CN109633635A - 基于结构化递归最小二乘的米波雷达测高方法 - Google Patents
基于结构化递归最小二乘的米波雷达测高方法 Download PDFInfo
- Publication number
- CN109633635A CN109633635A CN201910057762.8A CN201910057762A CN109633635A CN 109633635 A CN109633635 A CN 109633635A CN 201910057762 A CN201910057762 A CN 201910057762A CN 109633635 A CN109633635 A CN 109633635A
- Authority
- CN
- China
- Prior art keywords
- target
- representing
- elevation angle
- theta
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 33
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 238000013178 mathematical model Methods 0.000 claims description 11
- 238000005457 optimization Methods 0.000 claims description 10
- 230000003595 spectral effect Effects 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- 230000017105 transposition Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/882—Radar or analogous systems specially adapted for specific applications for altimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/415—Identification of targets based on measurements of movement associated with the target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/418—Theoretical aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开一种基于结构化递归最小二乘的米波雷达测高方法,主要解决现有方法在复杂地形环境下多径信号数目未知时,无法保证对低仰角目标高度有效估计的问题。其方案是:1)估计米波雷达回波数据的协方差矩阵,并对其进行特征值分解,获取噪声子空间;2)在复杂地形情况下,利用雷达回波数据对目标仰角及镜像仰角进行联合估计,得到目标仰角及镜像仰角集合的初始估计值;3)在多径数目信息未知的情况下,利用1)和2)的结果迭代估计目标仰角及镜像仰角,得到目标仰角最终估计值;4)利用最终估计值,计算出目标高度。本发明能有效实现对低仰角目标仰角及高度的测量,提升雷达对复杂多径环境下低仰角目标的跟踪性能,可用于目标跟踪与定位。
Description
技术领域
本发明属于雷达技术领域,特别涉及一种米波雷达目标测高方法,可用于复杂阵地条件下米波雷达对低仰角目标仰角及高度的估计。
背景技术
米波雷达在中远程预警等方面具有优势,近些年越来越受到世界各国的重视。但其在复杂阵地环境、多径数目未知的情况下对低仰角目标的跟踪仍面临一些技术难题。造成该问题的主要原因是由于多径效应的存在,即雷达回波信号中即包含目标直达波信号又包含与目标直达波信号相干的地面反射多径信号,从而影响了其对目标仰角的估计性能以及对目标的跟踪性能。
近些年来,随着数字阵列雷达的发展,通过阵列超分辨技术实现对低仰角目标仰角的精确估计成为了众学者研究的热点之一。现有的米波雷达低仰角目标测高算法大致可分为基于子空间类算法和基于最大似然类算法两大类。第一类算法以经典多重信号分类MUSIC算法最为代表,但经典MUSIC算法最为突显的缺陷之一是不能直接处理相干信号,虽然通过空间平滑技术SS可以使阵列接收信号协方差矩阵的秩在相干源情况下得以有效恢复,从而改善经典MUSIC算法对相关信号的处理能力,但空间平滑SS-MUSIC算法会带来有效阵列孔径的损失,进而降低算法的参数估计性能。最大似然ML类算法是另一类常见的阵列超分辨测高算法,这类算法可以直接用来处理相干源场景且对阵列流形没有特殊要求,是参数估计理论中一种典型的估计方法,但其对似然函数的求解是一个非线性的多维优化问题,直接通过多维搜索求解所需运算量随着目标个数的增加呈指数增长,难以满足实时性应用。为此,有学者提出了一种改进的最大似然RML算法,该算法通过利用一些先验信息,如天线高度,直达波信号与反射波信号之间的结构信息,简化了信号模型,最终只需进行一维搜索便可实现对目标仰角的估计,大大减少了运算量。但是在实际应用中,特别是在山区、丘陵等复杂地形场景下,由于直达波信号与多径信号之间的内在结构关系会随着目标的运动而改变且很难量测,导致现有经典多径信号模型与真实目标回波之间可能将产生失配,使得上述依赖地形信息RML测高算法无法对复杂地形情况下低仰角目标仰角进行有效估计,从而影响了米波雷达在复杂地形情况下对低仰角目标的跟踪性能。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种复杂阵地环境下的米波雷达目标测高方法,以在反射面非平坦、多径数目未知的情况下完成对低仰角目标仰角以及高度的估计,改善复杂阵地环境下米波雷达对低仰角目标的跟踪性能。
为实现上述目的,本发明的技术方案,包括如下:
1.基于结构化递归最小二乘的米波雷达测高方法,包括:
(1)利用阵列天线接收目标回波数据X,估计该接收数据的协方差矩阵RX;
(2)对协方差矩阵RX进行特征值分解,得到噪声子空间Un;
(3)在复杂阵地及多径数目未知的情况下,利用目标回波数据X,对目标仰角及镜像仰角进行联合估计,得到目标仰角及镜像仰角的初始估计值:
(3a)设定最大迭代次数I=20,令初始迭代序列i=1,通过目标回波数据X构造如下代价函数:
其中,Φ=[γ(1),…,γ(l),…,γ(L)]表示包含所有权重系数矢量的稀疏参数矩阵,γ(l)表示第l次阵列接收信号所对应的权重系数矢量,l=1,2,…L,L表示快拍数,(·)H表示共轭转置运算,||·||2表示二范数,W表示自适应滤波器系数,和分别表示对Φ和W的估计值;
(3b)构建整个观测空间上的完备字典B=[a(θ1),a(θ2),…,a(θn),…,a(θN)],
其中,a(θn)表示第n个观测方向上的目标信号基向量,θn表示第n个观测方向角度,n=1,2,…N,N表示离散化的目标信号观测方向的个数;
(3c)在复杂阵地环境、多径数目信息未知的情况下,将(3a)中代价函数转化为如下数学模型估计权重系数矢量:
其中,表示在第i次迭代中对自适应滤波器系数W的估计值,表示在第i次迭代中对稀疏参数矩阵Φ的估计值,在初始i=1时,
(3d)对(3c)中的优化函数进行求解,得到第i次迭代中对自适应滤波器系数的估计值
其中,⊙IN表示空间谱矩阵,⊙表示Hadamard积,IN表示维度为N×N的单位阵,表示噪声功率,(·)-1表示矩阵求逆运算;
(3e)利用自适应滤波器系数的估计值将(3a)中代价函数转化为如下数学模型估计第i次迭代中稀疏参数矩阵:
(3f)对(3e)中的数学模型进行求解,得到第i次迭代稀疏参数矩阵的估计值
(3g)设定阈值ε1=10-5,判断i>I或是否成立,若成立,则终止迭代,得到最终稀疏参数矩阵的估计值执行步骤(4),否则,令i=i+1,返回步骤(3c),其中,|·|表示取绝对值;
(4)利用(3g)中得到的最终稀疏参数矩阵的估计值估计目标仰角的初始值及镜像仰角集合的初始值
(5)在复杂地形,多径数目信息未知的情况下,对目标仰角及镜像角度进行联合估计,得到目标仰角最终估计值:
(5a)设定最大迭代次数J,令j=0,并通过(2)中的噪声子空间Un构造如下优化函数:
其中,eigmin(·)表示取最小特征值,θd表示目标仰角,θs表示镜像仰角集合,A(θd,θs)表示导向矢量矩阵,和分别表示对θd和θs的估计值;
(5b)在复杂阵地环境、多径数目信息未知的情况下,将(5a)中优化函数转化为如下数学模型:
其中,表示在第j次迭代中对目标仰角θd的估计值,表示在第j次迭代中对镜像仰角集合θs的估计值,在初始j=1时,等于(4)中得到的镜像仰角集合的初始估计值
(5c)利用(5b)中得到的目标仰角的估计值估计第q个镜像仰角:
其中,表示在第j次迭代中对第q个镜像仰角θs,q的估计值,表示在第j次迭代中去掉θs中角度θs,q后的向量;
(5d)设定阈值ε2=10-6,判断j>J或是否成立,若成立,则终止迭代,得到最终目标仰角的估计值执行步骤(6),否则,令j=j+1,返回步骤(5b);
(6)利用最终估计得到的目标仰角计算出目标高度
本发明具有以下优点:
1)本发明在多径信号数目未知的复杂地形情况下,通过对目标仰角和镜像仰角进行联合估计,无需利用目标信号与镜像信号之间的空间结构关系先验信息,且无需进行多维搜索,便可实现对低仰角目标仰角及高度的估计,可在保证目标仰角及高度估计精度的同时有效降低算法运算量。
2)本发明首先在最小均方误差准则下,实现对目标仰角及镜像仰角的初始估计,随后采用基于特征分解技术与交替迭代逐层逼近估计目标仰角与镜像仰角相结合的方法,可以在地形环境以及镜像数目均未知的复杂阵地环境下实现对低仰角目标仰角及高度的估计,使得米波雷达在复杂多径环境下对低仰角目标仰角及高度的估计性能得到提升。
附图说明
图1是本发明使用的复杂阵地条件下的多径信号模型示意图;
图2是本发明的实现流程图;
图3是实测的目标仰角随观测时间变化示意图;
图4是实测的目标高度随观测时间变化示意图;
图5是在复杂地形情况下,分别用本发明与现有SS-MUSIC算法得到的目标仰角估计与目标真实仰角对比结果图;
图6是在复杂地形情况下,分别用本发明与现有RML算法得到的目标仰角估计与目标真实仰角对比结果图;
图7是在复杂地形情况下,分别用本发明与现有SS-MUSIC算法得到的目标高度估计与目标真实高度对比结果图。
图8是在复杂地形情况下,分别用本发明与现有RML算法得到的目标高度估计与目标真实高度对比结果图。
具体实施方式
以下结合附图对本发明的实施例和效果做进一步详细描述。
参照图1,本发明使用的复杂地形情况下的多径模型,包含雷达阵列天线A,目标T以及目标镜像q,第q条多径反射点位置为Bq,天线中心距离地面高度为ha,雷达与目标之间的距离为Rd,雷达与第q个目标镜像之间的距离为Rs,q,目标直达波方向为θd,第q个目标镜像信号方向为θs,q,目标距离地面高度为ht,目标距离第q个反射面的垂直距离为ht′,q,第q个反射面与水平面之间的夹角为αq。
参照图2,本发明的实现步骤如下:
步骤1,获取雷达目标回波数据X,估计该接收数据的协方差矩阵RX。
<1a>获取雷达目标回波数据X:
假设雷达阵列天线为一垂直水平面放置的均匀线性阵列,阵列天线的个数为M,阵元间距为半波长,令第m个接收天线在第l时刻接收信号为xml,m=1,2,…,M,则阵列接收信号矩阵可以表示为:
X=[x1,…xl,…,xL],
其中,xl=[x1l,…xml,…,xMl]T表示在第l次快拍时刻阵列接收信号矢量,l=1,2,…,L,L表示快拍数,(·)T表示转置运算;
由于米波雷达在对低仰角目标跟踪中存在多径效应,故阵列天线接收到的目标回波信号既包含直达波信号又包含反射波信号,其信号模型可以表示为下式:
其中,s=[s1,…sl,…,sL]为目标回波信号复包络向量,sl为第l次快拍时刻目标回波信号复包络,为噪声信号矩阵,表示复数域,β为目标复散射系数,ρq表示第q条多径信号对应的衰减系数,θd为目标直达波方向,θs,q为第q条多径信号方向,a(θd)为目标直达波方向的导向矢量,a(θs,q)为第q条多径信号方向的导向矢量;
a(θd)和a(θs,q)的具体形式分别为:
a(θd)=[1,exp(j2πd sin(θd)/λ,…,exp(j2π(M-1)d sin(θd)/λ]T
a(θs,q)=[1,exp(j2πd sin(θs,q)/λ,…,exp(j2π(M-1)d sin(θs,q)/λ]T,
其中,d表示阵元间距;
<1b>根据雷达目标回波数据X,估计接收数据的协方差矩阵RX:
RX=XXH/L,其中(·)H表示共轭转置运算。
步骤2,对协方差矩阵RX进行特征值分解,得到噪声子空间Un。
<2a>通过下式对协方差矩阵RX进行特征值分解:
RX=VΛVH,
其中,Λ为特征值矩阵,其表达式为:
vm表示协方差矩阵RX的特征值,且有v1>…>vm>…>vM,
V=[u1,…,um,…,uM]为特征向量矩阵,um表示特征值vm对应的特征向量,m=1,2,…,M;
<2b>根据特征值矩阵Λ中的小特征值对应的特征向量获取噪声子空间:
Un=[uK+1,uK+2,…,uM]T,
其中,(·)T表示转置运算,K为目标个数,M为天线个数,K<M。
步骤3,在复杂阵地及多径数目未知的情况下,利用阵列天线接收目标回波数据X,对目标仰角及镜像仰角进行联合估计,得到目标仰角及镜像仰角的初始估计值。
由于实际中地形的复杂多样性,地面并非完全平坦光滑,目标信号与多径信号之间的几何关系通常是未知的且很难测量,并且在复杂地形环境下,多径数目等先验信息一般是未知的。上述这些因素将使得基于理想对称信号模型的算法无法有效对低仰角目标的仰角以及高度进行有效估计,从而影响米波雷达在复杂地形环境下对低仰角目标的跟踪性能。因此,在复杂地形情况下应该联合估计目标仰角及各个镜像仰角,本实例首先在最小均方误差准则下得到目标仰角与各个镜像仰角的初始估计,然后采用特征分解技术与交替迭代逐层逼近的估计方法对目标仰角以及各镜像仰角进行联合估计,其步骤如下:
<3a>设定最大迭代次数I=20,令初始迭代序列i=1,通过阵列天线接收的目标回波数据X,构造如下代价函数:
其中,Φ=[γ(1),…,γ(l),…,γ(L)]表示包含所有权重系数矢量的稀疏参数矩阵,γ(l)表示第l次阵列接收信号所对应的权重系数矢量,l=1,2,…L,L表示快拍数,(·)H表示共轭转置运算,||·||2表示二范数,W表示自适应滤波器系数,和分别表示对Φ和W的估计值;
<3b>构建整个观测空间上的完备字典B=[a(θ1),a(θ2),…,a(θn),…,a(θN)],
其中,a(θn)表示第n个观测方向上的目标信号基向量,θn表示第n个观测方向角度,n=1,2,…N,N表示离散化的目标信号观测方向的个数,a(θn)表示如下:
其中,j表示虚数单位,λ表示载波波长,M表示阵列天线的个数,d表示各阵元之间的间隔,(·)T表示转置运算;
<3c>在复杂阵地环境、多径数目信息未知的情况下,将<3a>中代价函数转化为如下数学模型估计权重系数矢量:
其中,表示在第i次迭代中对自适应滤波器系数W的估计值,表示在第i次迭代中对包含所有权重系数矢量的稀疏参数矩阵Φ的估计值,在初始i=1时,
<3d>对<3c>中的数学模型进行求解,可得到第i次迭代中对自适应滤波器系数的估计值
其中,⊙IN表示空间谱矩阵,表示在第i次迭代中对扰动参数矩阵Φ的估计值,L表示快拍数,⊙表示Hadamard积,IN表示维度为N×N的单位阵,表示噪声功率,(·)-1表示矩阵求逆运算;
<3e>利用自适应滤波器系数的估计值将<3a>中的代价函数转化为如下数学模型,估计第i次迭代中稀疏参数矩阵
<3f>对<3e>中的数学模型进行求解,得到第i次迭代稀疏参数矩阵的估计值
<3g>设定阈值ε1=10-5,判断i>I或是否成立,若成立,则终止迭代,得到最终稀疏参数矩阵的估计值执行步骤4,否则,令i=i+1,返回步骤<3c>,其中,|·|表示取绝对值;
步骤4,通过对<3g>中得到的最终稀疏参数矩阵的估计值估计目标仰角的初始值及镜像仰角集合的初始值
<4a>根据步骤<3g>中得到的最终稀疏参数矩阵的估计值计算空间谱矩阵Qi:
其中,L表示快拍数,(·)H表示共轭转置运算,⊙表示Hadamard积,IN表示维度为N×N的单位阵;
<4b>根据步骤<3g>中得到的最终稀疏参数矩阵的估计值估计目标仰角初始值和镜像仰角初始值分别通过下式表示:
其中,P(diag(Qi(θ1)))表示空间谱矩阵Qi在目标方向上的空间谱矢量,diag(·)表示取对角线元素,θe表示第e个观测方向角度,N表示离散化的目标信号观测方向的个数,P(diag(Qi(θ2)))表示空间谱矩阵Qi在镜像方向上的空间谱矢量,θr表示第r个观测方向角度,
<4c>分别对目标方向上的空间谱矢量P(diag(Qi(θ1)))和镜像方向上的空间谱矢量P(diag(Qi(θ2)))进行谱峰搜索,将大于零度处的峰值位置作为目标仰角的初始估计值将小于零度处的峰值位置作为镜像仰角的初始估计值
步骤5,对目标仰角及镜像角度进行交替迭代估计,得到目标仰角最终估计值。
<5a>设定算法最大迭代次数J,令j=0,并通过步骤2中的噪声子空间Un构造如下优化函数:
其中,eigmin(·)表示取最小特征值,θd表示目标仰角,θs=[θs,1,…,θs,q,…,θs,Q]T表示镜像仰角集合,A(θd,θs)=[a(θd),a(θs,1),…,a(θs,q),…,a(θs,Q)]表示导向矢量矩阵,q=1,2,…Q,Q表示镜像数目,(·)T表示转置运算,和分别表示对θd和θs的估计值;
<5b>在复杂阵地环境、多径数目信息未知的情况下,根据<5a>中优化函数估计目标仰角:
其中,表示在第j次迭代中对目标仰角θd的估计值,表示在第j次迭代中对镜像仰角集合θs的估计值,在初始j=1时,等于<4c>中得到的镜像仰角的初始估计值
<5c>利用<5b>中得到的目标仰角的估计值根据<5a>中的优化函数估计第q个镜像仰角:
其中,表示在第j次迭代中对第q个镜像仰角θs,q的估计值,表示在第j次迭代中去掉θs中角度θs,q后的向量;
<5d>设定阈值ε2=10-6,判断j>J或是否成立,若成立,则终止迭代,得到最终目标仰角的估计值执行步骤6,否则,令j=j+1,返回步骤<5b>;
步骤6,利用<5d>中得到的最终目标仰角的估计值目标与雷达之间的直线距离、等效地球半径以及天线阵列中心点距水平面的高度,计算出目标高度
其中,Rd为目标与雷达之间的直线距离,Re=4R0/3为等效地球半径,R0=6370m表示真实地球半径,ha为天线阵列中心点距水平面的高度。
本发明的效果通过以下实测数据对比试验进一步说明:
1.实验场景:实验雷达为一均匀线阵,其阵元数为M=10,阵元间距为半波长,发射信号为线性调频信号,天线底端阵元高度为ha=6.4m。
在观测时间内,目标仰角从3.7°到11.2°变化,如图3所示,目标做平稳飞行,飞行高度为10600m,如图4所示;
2.实验内容:
实验1,在上述实验场景下,分别利用本发明方法与现有SS-MUSIC算法对图3中的数据进行目标仰角估计,结果如图5。
实验2,在上述实验场景下,分别利用本发明方法与现有RML算法对图3中的数据进行目标仰角估计,结果如图6。
实验3,在上述实验场景下,分别利用本发明方法与现有SS-MUSIC算法对图4中的数据进行目标高度估计,结果如图7。
实验4,在上述实验场景下,分别利用本发明方法与现有RML算法对图4中的数据进行目标高度估计,结果如图8。
3.实验结果分析:
从图5和图6中的结果可以看出,在复杂地形情况下,现有SSMUSIC算法和现有RML算法不能有效估计目标仰角,而本发明方法可以实现对目标仰角的有效估计。
从图7和图8中的结果可以看出,在复杂地形情况下,现有SSMUSIC算法和现有RML算法不能有效估计目标高度,而本发明方法可以实现对目标高度的有效估计。
综上,本发明能在复杂地形,多径数目未知的环境下实现对低仰角目标仰角和目标高度的有效估计。
Claims (6)
1.基于结构化递归最小二乘的米波雷达测高方法,包括:
(1)利用阵列天线接收目标回波数据X,估计该接收数据的协方差矩阵RX;
(2)对协方差矩阵RX进行特征值分解,得到噪声子空间Un;
(3)在复杂阵地及多径数目未知的情况下,利用目标回波数据X,对目标仰角及镜像仰角进行联合估计,得到目标仰角及镜像仰角的初始估计值:
(3a)设定最大迭代次数I=20,令初始迭代序列i=1,通过目标回波数据X构造如下代价函数:
其中,Φ=[γ(1),…,γ(l),…,γ(L)]表示包含所有权重系数矢量的稀疏参数矩阵,γ(l)表示第l次阵列接收信号所对应的权重系数矢量,l=1,2,…L,L表示快拍数,(·)H表示共轭转置运算,||·||2表示二范数,W表示自适应滤波器系数,和分别表示对Φ和W的估计值;
(3b)构建整个观测空间上的完备字典B=[a(θ1),a(θ2),…,a(θn),…,a(θN)],其中,a(θn)表示第n个观测方向上的目标信号基向量,θn表示第n个观测方向角度,n=1,2,…N,N表示离散化的目标信号观测方向的个数;
(3c)在复杂阵地环境、多径数目信息未知的情况下,将(3a)中代价函数转化为如下数学模型估计权重系数矢量:
其中,表示在第i次迭代中对自适应滤波器系数W的估计值,表示在第i次迭代中对稀疏参数矩阵Φ的估计值,在初始i=1时,
(3d)对(3c)中的优化函数进行求解,得到第i次迭代中对自适应滤波器系数的估计值
其中,表示空间谱矩阵,⊙表示Hadamard积,IN表示维度为N×N的单位阵,表示噪声功率,(·)-1表示矩阵求逆运算;
(3e)利用自适应滤波器系数的估计值将(3a)中代价函数转化为如下数学模型估计第i次迭代中稀疏参数矩阵:
(3f)对(3e)中的数学模型进行求解,得到第i次迭代稀疏参数矩阵的估计值
(3g)设定阈值ε1=10-5,判断i>I或是否成立,若成立,则终止迭代,得到最终稀疏参数矩阵的估计值执行步骤(4),否则,令i=i+1,返回步骤(3c),其中,|·|表示取绝对值;
(4)利用(3g)中得到的最终稀疏参数矩阵的估计值估计目标仰角的初始值及镜像仰角集合的初始值
(5)在复杂地形,多径数目信息未知的情况下,对目标仰角及镜像角度进行联合估计,得到目标仰角最终估计值:
(5a)设定最大迭代次数J,令j=0,并通过(2)中的噪声子空间Un构造如下优化函数:
其中,eigmin(·)表示取最小特征值,θd表示目标仰角,θs表示镜像仰角集合,A(θd,θs)表示导向矢量矩阵,和分别表示对θd和θs的估计值;
(5b)在复杂阵地环境、多径数目信息未知的情况下,将(5a)中优化函数转化为如下数学模型:
其中,表示在第j次迭代中对目标仰角θd的估计值,表示在第j次迭代中对镜像仰角集合θs的估计值,在初始j=1时,等于(4)中得到的镜像仰角的初始估计值
(5c)利用(5b)中得到的目标仰角的估计值估计第q个镜像仰角:
其中,表示在第j次迭代中对第q个镜像仰角θs,q的估计值,表示在第j次迭代中去掉θs中角度θs,q后的向量;
(5d)设定阈值ε2=10-6,判断j>J或是否成立,若成立,则终止迭代,得到最终目标仰角的估计值执行步骤(6),否则,令j=j+1,返回步骤(5b);
(6)利用最终估计得到的目标仰角计算出目标高度
2.根据权利要求1所述的方法,其中步骤(1)中的目标回波数据X,表示如下:
其中,为目标回波信号复包络向量,sl为第l次快拍时刻目标回波信号复包络,M表示阵列天线的个数,l=1,2,…L,L为快拍数,为噪声信号矩阵,表示复数域,β为目标复散射系数,ρq表示第q条多径信号对应的衰减系数,θd为目标直达波方向,θs,q为第q条多径信号方向,a(θd)为目标直达波方向的导向矢量,a(θs,q)为第q条多径信号方向的导向矢量。
3.根据权利要求1所述的方法,其中步骤(2)中对协方差矩阵RX进行特征值分解,通过下式进行:
RX=VΛVH,
其中,Λ为特征值矩阵,其表达式为:
vm表示协方差矩阵RX的特征值,且有v1>…>vm>…>vM,V=[u1,…,um,…,uM]为特征向量矩阵,um表示特征值vm对应的特征向量,m=1,2,…,M,M表示阵列天线的个数,(·)H表示共轭转置运算。
4.根据权利要求1所述的方法,其中步骤(3b)中第n个观测方向上的目标信号基向量a(θn),通过下式表示:
其中,θn表示第n个观测方向角度,j表示虚数单位,λ表示载波波长,M表示阵列天线的个数,d表示各阵元之间的间隔,(·)T表示转置运算。
5.根据权利要求1所述的方法,其中步骤(4)中估计目标仰角的初始值及镜像仰角集合的初始值分别通过下式表示:
其中,P(diag(Qi(θ1)))表示空间谱矩阵Qi在目标方向上的空间谱矢量,diag(·)表示取对角线元素,θe表示第e个观测方向角度,N表示离散化的目标信号观测方向的个数,P(diag(Qi(θ2)))表示空间谱矩阵Qi在镜像方向上的空间谱矢量,θr表示第r个观测方向角度,
6.根据权利要求1所述的方法,其中步骤(6)中,利用最终估计得到的目标仰角计算出目标高度通过下式进行:
其中,Rd为目标与雷达之间的直线距离,Re=4R0/3为等效地球半径,R0=6370m表示真实地球半径,ha为天线阵列中心点距水平面的高度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910057762.8A CN109633635B (zh) | 2019-01-22 | 2019-01-22 | 基于结构化递归最小二乘的米波雷达测高方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910057762.8A CN109633635B (zh) | 2019-01-22 | 2019-01-22 | 基于结构化递归最小二乘的米波雷达测高方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109633635A true CN109633635A (zh) | 2019-04-16 |
CN109633635B CN109633635B (zh) | 2022-09-06 |
Family
ID=66063020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910057762.8A Active CN109633635B (zh) | 2019-01-22 | 2019-01-22 | 基于结构化递归最小二乘的米波雷达测高方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109633635B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115494495A (zh) * | 2021-06-18 | 2022-12-20 | Aptiv技术有限公司 | 用于估计对象的高度的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120099435A1 (en) * | 2010-10-20 | 2012-04-26 | Qualcomm Incorporated | Estimating sparse mimo channels having common support |
CN103308909A (zh) * | 2013-03-06 | 2013-09-18 | 西安电子科技大学 | 基于多参数交替搜索的米波雷达低仰角测高方法 |
CN105785337A (zh) * | 2016-01-22 | 2016-07-20 | 西安电子科技大学 | 复杂地形下的米波雷达低仰角目标测高方法 |
-
2019
- 2019-01-22 CN CN201910057762.8A patent/CN109633635B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120099435A1 (en) * | 2010-10-20 | 2012-04-26 | Qualcomm Incorporated | Estimating sparse mimo channels having common support |
CN103308909A (zh) * | 2013-03-06 | 2013-09-18 | 西安电子科技大学 | 基于多参数交替搜索的米波雷达低仰角测高方法 |
CN105785337A (zh) * | 2016-01-22 | 2016-07-20 | 西安电子科技大学 | 复杂地形下的米波雷达低仰角目标测高方法 |
Non-Patent Citations (2)
Title |
---|
YUAN LIU ET AL.: "Height Measurement of Low-Angle Target Using MIMO Radar Under Multipath Interference", 《IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS》 * |
刘源 等: "米波MIMO 雷达低空目标波达方向估计新方法", 《电子与信息学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115494495A (zh) * | 2021-06-18 | 2022-12-20 | Aptiv技术有限公司 | 用于估计对象的高度的方法 |
CN115494495B (zh) * | 2021-06-18 | 2023-09-29 | Aptiv技术有限公司 | 用于估计对象的高度的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109633635B (zh) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106772225B (zh) | 基于压缩感知的波束域doa估计 | |
CN107991659B (zh) | 基于字典学习的米波雷达低仰角目标测高方法 | |
Zhang et al. | Fast inverse-scattering reconstruction for airborne high-squint radar imagery based on Doppler centroid compensation | |
CN105785337B (zh) | 复杂地形下的米波雷达低仰角目标测高方法 | |
CN103353595B (zh) | 基于阵列内插压缩感知的米波雷达测高方法 | |
CN108459307B (zh) | 基于杂波的mimo雷达收发阵列幅相误差校正方法 | |
CN108594228B (zh) | 基于isar图像重聚焦的空间目标姿态估计方法 | |
CN109581352B (zh) | 一种基于毫米波雷达的超分辨测角系统 | |
Shi et al. | DOA estimation using multipath echo power for MIMO radar in low-grazing angle | |
CN103353596A (zh) | 基于压缩感知的波束空间域米波雷达测高方法 | |
CN103885054B (zh) | 一种基于分布源反射模型的米波雷达低仰角测高方法 | |
CN105182325B (zh) | 基于秩1约束的米波mimo雷达低仰角目标测高方法 | |
CN103364772A (zh) | 基于实数域广义多重信号分类算法的目标低仰角估计方法 | |
Tao et al. | A knowledge aided SPICE space time adaptive processing method for airborne radar with conformal array | |
Liu et al. | Target localization in high-coherence multipath environment based on low-rank decomposition and sparse representation | |
Zhao et al. | Altitude measurement of low elevation target based on iterative subspace projection | |
Wei et al. | Signal-domain Kalman filtering: An approach for maneuvering target surveillance with wideband radar | |
Huang et al. | Full-aperture azimuth spatial-variant autofocus based on contrast maximization for highly squinted synthetic aperture radar | |
Ma et al. | A novel DOA estimation for low-elevation target method based on multiscattering center equivalent model | |
CN113671485B (zh) | 基于admm的米波面阵雷达二维doa估计方法 | |
CN110133641A (zh) | 一种尺度自适应的穿墙成像雷达目标跟踪方法 | |
CN109633635B (zh) | 基于结构化递归最小二乘的米波雷达测高方法 | |
Luo et al. | Two-Dimensional Angular Super-Resolution for Airborne Real Aperture Radar by Fast Conjugate Gradient Iterative Adaptive Approach | |
Li et al. | KT and azimuth sub‐region deramp‐based high‐squint SAR imaging algorithm mounted on manoeuvring platforms | |
Xue et al. | An applied frequency scaling algorithm based on local stretch factor for near-field miniature millimeter-wave radar imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |