CN109647389A - 利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法 - Google Patents

利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法 Download PDF

Info

Publication number
CN109647389A
CN109647389A CN201910051991.9A CN201910051991A CN109647389A CN 109647389 A CN109647389 A CN 109647389A CN 201910051991 A CN201910051991 A CN 201910051991A CN 109647389 A CN109647389 A CN 109647389A
Authority
CN
China
Prior art keywords
film
substrate
nano
growth
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910051991.9A
Other languages
English (en)
Inventor
邓金祥
张�浩
段苹
李瑞东
徐智洋
孙俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910051991.9A priority Critical patent/CN109647389A/zh
Publication of CN109647389A publication Critical patent/CN109647389A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法属于半导体材料光催化降解有机污染物领域。本发明采用Au纳米颗粒作为Ga2O3薄膜的负载材料来增强Ga2O3材料的催化降解效率。采用直流磁控溅射法在Ga2O3薄膜上沉积一层Au膜,并通过退火的方式使Au薄膜变成Au纳米颗粒形态。本发明利用Au纳米颗粒的等离激元作用来提高Ga2O3材料降解有机污染物的降解效率。

Description

利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法
技术领域
本发明涉及一种利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法,属于半导体材料光催化降解有机污染物领域。
背景技术
近年来,半导体光催化技术作为一种低成本、环保和可持续的处理技术,与工业废水零排放计划相结合,显示出巨大的潜力。这种先进的氧化技术已被广泛证明能够去除水中的持久性有机化合物和微生物。目前半导体光催化降解有机污染物的研究绝大部分采用的为微纳米级颗粒材料,此种材料具有较大的比表面积、较高的污染物降解效率,但是阻碍其商业化的主要技术障碍是水处理后催化剂颗粒的回收。
为了提高Ga2O3材料的催化降解效率,科研工作者对Ga2O3材料进行了贵金属负载研究。研究发现Au、Ag、Pd、Cu、Pt等均能有效提高Ga2O3材料的催化降解效率。这是由于这些金属可以增强半导体材料的电荷分离和电子传递。目前制备贵金属纳米颗粒常采用化学法,存在贵金属纳米颗粒尺寸不可控的难题。
综上所述,亟需一种可调控贵金属纳米颗粒尺寸的生长手段来提高Ga2O3材料的催化降解效率。
发明内容
本发明采用Au纳米颗粒作为Ga2O3薄膜的负载材料来增强Ga2O3材料的催化降解效率。采用直流磁控溅射法在Ga2O3薄膜上沉积一层Au膜,并通过退火的方式使Au薄膜变成Au纳米颗粒形态。利用Au纳米颗粒的等离激元作用来提高Ga2O3材料降解有机污染物的降解效率。
本发明的目的可通过如下技术流程实现:
(1)采用石英片作为Ga2O3薄膜生长的基片,对石英基片进行超声清洗。
(2)利用射频磁控溅射设备在石英基片上沉积一层Ga2O3薄膜材料。
(3)利用直流溅射设备在Ga2O3薄膜材料上生长一层Au薄膜。
(4)利用管式炉对覆盖有Au薄膜的Ga2O3薄膜材料进行热退火处理。
(5)将制备的Au纳米颗粒负载的Ga2O3薄膜应用于有机污染物降解。
与已有技术相比,本发明的特征在利用Au纳米颗粒增强了Ga2O3薄膜催化降解有机污染物的降解效率,且可通过控制直流溅射Au薄膜的时间和退火处理控制Au纳米颗粒的尺寸。
附图说明
图1为Au纳米颗粒负载Ga2O3薄膜制备流程示意图
具体实施方式
用以下实例进一步介绍本发明。
实施例1
(1)以15mm×15mm的石英片作为Ga2O3薄膜生长的基片,利用丙酮、乙醇、去离子水依次超声清洗基片,并用氮气气枪吹干基片备用。
(2)采用射频磁控溅射设备在石英基片上沉积一层Ga2O3薄膜材料。系统预真空度为5×10-4Pa。薄膜的生长气氛为Ar,工作气压为1.0Pa。Ga2O3靶材的溅射功率为80W,溅射时间为180min,获得厚度约为225nm的Ga2O3薄膜。
(3)采用直流溅射设备在Ga2O3薄膜表面进行Au薄膜生长。工作气压为4Pa,溅射时间为5秒。
(4)采用管式炉对所制备薄膜进行退火处理。本发明提供的慢退火温度为800℃,恒温时间90分钟。慢速退火保护气体使用高纯N2(纯度99.999%)。通入保护气体后,开始升温,整个退火过程持续通气。
(5)将Au纳米颗粒负载的Ga2O3薄膜放入污染物降解装置中,在紫外光照下对亚甲基蓝进行降解。
实施例2
(1)以15mm×15mm的石英片作为Ga2O3薄膜生长的基片,利用丙酮、乙醇、去离子水依次超声清洗基片,并用氮气气枪吹干基片备用。
(2)采用射频磁控溅射设备在石英基片上沉积一层Ga2O3薄膜材料。系统预真空度为5×10-4Pa。薄膜的生长气氛为Ar,工作气压为1.0Pa。Ga2O3靶材的溅射功率为80W,溅射时间为180min,获得厚度约为225nm的Ga2O3薄膜。
(3)采用直流溅射设备在Ga2O3薄膜表面进行Au薄膜生长。工作气压为4Pa,溅射时间为10秒。
(4)采用管式炉对所制备薄膜进行退火处理。本发明提供的慢退火温度为800℃,恒温时间90分钟。慢速退火保护气体使用高纯N2(纯度99.999%)。通入保护气体后,开始升温,整个退火过程持续通气。
(5)将Au纳米颗粒负载的Ga2O3薄膜放入污染物降解装置中,在紫外光照下对亚甲基蓝进行降解。
实施例3
(1)以15mm×15mm的石英片作为Ga2O3薄膜生长的基片,利用丙酮、乙醇、去离子水依次超声清洗基片,并用氮气气枪吹干基片备用。
(2)采用射频磁控溅射设备在石英基片上沉积一层Ga2O3薄膜材料。系统预真空度为5×10-4Pa。薄膜的生长气氛为Ar,工作气压为1.0Pa。Ga2O3靶材的溅射功率为80W,溅射时间为180min,获得厚度约为225nm的Ga2O3薄膜。
(3)采用直流溅射设备在Ga2O3薄膜表面进行Au薄膜生长。工作气压为4Pa,溅射时间为15秒。
(4)采用管式炉对所制备薄膜进行退火处理。本发明提供的慢退火温度为800℃,恒温时间90分钟。慢速退火保护气体使用高纯N2(纯度99.999%)。通入保护气体后,开始升温,整个退火过程持续通气。
(5)将Au纳米颗粒负载的Ga2O3薄膜放入污染物降解装置中,在紫外光照下对亚甲基蓝进行降解。
当Au溅射时间为10秒时,退火处理后Au纳米颗粒负载的Ga2O3薄膜具有最佳的催化性能,其催化效率是单纯Ga2O3薄膜的2倍。这归因于Au纳米颗粒负载有效的增强Ga2O3材料的电荷分离和电子传递。

Claims (3)

1.Au纳米颗粒增强Ga2O3薄膜的制备方法,其特征在于:
(1)采用石英片作为Ga2O3薄膜生长的基片,对石英基片进行超声清洗;
(2)利用射频磁控溅射设备在石英基片上沉积一层Ga2O3薄膜材料;
(3)利用直流溅射设备在Ga2O3薄膜材料上生长一层Au薄膜;
(4)利用管式炉对覆盖有Au薄膜的Ga2O3薄膜材料进行热退火处理。
2.根据权利要求1所述的制备方法,其特征在于:
(1)以石英片作为Ga2O3薄膜生长的基片,超声清洗基片,并用氮气气枪吹干基片备用;
(2)采用射频磁控溅射设备在石英基片上沉积一层Ga2O3薄膜材料;系统预真空度为5×10-4Pa;薄膜的生长气氛为Ar,工作气压为1.0Pa;Ga2O3靶材的溅射功率为80W,溅射时间为180min,获得Ga2O3薄膜;
(3)采用直流溅射设备在Ga2O3薄膜表面进行Au薄膜生长;工作气压为4Pa,溅射时间为5秒;
(4)采用管式炉对所制备薄膜进行退火处理;退火温度为800℃,恒温时间90分钟,使用N2作为保护气体,整个退火过程持续通气。
3.应用权利要求1或2所述方法所制备的Au纳米颗粒增强Ga2O3薄膜应用于有机污染物降解。
CN201910051991.9A 2019-01-21 2019-01-21 利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法 Pending CN109647389A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910051991.9A CN109647389A (zh) 2019-01-21 2019-01-21 利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910051991.9A CN109647389A (zh) 2019-01-21 2019-01-21 利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法

Publications (1)

Publication Number Publication Date
CN109647389A true CN109647389A (zh) 2019-04-19

Family

ID=66118983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910051991.9A Pending CN109647389A (zh) 2019-01-21 2019-01-21 利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法

Country Status (1)

Country Link
CN (1) CN109647389A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776048A (zh) * 2019-11-13 2020-02-11 上海理工大学 一种小型串联填料式反应装置的设计
CN110787798A (zh) * 2019-10-29 2020-02-14 天津大学 一种利用Au纳米颗粒增强光催化性的Ga2O3薄膜制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552160A (zh) * 2016-03-13 2016-05-04 浙江理工大学 基于金纳米粒子增强氧化镓薄膜的紫外探测器件及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552160A (zh) * 2016-03-13 2016-05-04 浙江理工大学 基于金纳米粒子增强氧化镓薄膜的紫外探测器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIDONG HOU ETC.: "Photocatalytic performance of α-, β-, and γ -Ga2O3 for the destruction of volatile aromatic pollutants in air", 《JOURNAL OF CATALYSIS》 *
张燕辉等: "Au/Ga2O3的制备及其催化还原芳香族硝基化合物的研究", 《五邑大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110787798A (zh) * 2019-10-29 2020-02-14 天津大学 一种利用Au纳米颗粒增强光催化性的Ga2O3薄膜制备方法
CN110776048A (zh) * 2019-11-13 2020-02-11 上海理工大学 一种小型串联填料式反应装置的设计

Similar Documents

Publication Publication Date Title
CN109647389A (zh) 利用Au纳米颗粒增强Ga2O3薄膜光催化降解有机污染物的方法
CN1948140A (zh) 一种碳纳米管制备装置及方法
CN104843681B (zh) 可控尺寸石墨烯量子点的宏量制备方法
CN101104513B (zh) 单壁碳纳米管的生长方法
CN108821331B (zh) 一种氧化镓纳米棒的制备方法及产品
CN100500571C (zh) 一种制备氧化亚铜纳米柱阵列的方法
CN109107557B (zh) 一种光催化石墨烯/硅复合膜及其制备方法和应用
CN108993510B (zh) 一种活化过硫酸盐轮胎碳催化剂及制备与应用
CN105632863A (zh) 等离子刻蚀装置
CN110252397A (zh) 一种生物炭基复合材料及其制备方法和应用
CN104058446B (zh) 一种低维氧化锌纳米材料及其低温等离子体制备方法
EP2778128B1 (en) Method of thermal reduction of graphene oxide
CN106167892B (zh) 一种双金属/陶瓷复合薄膜及其制备方法
CN108751254A (zh) 原位无损剥离量子点的方法
CN201742637U (zh) 大气压介质阻挡空气冷等离子体射流装置
CN101608300A (zh) 高光催化活性的TiO2-ZnO双层复合薄膜的制备方法
CN100593584C (zh) 一种无催化剂无碳条件下ZnO纳米棒阵列的制备方法
CN112744876B (zh) 一种螺旋线形貌硫化钯颗粒的自组装方法
Kawakami et al. Effects of nonequilibrium atmospheric-pressure O2 plasma-assisted annealing on anatase TiO2 nanoparticles
CN101514444B (zh) 双壁碳纳米管电磁屏蔽膜的制备方法
CN110787798A (zh) 一种利用Au纳米颗粒增强光催化性的Ga2O3薄膜制备方法
CN109529800A (zh) 一种利用Ga2O3薄膜催化降解有机污染物的装置
CN1652639A (zh) 电热丝绝缘处理方法
CN102941079B (zh) 光电催化剂多层氧化锌纳米线阵列的制备方法
CN112897511A (zh) 一种表面洁净单壁碳纳米管、其制备方法、系统及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190419

WD01 Invention patent application deemed withdrawn after publication