所述步骤2)后还包括步骤:经过电解后的废水再进入RO膜浓缩处理,浓缩后的产水进行后续的生化处理,浓水回收至电解液中,再用于电解;优选地,所述RO膜膜浓缩时间为1~2h,浓缩的倍数为15~20倍,以确保后续电解的效率/能耗比最高。
此外,为了回收CoSO4电解液,本发明在电解工艺后,还设有RO膜浓缩工艺,将处理后的水浓缩到电解液原始浓度。浓缩后的产水进行后续的生化处理,浓水(CoSO4电解液)回到电解液储罐中,达到资源回收利用的目的。
作为本发明处理高毒性高COD废水的方法的优选实施方式,所述活性炭颗粒的粒径为10~20μm,硫酸钴电解液质量浓度为2.4~3.0%,以确保高效电解的同时能实现后续的回收利用。所述电场条件为U=24V,I=4~6A。
本发明还提供了一种处理高毒性高COD废水的系统,所述系统包括通过管道依次连通的加药曝气系统I、加药曝气系统II、电解槽。
本发明所述处理高毒性高COD废水的系统,首先将高毒性高COD废水(COD>20000mg/L,并含有高浓度的有毒重金属离子Cr6+、Cd2+,以及Cr3+)通过加药曝气系统I进行处理,该加药曝气系统I所加药剂为过量的FeSO4(理论用量的1.5-2倍),并不断通入压缩空气,以完全去除其中的Cd2+,并将Cr6+完全还原为Cr3+,为了去除残留的Cr3+、Fe2+和Fe3+,需将废水再通过一套加药曝气系统II,所加药剂为NaOH,反应后,废水中的金属离子基本被除去,仅剩下高浓度COD,再进行电解,将高浓度COD废水中的各种有机质降解为CO2或者小分子物质,本发明使用两套加药装置(所加的药分别是FeSO4和NaOH),对有毒重金属Cd和Cr进行深度去除,在经过电解对COD进行深度降解。
作为本发明处理高毒性高COD废水的系统的优选实施方式,所述电解槽中加入纳米级的活性炭颗粒,形成无数三维电极或/和在电解槽中加入硫酸钴电解液,在电场的作用下进行电解,优选地,所述活性炭颗粒粒径为10~20μm,所述硫酸钴电解液质量浓度为2.4~3.0%,所述电场条件为U=24V,I=4~6A。
本发明通过添加纳米级的活性炭颗粒形成无数三维电极,(正负电极材料+颗粒微电极),代替了原先的二位电极方法。在同样的时间内,可提高电解效率约30~40%;在电解装置中加入CoSO4电解液,利用Co2+失电子点后生成的氧化性Co3+离子,同步对有机物进行降解。在同样的时间内,可提高电解效率约20~30%。两者同步使用,单位时间内可提高电解效率约55%~75%。
作为本发明处理高毒性高COD废水的系统的优选实施方式,加药曝气系统I中添加的药剂为过量的FeSO4,并不断通入压缩空气;所述加药曝气系统II添加的药剂为NaOH。
作为本发明处理高毒性高COD废水的系统的优选实施方式,所述加药曝气系统II的出水口还连通有RO膜浓缩系统I,所述RO膜浓缩系统I出水口与电解槽连通;优选地,所述电解槽的出水口连通有RO膜浓缩系统II。
由于废水水量大,若直接采用常规的电极进行电解,则电能消耗量较大。因此,本发明在加药曝气系统II后还设有RO浓缩系统I,将废水浓缩10~15倍,浓缩1.5~2.5h后的浓水直接进入电解,其COD>200000~300000mg/L,经过浓缩6~8次的进水后,可直接进行电解。经过RO浓缩系统I处理后的可以明显减少电解的次数,达到降低电能的目的(电能仅为原先的1/5左右)。本发明加入RO膜浓缩系统II,对CoSO4电解液进行回收再利用。
作为本发明处理高毒性高COD废水的系统的优选实施方式,所述电解槽的电解液进口连通有电解液储罐,所述RO膜浓缩系统II浓水出口连通电解液储罐。
本发明的有益效果在于:本发明提供的处理高毒性高COD废水的方法,该方法通过二级加药的方法除去重金属,并将处理后的废水进行浓缩,随后加入电解液,对浓缩后的废水进行电解,并用膜浓缩的方法回收电解液。将高COD废水中的各种有机质降解为CO2或者小分子物质,并将有毒金属离子通过沉淀的方法除去;达到深度处理的目的,本发明还提供了处理高毒性高COD废水的系统,该系统操作简单,能够有效的将废水中的有毒金属离子和高COD有机质除去,达到短时间内深度降解的目的,且实现了资源的回收利用。
附图说明
图1为本发明的整体结构示意图。
图中:1、混合废水储罐,10、管道,11、控制阀;2、加药曝气系统I;3、加药曝气系统II;4、RO膜浓缩系统I;5、电解槽;6、产水储罐;7、RO膜浓缩系统II;8、电解液储罐;9、产水箱。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例
本发明处理高毒性高COD废水的系统的实施例,如图1所示,本实施例所述处理高毒性高COD废水的系统包括通过管道10依次连通的混合废水储罐1、加药曝气系统I 2、加药曝气系统II 3、RO膜浓缩系统I 4、电解槽5、RO膜浓缩系统II7、产水箱9。经过RO膜浓缩系统I 4浓缩后的产水出水口与产水储罐6连通,电解槽5的电解液进口连通有电解液储罐8,RO膜浓缩系统II7浓水出口连通电解液储罐8,使得RO膜浓缩系统II7的浓水(CoSO4电解液)回到电解液储罐中,达到资源回收利用的目的。所述相邻的两个装置直接的连通的管道上设有控制阀11。
本发明所述处理高毒性高COD废水的系统使用时,混合废水储罐1中的废水,其COD>20000mg/L,并含有高浓度的有毒重金属离子Cr6+、Cd2+,以及Cr3+。因此,首先将混合废水储罐1中的废水通过加药曝气系统I,通过往加药曝气系统I投加过量的FeSO4(理论用量的1.5~2倍),并不断通入压缩空气,以完全去除其中的Cd2+,并将Cr6+完全还原为Cr3+。其反应方程式为:
2Fe2++Cd2++2O2=Fe2CdO4↓;
3Fe2++Cr6+=Cr3++3Fe3+
反应1.5~2h后,Cd2+离子被完全除去,Cr6+完全被还原为Cr3+。为了去除残留的Cr3 +、Fe2+和Fe3+,需将废水再通过一套加药曝气系统II,所加药剂为NaOH,其反应方程式为:
Cr3++3OH-=Cr(OH)3↓;
Fe3++3OH-=Fe(OH)3↓;
4Fe2++8OH-+O2+2H2O=4Fe(OH)3↓;
反应30~45min后,废水中的金属离子基本被除去,仅剩下高浓度COD。由于废水水量大,若直接采用常规的电极进行电解,则电能消耗量较大。因此,本发明还设有RO膜浓缩系统I 4,将废水浓缩15~20倍,浓缩1.5~2.5h后的浓水直接进入电解槽5,其COD>200000-300000mg/L,经过浓缩6-8次的进水后,可直接进行电解,电解4~5h。由于COD的浓度过高,为了提高电解效率,本发明采用了两种改性措施,一是在电解槽5中加入纳米级的活性炭颗粒(粒径为10~20μm),形成无数三维电极,以提高电流效率;二是在废水中加入硫酸钴电解液(CoSO4,wt%=2.5),在电场(U=24V,I=4~6A)的作用,将Co2+氧化为Co3+,而Co3+具有一定的氧化性,在电流的作用下,能氧化有机物,因此能显著提高降解效率。反应方程式如下:
2Co2+-2e-=2Co3+
Co3++CxHyOz→Co2++CO2+H2O;
此外,为了回收CoSO4电解液,本发明在电解槽5装置后,还设有RO膜浓缩系统II7,进行浓缩处理1~2h,将处理后的水浓缩到电解液原始浓度。浓缩后的产水进行后续的生化处理,浓水(CoSO4电解液)回到电解液储罐中,达到资源回收利用的目的。
本发明所述的处理高毒性高COD废水的方法的实施例,本实施例所述一种处理高毒性高COD废水的方法,包括以下步骤:
1)将高毒性高COD废水经过加药处理;
2)将经过加药处理后的废水进行RO膜浓缩处理;
3)经过2)处理后的废水再进行电解;
4)经过电解后的废水再进入RO膜浓缩处理,浓缩后的产水进行后续的生化处理,浓水回收至电解液中,再用于电解。
所述步骤1)中的加药处理步骤包括1a)添加过量的FeSO4(理论用量的1.5-2倍),并不断通入压缩空气,加药处理1.5~2h;1b)经过步骤a)处理后的废水再加入固体NaOH,反应30~45min。
所述步骤2)中的RO膜浓缩的倍数为15~20倍,膜浓缩时间为1.5~2.5h。
所述步骤3)中的单次电解所需的膜浓缩次数为6~8次,电解时间为4~5h,电解处理包括3a)加入纳米级的活性炭颗粒(粒径为10~20μm),形成无数三维电极;或/和3b)在废水中加入硫酸钴电解液(CoSO4,wt%=2.4~3.0),在电场(U=24V,I=4~6A)的作用下进行电解。
所述步骤4)的RO膜膜浓缩时间为1~2h,浓缩的倍数为15~20倍。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种处理高毒性高COD废水的方法,其特征在于,包括以下步骤:
1)将高毒性高COD废水经过加药处理;
2)经过1)处理后的废水再进行电解处理;
所述电解处理包括2a)加入纳米级的活性炭颗粒,形成无数三维电极;或/和2b)在废水中加入硫酸钴电解液,在电场的作用下进行电解。
2.根据权利要求1所述的处理高毒性高COD废水的方法,其特征在于,所述步骤1)中的加药处理步骤包括添加过量的FeSO4,并不断通入压缩空气,加药处理1.5~2h,优选地,所述FeSO4用量为理论用量的1.5~2倍。
3.根据权利要求2所述的处理高毒性高COD废水的方法,其特征在于,所述加药处理还包括经过FeSO4处理后的废水再加入NaOH,反应30~45min。
4.根据权利要求1所述的处理高毒性高COD废水的方法,其特征在于,所述步骤1)与步骤2)之间包括步骤:将经过加药处理后的废水进行RO膜浓缩处理,优选地,所述RO膜浓缩的倍数为15~20倍,膜浓缩时间为1.5~2.5h;优选地,所述单次电解所需的膜浓缩次数为6~8次。
5.根据权利要求1所述的处理高毒性高COD废水的方法,其特征在于,所述步骤2)后还包括步骤:经过电解后的废水再进入RO膜浓缩处理,浓缩后的产水进行后续的生化处理,浓水回收至电解液中,再用于电解;优选地,所述RO膜浓缩时间为1~2h,浓缩的倍数为15~20倍。
6.根据权利要求1所述的处理高毒性高COD废水的方法,其特征在于,所述活性炭颗粒的粒径为10~20μm,硫酸钴电解液质量浓度为2.4~3.0%,所述电场条件为U=24V,I=4~6A。
7.一种处理高毒性高COD废水的系统,其特征在于,所述系统包括通过管道依次连通的加药曝气系统I、加药曝气系统II、电解槽。
8.根据权利要求7所述的处理高毒性高COD废水的系统,其特征在于,所述电解槽中加入纳米级的活性炭颗粒,形成无数三维电极或/和在电解槽中加入硫酸钴电解液,在电场的作用下进行电解,优选地,所述活性炭颗粒粒径为10~20μm,所述硫酸钴电解液质量浓度为2.4~3.0%,所述电场条件为U=24V,I=4~6A。
9.根据权利要求7所述的处理高毒性高COD废水的系统,其特征在于,加药曝气系统I中添加的药剂为过量的FeSO4,并不断通入压缩空气;所述加药曝气系统II添加的药剂为NaOH。
10.根据权利要求7所述的处理高毒性高COD废水的系统,其特征在于,所述加药曝气系统II的出水口还连通有RO膜浓缩系统I,所述RO膜浓缩系统I出水口与电解槽连通;优选地,所述电解槽的出水口连通有RO膜浓缩系统II;所述RO膜浓缩系统II浓水出口连通电解液储罐。
CN201910006944.2A 2019-01-02 2019-01-02 一种处理高毒性高cod废水的方法及系统 Pending CN109650590A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910006944.2A CN109650590A (zh) 2019-01-02 2019-01-02 一种处理高毒性高cod废水的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910006944.2A CN109650590A (zh) 2019-01-02 2019-01-02 一种处理高毒性高cod废水的方法及系统

Publications (1)

Publication Number Publication Date
CN109650590A true CN109650590A (zh) 2019-04-19

Family

ID=66118489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910006944.2A Pending CN109650590A (zh) 2019-01-02 2019-01-02 一种处理高毒性高cod废水的方法及系统

Country Status (1)

Country Link
CN (1) CN109650590A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335705A (ja) * 1997-05-28 1998-12-18 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子及びその製造方法
CN101434443A (zh) * 2007-11-15 2009-05-20 中国石油化工股份有限公司 一种炼油污水的处理方法及装置
CN101613162A (zh) * 2009-07-30 2009-12-30 上海京瓷电子有限公司 一种电镀废水再利用的处理方法
CN102234166A (zh) * 2010-05-05 2011-11-09 上海东硕环保科技有限公司 三维电解氧化-膜分离一体化工业废水再生回用工艺
CN107285440A (zh) * 2017-07-04 2017-10-24 中国科学院生态环境研究中心 一种基于原位共沉淀反应处理含重金属染料废水的方法
CN108101163A (zh) * 2017-12-21 2018-06-01 衢州华友钴新材料有限公司 一种从工业废水中回收有价金属并降氨氮及cod的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335705A (ja) * 1997-05-28 1998-12-18 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子及びその製造方法
CN101434443A (zh) * 2007-11-15 2009-05-20 中国石油化工股份有限公司 一种炼油污水的处理方法及装置
CN101613162A (zh) * 2009-07-30 2009-12-30 上海京瓷电子有限公司 一种电镀废水再利用的处理方法
CN102234166A (zh) * 2010-05-05 2011-11-09 上海东硕环保科技有限公司 三维电解氧化-膜分离一体化工业废水再生回用工艺
CN107285440A (zh) * 2017-07-04 2017-10-24 中国科学院生态环境研究中心 一种基于原位共沉淀反应处理含重金属染料废水的方法
CN108101163A (zh) * 2017-12-21 2018-06-01 衢州华友钴新材料有限公司 一种从工业废水中回收有价金属并降氨氮及cod的方法

Similar Documents

Publication Publication Date Title
Liu et al. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies
CN108423776B (zh) 一种电容去离子耦合电催化协同去除重金属和有机物的方法
CN102976559B (zh) 厌氧氨氧化微生物逆向电渗析污水处理同时发电的方法及装置
CN101918106B (zh) 从碱性洗液除去硫化物的方法
CN111533223A (zh) 一种FeS2阴极非均相电芬顿水处理方法
CN109694119A (zh) 一种利用改性活性炭粒子电极处理脱硫废水的方法
CN112978874B (zh) 利用流动电极电容去离子装置净化含碘盐废水的方法
CN101186376B (zh) 去除废水中半金属锑离子的方法
Zhang et al. Recovery of phosphorus and metallic nickel along with HCl production from electroless nickel plating effluents: The key role of three-compartment photoelectrocatalytic cell system
CN111138009A (zh) 基于金属空气电池的水处理回收装置及其方法
CN106745538B (zh) 一种从次磷酸盐废水中回收单质磷的方法
CN102992527A (zh) 一种预处理高浓度难降解有机废水的方法
CN103951017A (zh) 一种电解处理含氰含铜电镀废水并回收铜的方法
CN107935125A (zh) Sn–GAC粒子及其在三维电化学反应处理4‑氯酚废水中的应用
CN107552052A (zh) 一种难降解有机废水的处理方法
CN102942243A (zh) 三维电极与电类Fenton联用的废水处理方法
Zhang et al. Enhanced photoelectrocatalytic oxidation of hypophosphite and simultaneous recovery of metallic nickel via carbon aerogel cathode
CN106608696A (zh) 一种基于edi和络合剂的选择性分离重金属离子的方法
CN209619059U (zh) 一种处理高毒性高cod废水的系统
CN105621591B (zh) 一种基于电子调控的产电脱盐装置及利用该装置处理含硫铵炼化废水的方法
CN107200422A (zh) 一种电化学预处理金矿选冶残留有机物及含氰废水的方法
CN104986898B (zh) 一种常温铁氧体循环处理重金属污水的方法及装置
CN109650590A (zh) 一种处理高毒性高cod废水的方法及系统
CN205838763U (zh) 一种循环冷却水处理装置
CN106082420B (zh) 一种产电微生物阳极辅助异质结阳极的自偏压污染控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination