CN109643740B - 制造互连太阳能电池的方法及这种互连太阳能电池 - Google Patents

制造互连太阳能电池的方法及这种互连太阳能电池 Download PDF

Info

Publication number
CN109643740B
CN109643740B CN201780026431.7A CN201780026431A CN109643740B CN 109643740 B CN109643740 B CN 109643740B CN 201780026431 A CN201780026431 A CN 201780026431A CN 109643740 B CN109643740 B CN 109643740B
Authority
CN
China
Prior art keywords
layer
trench
solar cell
electrode layer
bottom electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780026431.7A
Other languages
English (en)
Other versions
CN109643740A (zh
Inventor
约翰·博斯曼
安妮·费伦茨·卡雷尔·维克托·比泽曼
薇洛妮克·斯蒂芬妮·盖瓦尔特
尼古拉·德伯纳迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netherlands Organization For Applied Scientific Research
Original Assignee
Netherlands Organization For Applied Scientific Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netherlands Organization For Applied Scientific Research filed Critical Netherlands Organization For Applied Scientific Research
Publication of CN109643740A publication Critical patent/CN109643740A/zh
Application granted granted Critical
Publication of CN109643740B publication Critical patent/CN109643740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及制造互连太阳能电池的方法。该方法包括以下步骤:a)在基底上设置连续的层堆叠部(100)。层堆叠部具有顶部电极层(130)、与基底相邻的底部电极层(140)、光伏有源层(150)和与底部电极层相邻的阻挡层(160),阻挡层介于顶部电极层与底部电极层之间。b)使用具有第一波长的第一激光束(270),选择性地去除顶部电极层和光伏层,以获得曝光阻挡层的第一沟槽(210);c)使用具有第二波长的第二激光束(272),选择性地去除第一沟槽内阻挡层和底部电极层,以获得暴露基底的第二沟槽(312),d)用电绝缘构件(480)填充第一沟槽和第二沟槽。第一激光束的第一波长比与光伏层的带隙能量相对应的波长大。

Description

制造互连太阳能电池的方法及这种互连太阳能电池
技术领域
本发明涉及一种用于制造互连太阳能电池的方法。另外,本发明涉及互连太阳能电池。
背景技术
从US 2008 0314439已知一种制造薄膜太阳能电池板的方法。从形成在绝缘基底上的薄膜层堆叠部来形成单片集成薄膜光伏电池阵列的过程包括:在薄膜层堆叠部中形成至少一个单元隔离划刻部。对于与相应的单元隔离划刻部相邻的每个单元隔离划刻部,形成第二电接触层隔离划刻部。在每个单元隔离划刻部与其相应的第二电接触层隔离划刻部之间,在薄膜层堆叠部中形成通道划刻部。绝缘墨设置在每个单元隔离划刻部中,并且导电墨设置在每个通道划刻部中,以形成通道。导电墨还沿着薄膜层堆叠部的顶表面设置,以形成至少一个导电栅格。
常规单片互连CIGS模块的主要技术问题在于,由于CIGS材料的横向导电性,在P1划刻部中存在分流。使用激光技术的后端互连CIGS模块中的问题在于,在P3划刻部中产生分流器,这主要是由激光划刻时材料的熔化行为引起的。P1和P3中的这些分流限制了太阳能电池模块可实现的效率。
可替代地,可使用“常规”P1、P2、P3后端互连,但是需要更昂贵的皮秒激光器来生成P1划刻部、P2划刻部和P3划刻部。
因此,本发明的目的是提供一种用于提高互连太阳能电池效率的制造方法,并提供这种更有效的互连太阳能电池。
发明内容
根据第一方面,本发明提供了根据权利要求1的方法。
有利地,通过应用本发明,可获得具有减小的死区宽度的无分流互连。
在实施方式中,该方法还包括e)使用具有第三波长的第三激光束,选择性地去除第一沟槽内第二太阳能电池的阻挡层的部分和电绝缘材料,以获得第三沟槽,从而暴露底部电极层的部分;f)沉积电互连构件,该电互连构件覆盖第三沟槽的至少部分,并使第一太阳能电池的顶部电极层与第一沟槽内的第二太阳能电池的底部电极层的暴露部分相连接。
在实施方案中,第一波长在1μm和3μm之间的范围内。有利地,使用这种激光器的方法使得能够具有在单元中产生(光学)结构的可能性,该结构可用于制造半透明模块。另外,可使用2μm波长和0.532μm(532nm)波长激光的组合来生成用于包裹式接触设计的无旁路通道。532nm波长激光的光斑尺寸应比2μm波长激光的光斑尺寸小,以避免532nm光在P3划刻部边界上的任何吸收。例如,第二激光束的20μm绿点应与P3划刻部壁具有大约10μm的间隙。较近的距离会在相邻CIGS层中产生相位变化。
在另一实施方式中,第一激光束具有0.25ns至100ns范围内的脉冲周期。有利地,使用这种纳秒脉冲激光束的方法使得能够具有在单元中产生可用于制造半透明模块的(光学)结构的可能性。另外,可使用2μm波长和0.532μm波长纳秒脉冲激光的组合来生成用于包裹式方法的无分流通道。532nm波长激光的光斑尺寸应比2μm波长激光的光斑尺寸小,以避免532nm光在P3划刻部边界上的任何吸收。
根据另一方面,本发明提供互连太阳能电池,互连太阳能电池包括在基底上的连续的层堆叠部,该层堆叠部包括顶部电极层、与基底相邻的底部电极层,具有光伏有源层和与底部电极层相邻的阻挡层,阻挡层介于顶部电极层和底部电极层之间;层叠层中的第一沟槽,完全延伸穿过顶部电极层、光伏层,从而暴露出阻挡层;第一沟槽内的第二沟槽,穿过底部电极层,从而暴露基底,其中,第二沟槽和第一沟槽配置为提供连续的层堆叠部的分离,以形成第一太阳能电池和第二太阳能电池,并且具有第一沟槽内的第二太阳能电池的阻挡层的部分和第一沟槽内的第二太阳能电池的底部电极层的部分;填充第一沟槽和第二沟槽的电绝缘材料。
在实施方式中,互连太阳能电池还包括第三沟槽,第三沟槽穿过电绝缘材料和第一沟槽内第二太阳能电池的阻挡层的部分,从而暴露第一个沟槽内第二太阳能电池的底部电极层的部分;电互连构件,覆盖第三沟槽的至少部分,并且使第一太阳能电池的顶部电极层与第一沟槽内第二太阳能电池的底部电极层的部分相连接。
在所附权利要求中公开了其他实施方式。
附图说明
下文将仅通过举例的方式,参考附图来描述本发明的实施方式,附图本质上为示意性的,因而不一定按比例绘制。另外,附图中的相同附图标记指示相同元件。
图1示意性地示出了根据本发明的连续的层堆叠部的实施方式;
图2示意性地示出了根据本发明的第一划线的实施方式;
图3示意性地示出了根据本发明的第二划刻部的实施方式;
图4示意性地示出了根据本发明的隔离构件的实施方式;
图5示意性地示出了根据本发明的第三划刻部的实施方式;以及
图6示意性地示出了根据本发明的互连构件的实施方式。
具体实施方式
图1示意性地示出了根据本发明的连续的层堆叠部100的实施方式。从连续的层堆叠部100开始制造互连太阳能电池的阵列,理想的是,通过可扩展的连续卷对卷工艺来制造,该工艺允许快速、大面积和低成本的大规模生产,例如高达例如每年1千兆瓦或更多。
连续的层堆叠部100放置在基底120上。层堆叠部100包括顶部电极层130、与基底相邻的底部电极层140。层堆叠部100具有光伏有源层150以及与底部电极层140相邻的阻挡层160,阻挡层160插入在顶部电极层130和底部电极层140之间。
基底120可以是刚性基底(例如玻璃)或柔性基底。基底120可透明或不透明。顶部电极层130可包括ZnO2Al层和ZnO2层的堆叠部。可在光伏有源层150与顶部电极层130之间使用CdS(硫化镉)的接合层,ZnO2层与CdS层相邻,以及ZnO2Al层与ZnO2层相邻。
基底120最初可作为薄的、柔韧的且可能透明的箔设置在辊子上。然后,可对基底120施行高速制造工艺,以将连续的层堆叠部100沉积到基底120上。该制造过程可在大气条件下进行,并不需要真空。
光伏有源层150包括CIGS(铜铟镓(二)硒化物,copper indium gallium(di)selenide)层。可替代地,光伏有源层150包含钙钛矿。可替代地,光伏有源层150包括CIGS层和钙钛矿的组合。
底部电极层140包括钼层。阻挡层160包括MoSe2层。MoSe2层在底部电极层140与光伏有源层150之间形成交界层。
图2示意性地示出了根据本发明的第一划刻部P3的实施方式。通过选择性地去除顶部电极层130和光伏层150来获得第一沟槽210,从而暴露阻挡层160。这通过使用来自第一激光器的具有第一波长的第一激光束270来完成。
根据本发明,第一波长在1μm和3μm之间的范围内。可使用约2μm的波长。第一波长设定为比光伏层150的带隙能量波长更长。即,如果光伏层150的带隙是Eb=h c/λ,其中,h是普朗克常数,以及λ是可视为带隙能量波长的相应波长,第一激光束270的波长应比带隙能量波长λ更长。第一激光束270具有在0.25ns至100ns范围内的脉冲周期。
通过使用可为纳秒脉冲激光束的第一激光束270,可容易地保留层堆叠部100的应保持的区域。另外,使用2μm纳秒激光束的方法,使得可在可用于制造半透明模块的单元中创建(光学)结构。另外,可使用2μm波长和0.532μm(532nm)波长的纳秒脉冲激光的组合来生成用于包裹穿过方法的无分流通道。532nm波长激光的光斑尺寸应小于2μm波长激光的光斑尺寸,以避免532nm光在P3划刻部边界上的任何吸收。例如,第二激光束的20μm绿点应与P3划刻部壁具有约10μm的间隙。较近的距离会在相邻CIGS层产生相位变化。
阻挡层160是防止第一激光束270到达底部电极层140的阻止层。阻挡层160可为激光划刻部P3之后的MoSe2碎片。
图3示意性地示出了根据本发明的第二划刻部P1的实施方式。通过选择性地去除第一沟槽210内的阻挡层160和底部电极层140以暴露基底120,获得第二沟槽312。这通过使用来自第二激光器的、具有第二波长的第二激光束272来完成。因而,第二沟槽312和第一沟槽210的组合提供连续的层堆叠部100的分离,用于形成第一太阳能电池302和第二太阳能电池304。第二沟槽312在第一沟槽210内生成,并且该P1划刻部在第一沟槽内留下第二太阳能电池的阻挡层160b的部分314以及第一沟槽210内的第二太阳能电池304的底部电极层140b的部分315。部分314和部分315彼此堆叠,并且位于第二沟槽312边缘上的第一沟槽210中。
第二波长在0.3μm至1.5μm范围内旋转。可使用0.532μm或1.064μm(1064nm)的波长。较小的波长(0.532μm)更适合于生成更薄的划刻部。第二激光束272可具有0.25ns至100ns范围内的脉冲周期。通过使用可为纳秒脉冲激光束的第二激光束272,可容易地保留应该保持的层堆叠部100的区域。
图4示意性地示出了根据本发明的、位于第一沟槽210和第二沟槽312内的隔离构件的实施方式。第一沟槽210和第二沟槽312填充有形成隔离构件的电绝缘材料480。电绝缘材料480可为隔离墨。现在使用墨可UV固化,但也可使用其他机制,例如通过热机制(例如使用激光束或红外光束)。
图5示意性地示出了根据本发明的第三划刻部P2的实施方式。通过选择性地去除第一沟槽210内的第二太阳能电池304的电绝缘材料514和阻挡层160b的部分314来获得第三沟槽514。第三沟槽514暴露第一沟槽210内第二太阳能电池304的底部电极层140b的部分315。这通过使用来自第三激光器的、具有第三波长的第三激光束574来完成。
第三波长在0.3μm与1.5μm之间的范围内。可使用1.064μm的波长。第三激光束574可具有0.25ns至100ns范围内的脉冲周期。第二波长可与第三波长相同。另外,第二激光束272与第三激光束574相同。产生第二激光束272的第二激光器的规格可与产生第三激光束574的第三激光器相同或相似。实际上,第二激光器可与第三激光相同。
图6示意性地示出了根据本发明的互连构件的实施方式。沉积电互连构件690,从而覆盖第三沟槽514的至少部分,并且使第一太阳能电池302的顶部电极层630a与第一沟槽210内的第二太阳能电池304的底部电极层140b的部分315相连接。电互连构件690可为通过打印机或通过使用印刷技术制造的金属层或透明导电氧化物层,该金属层基于含金属的墨或糊剂或分散体。透明导电氧化物层减少死区。互连的太阳能电池可视为互连的太阳能电池布置。
有利地,通过应用本发明,可通过使用纳秒脉冲激光束来容易地保留层堆叠部100的应保持的、与互连构件690接触的区域。另外,结合使用2μm纳秒脉冲激光生成宽的P3划刻部和隔离墨的应用,使得其他纳秒脉冲激光器能够用于P1划刻部和P2划刻部。这使得无分流互连具有减小的死区宽度。通过使用2μm波长的激光,碎片(MoSe2)留在P3划刻部中的Mo层上,其实际上使得激光能够耦合,以通过电绝缘构件480和阻挡层160进行干净的P2划刻部。
在前面对附图的描述中,已参照本发明的具体实施方式描述了本发明。然而,显而易见的是,在不脱离如所附权利要求中概述的本发明的范围的情况下,可以对其进行各种修改和变化。
另外,在不脱离本发明的实质范围的情况下,可进行许多修改,以使具体情况或材料适应本发明的教导。因此,意图是本发明不限于所公开的具体实施方式,而是本发明将包括落入所附权利要求的范围内的所有实施方式。
具体地,可对本发明的各个方面的具体特征进行组合。通过添加针对本发明的另一方面描述的特征,可以进一步有利地增强本发明的一个方面。
应理解的是,本发明仅受所附权利要求及其技术等同物的限制。在本文件及其权利要求中,动词“包括”及其变形以其非限制性意义进行使用,意味着包括该词后面的项目,而不排除未具体提及的项目。另外,不定冠词“一”或“一个”对元素的引用不排除存在多于一个元件的可能性,除非上下文明确要求存在一个和元素中的仅一个。因此而,不定冠词“一”或“一个”通常意味着“至少一个”。

Claims (17)

1.一种制造互连太阳能电池的方法,包括以下步骤:
a)在基底(120)上设置连续的层堆叠部(100),所述层堆叠部包括顶部电极层(130)、与所述基底相邻的底部电极层(140),具有光伏有源层(150)和介于所述顶部电极层与所述底部电极层之间的、与所述底部电极层相邻的阻挡层(160);
b)使用具有第一波长的第一激光束(270),选择性地去除所述顶部电极层和所述光伏有源层,以获得曝光所述阻挡层的第一沟槽(210);
c)使用具有第二波长的第二激光束(272),选择性地去除所述第一沟槽内的所述阻挡层和所述底部电极层,以获得暴露所述基底的第二沟槽(312),其中,所述第二沟槽和所述第一沟槽提供所述连续的层堆叠部的分离,从而形成第一太阳能电池(302)和第二太阳能电池(304),以及所述第二沟槽在第一沟槽内,从而留下所述第一沟槽内的所述第二太阳能电池的阻挡层(160b)的部分(314)以及所述第一沟槽内的所述第二太阳能电池的底部电极层(140b)的部分(315);
d)用电绝缘构件(480)填充所述第一沟槽和所述第二沟槽;
所述第一波长比与所述光伏有源层的带隙能量相对应的波长大,
其中,所述阻挡层(160)是防止所述第一激光束(270)到达所述底部电极层(140)的阻止层,所述底部电极层包括钼,并且所述阻挡层(160)包括MoSe2层,所述MoSe2层在所述底部电极层与所述光伏有源层之间形成交界层,
所述方法还包括:
e)使用具有第三波长的、能够耦合进入MoSe2层的第三激光束(574),以选择性地去除所述第一沟槽(210)内的所述第二太阳能电池(304)的MoSe2层(160b)的部分(314)和所述电绝缘构件(480),以获得第三沟槽(514),所述第三沟槽(514)暴露所述第一沟槽(210)内的所述第二太阳能电池的底部电极层的部分(315);
f)沉积电互连构件(690),所述电互连构件(690)覆盖所述第三沟槽(514)的至少部分,并使所述第一太阳能电池(302)的顶部电极层(630a)与所述第一沟槽内的所述第二太阳能电池的底部电极层的部分(315)相连接。
2.根据权利要求1所述的方法,其中,所述第一波长在1μm与3μm之间的范围内。
3.根据权利要求1所述的方法,其中,所述第一激光束的脉冲周期在0.25ns与100ns之间的范围内。
4.根据权利要求1所述的方法,其中,所述第二波长在0.3μm与1.5μm之间的范围内。
5.根据权利要求1所述的方法,其中,所述第二激光束的脉冲周期在0.25ns与100ns之间的范围内。
6.根据权利要求1所述的方法,其中,所述第三波长在0.3μm与1.5μm之间的范围内。
7.根据权利要求1所述的方法,其中,所述第三激光束的脉冲周期在0.25ns与100ns之间的范围内。
8.根据权利要求1所述的方法,其中,所述第二波长与所述第三波长相同。
9.根据权利要求1所述的方法,其中,所述第二激光束(272)与所述第三激光束(574)相同。
10.根据权利要求1所述的方法,其中,所述顶部电极层(130)包括ZnO2Al层和ZnO2层的堆叠。
11.根据权利要求10所述的方法,其中,在所述光伏有源层(150)与所述顶部电极层(130)之间设置CdS层,其中,所述ZnO2层邻近所述CdS层,以及所述ZnO2Al层邻近所述ZnO2层。
12.根据权利要求1所述的方法,其中,所述光伏有源层(150)包括CIGS层。
13.根据权利要求1所述的方法,其中,所述光伏有源层(150)包含钙钛矿。
14.根据权利要求1所述的方法,其中,所述电绝缘构件(480)是隔离墨。
15.根据权利要求1所述的方法,其中,所述电互连构件(690)是透明导电氧化物层、或包括墨或糊剂、或固化金属的金属层。
16.根据前述权利要求1所述的方法制造的互连太阳能电池,包括在基底(120)上的连续的层堆叠部(100),所述层堆叠部包括:
顶部电极层(130)、与所述基底相邻的包括钼的底部电极层(140),具有光电有源层(150)和与所述底部电极层相邻的阻挡MoSe2层(160),所述阻挡MoSe2层(160)介于所述顶部电极层与底部电极层之间;
所述层堆叠部中的第一沟槽(210),完全延伸穿过所述顶部电极层和所述光伏有源层,从而暴露所述阻挡层;
处于所述第一沟槽内部的第二沟槽(312),穿过所述底部电极层,从而暴露所述基底,其中,所述第二沟槽和所述第一沟槽配置为提供所述连续的层堆叠部的分离,以形成第一太阳能电池(302)和第二太阳能电池(304),以及具有所述第一沟槽内的所述第二太阳能电池的MoSe2层(160b)的部分(314)以及所述第一沟槽内的所述第二太阳能电池的底部电极层(140b)的部分(315);
电绝缘构件(480),填充所述第一沟槽和所述第二沟槽。
17.根据权利要求16所述的互连太阳能电池,还包括:
第三沟槽(514),穿过所述电绝缘构件(480)和所述第一沟槽(210)内的所述第二太阳能电池(304)的MoSe2层(160b)的部分(314),从而暴露所述第一沟槽内的所述第二太阳能电池的底部电极层(140b)的部分(315);
电互连构件(690),覆盖所述第三沟槽(514)的至少部分,并使所述第一太阳能电池(302)的顶部电极层(630a)与所述第一沟槽内的所述第二太阳能电池的底部电极层的部分(315)相连接。
CN201780026431.7A 2016-04-29 2017-04-26 制造互连太阳能电池的方法及这种互连太阳能电池 Active CN109643740B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2016708A NL2016708B1 (en) 2016-04-29 2016-04-29 A method for manufacturing interconnected solar cells and such interconnected solar cells.
NL2016708 2016-04-29
PCT/NL2017/050268 WO2017188815A1 (en) 2016-04-29 2017-04-26 A method for manufacturing interconnected solar cells and such interconnected solar cells

Publications (2)

Publication Number Publication Date
CN109643740A CN109643740A (zh) 2019-04-16
CN109643740B true CN109643740B (zh) 2022-08-26

Family

ID=56889135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780026431.7A Active CN109643740B (zh) 2016-04-29 2017-04-26 制造互连太阳能电池的方法及这种互连太阳能电池

Country Status (8)

Country Link
US (1) US11211507B2 (zh)
EP (1) EP3449513B1 (zh)
JP (1) JP2019515500A (zh)
CN (1) CN109643740B (zh)
NL (1) NL2016708B1 (zh)
RU (1) RU2019101886A (zh)
TW (1) TW201810702A (zh)
WO (1) WO2017188815A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713129B (zh) * 2018-12-28 2021-02-26 无锡极电光能科技有限公司 钙钛矿薄膜太阳能组件及其制备方法
EP3764405A1 (en) * 2019-07-10 2021-01-13 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Method of manufacturing a thin film photovoltaic product
EP3767686A1 (en) * 2019-07-18 2021-01-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Method of manufacturing a thin-film photovoltaic product
CN112133787B (zh) * 2020-08-31 2021-06-11 中国建材国际工程集团有限公司 铜铟镓硒薄膜太阳能电池组件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668131A (zh) * 2009-10-22 2012-09-12 万佳雷射有限公司 用于将薄膜器件分割成分离的电池单元的方法和装置
US20120234366A1 (en) * 2009-05-08 2012-09-20 Andreas Lambertz Method for the production and series connection of photovoltaic elements to give a solar module and solar module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736940B2 (en) * 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
JP4340246B2 (ja) * 2005-03-07 2009-10-07 シャープ株式会社 薄膜太陽電池およびその製造方法
US20070079866A1 (en) * 2005-10-07 2007-04-12 Applied Materials, Inc. System and method for making an improved thin film solar cell interconnect
US8716591B2 (en) 2007-06-20 2014-05-06 Ascent Solar Technologies, Inc. Array of monolithically integrated thin film photovoltaic cells and associated methods
US7863074B2 (en) * 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US9318644B2 (en) * 2009-05-05 2016-04-19 Solexel, Inc. Ion implantation and annealing for thin film crystalline solar cells
US20120094425A1 (en) * 2010-10-14 2012-04-19 Miasole Ablative scribing of solar cell structures
JP2013102070A (ja) * 2011-11-09 2013-05-23 Fujifilm Corp 集積化太陽電池の製造方法
DE102012205978A1 (de) * 2012-04-12 2013-10-17 Robert Bosch Gmbh Photovoltaische Dünnschichtsolarmodule sowie Verfahren zur Herstellung solcher Dünnschichtsolarmodule
ES2568623T3 (es) * 2012-05-18 2016-05-03 Isis Innovation Limited Dispositivo optoeléctrico que comprende material de armazón poroso y perovskitas
US20140273329A1 (en) * 2013-03-13 2014-09-18 Tsmc Solar Ltd. Solar cell laser scribing methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234366A1 (en) * 2009-05-08 2012-09-20 Andreas Lambertz Method for the production and series connection of photovoltaic elements to give a solar module and solar module
CN102668131A (zh) * 2009-10-22 2012-09-12 万佳雷射有限公司 用于将薄膜器件分割成分离的电池单元的方法和装置

Also Published As

Publication number Publication date
CN109643740A (zh) 2019-04-16
RU2019101886A (ru) 2020-07-24
US20190157480A1 (en) 2019-05-23
TW201810702A (zh) 2018-03-16
NL2016708B1 (en) 2017-11-16
US11211507B2 (en) 2021-12-28
EP3449513B1 (en) 2023-07-26
JP2019515500A (ja) 2019-06-06
NL2016708A (en) 2017-11-06
RU2019101886A3 (zh) 2020-07-24
EP3449513A1 (en) 2019-03-06
WO2017188815A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
EP3238270B1 (en) Method for manufacturing a thin film solar cell arrangement and such a thin film solar cell arrangement
CN109643740B (zh) 制造互连太阳能电池的方法及这种互连太阳能电池
TWI529958B (zh) 太陽能電池之製造方法
EP2416377B1 (en) Solar cell and manufacturing method thereof
KR20110107171A (ko) 태양광 발전장치 및 이의 제조방법
WO2012051574A2 (en) Ablative scribing of solar cell structures
WO2013108621A1 (ja) 集積化太陽電池の製造方法
TW201340364A (zh) 積體化太陽電池的製造方法
US20220388097A1 (en) Method for creating shunt free translucent flexible thin-film photovoltaic module
WO2013121839A1 (ja) 薄膜太陽電池およびその製造方法
KR101055019B1 (ko) 태양광 발전장치 및 이의 제조방법
US10431741B2 (en) Method of making an array of interconnected solar cells
KR102419215B1 (ko) 박막 태양광 모듈을 제조하는 방법
JP2013149699A (ja) 集積化太陽電池の製造方法
US20120049310A1 (en) Thin film photoelectric conversion module and fabrication method of the same
KR20150142414A (ko) 도전성 금속층을 적용한 p2 패터닝부를 포함하는 박막 태양전지 및 이의 제조방법
NL2014043B1 (en) Method of making a array of interconnected solar cells.
KR101349432B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101349411B1 (ko) 태양전지 및 이의 제조방법
JP2011040462A (ja) 光電変換装置およびその製造方法
JP2012009689A (ja) カルコパイライト型太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191106

Address after: Holland Hague

Applicant after: The Netherlands Organization For Applied Scientific Research

Address before: Peyden, Netherlands

Applicant before: STICHTING ENERGIEONDERZOEK CENTRUM NEDERLAND

Applicant before: The Netherlands Organization For Applied Scientific Research

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant