CN109633610B - 脉冲激光测距系统晶体管型接收电路误差修正方法 - Google Patents

脉冲激光测距系统晶体管型接收电路误差修正方法 Download PDF

Info

Publication number
CN109633610B
CN109633610B CN201811528827.4A CN201811528827A CN109633610B CN 109633610 B CN109633610 B CN 109633610B CN 201811528827 A CN201811528827 A CN 201811528827A CN 109633610 B CN109633610 B CN 109633610B
Authority
CN
China
Prior art keywords
circuit
error
equation set
solving
relation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811528827.4A
Other languages
English (en)
Other versions
CN109633610A (zh
Inventor
顾国华
杨锦清
钱惟贤
任侃
张骏
刘泽伟
钱烨
杨文广
郭萍萍
花睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Technological Sheng'ao Photoelectric Technology Co Ltd
Nanjing Tech University
Original Assignee
Nanjing Technological Sheng'ao Photoelectric Technology Co Ltd
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Technological Sheng'ao Photoelectric Technology Co Ltd, Nanjing Tech University filed Critical Nanjing Technological Sheng'ao Photoelectric Technology Co Ltd
Priority to CN201811528827.4A priority Critical patent/CN109633610B/zh
Publication of CN109633610A publication Critical patent/CN109633610A/zh
Application granted granted Critical
Publication of CN109633610B publication Critical patent/CN109633610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开一种脉冲激光测距系统晶体管型接收电路误差修正方法,包括:(10)接收电路建模:根据电路结构及晶体管经典模型,列出电路方程组;(20)电路方程组求解:利用离散化和数值分析,求解电路方程组的数值近似解;(30)电路方程组简化:根据电路方程组的数值近似解对电路方程组做大项保留;(40)线性微分方程组求解:求解线性微分方程组,得到游走误差与输入电流的近似关系;(50)误差关系确定:将双阈值时刻代入上述近似关系,得到游走误差与双阈值时刻的关系;(60)时间误差修正:将双阈值时刻具体数值代入上述关系,得到误差值,将时间间隔减去误差值,求得精确时间间隔。本发明误差修正方法,误差小,系统测量精度高。

Description

脉冲激光测距系统晶体管型接收电路误差修正方法
技术领域
本发明属于激光测距技术领域,特别是一种脉冲激光测距系统晶体管型接收电路误差修正方法。
背景技术
距离的精确测量对国防建设、工程建设、国民经济的发展都有十分重要的意义。在公共交通、大地测量、工程建筑检测等领域,对距离测量的量程和精度要求都不断提高,由于激光测距具有量程大、高精度、昼夜可用、方向性好等特点,使得激光测距成为一种应用广泛的测距方式。激光测距技术是利用向目标射出一束激光,由光电器件接收目标反射的激光信号,计算其飞行时间或者测量其相位差来计算从观测者到目标的距离。激光测距技术有着非接触测量、高精度、昼夜可用的特点。激光测距系统晶体管放大的接收通道电路存在游走误差,影响脉冲激光测距系统整体的测距精度。
传统的基于飞行时间间隔测量的脉冲激光测距系统往往会忽视回波光功率强弱对系统测距误差的影响。而随着脉冲激光测距技术对精度提高的要求,这种误差的影响已经越来越不能忽视。脉冲激光测距中时间间隔测量是整个系统的关键因素,影响脉冲激光测距系统的精度。而在测量时间间隔时,时间数字转换模块(TDC)的精度同时受到时间抖动和游走误差的影响。抖动误差一般通过提高系统的信噪比可以有效抑制,而游走误差通常有双阈值修正,脉宽修正等手段。而本发明首先对测距系统进行物理建模,而后对模型进行计算机辅助数值分析化简,最后得到游走误差与双阈值时刻的关系,因此就可以做出修正,提高测距的时间精度。
然而,现有的双阈值修正方法存在的问题是:由于无法用双阈值时刻的值准确推算出游走误差的大小,因此仅利用高低双阈值时刻做简单的线性修正,即是一种基本的前沿时刻鉴别技术的改良方案,未从系统理论角度分析出误差与输入光电流或者与双阈值时刻的关系,从而无法准确求出游走误差大小,导致修正精度偏低。
发明内容
本发明的目的在于提供一种脉冲激光测距系统晶体管型接收电路误差修正方法,误差小,系统测量精度高。
实现本发明目的的技术解决方案为:
一种脉冲激光测距系统晶体管型接收电路误差修正方法,其特征在于,包括如下步骤:
(10)接收电路建模:根据电路结构及晶体管经典模型,列出电路方程组,对接收电路建模;
(20)电路方程组求解:利用离散化和数值分析,求解电路方程组的数值近似解;
(30)电路方程组简化:根据电路方程组的数值近似解对电路方程组做大项保留简化处理,得到线性微分方程组;
(40)线性微分方程组求解:求解线性微分方程组,得到游走误差与输入电流的近似关系;
(50)误差关系确定:将电路测得的双阈值时刻代入游走误差与输入电流的近似关系,得到游走误差与双阈值时刻的关系;
(60)时间误差修正:将双阈值时刻具体数值代入游走误差与双阈值时刻的关系,得到双阈值时刻具体数值对应的误差值,将测得的时间间隔减去双阈值时刻具体数值对应的误差值,求得精确时间间隔。
本发明与现有技术相比,其显著优点为:
测量精度高:先从原理上对脉冲激光测距系统存在的游走误差进行建模分析,得出了双阈值鉴别后的时刻参数与游走误差的近似关系。这一关系是非线性的,而一般的双阈值修正仅仅只是利用高低阈值时刻值做线性修正,仍然是对游走误差的一种粗略的估算。因此,相较于传统的双阈值修正方法,本发明得出的关系更加接近真实的双阈值时刻与游走误差的关系,即利用这一关系求出的游走误差更加精准,从而大大提高了脉冲激光测距的测量精度。
下面结合附图和具体实施方式对本发明作进一步的详细描述。
附图说明
图1为本发明基于双阈值时刻鉴别的脉冲激光测距系统误差修正方法的主流程图。
图2为图1中电路方程组求解步骤的流程图。
具体实施方式
本发明主要针对脉冲激光测距系统的晶体管放大的接收通道电路。此部分电路承载着将回波信号无损放大的关键作用,电路的低噪声设计、带宽设计和增益设定等都关系着最终测距系统的精度。放大电路一般分为前置放大电路和主放大电路两部分,前置放大电路充当APD的有源负载,将电流信号低噪声地转换成电压信号,供给主放大器,主放大电路实现信号的高增益放大,将回波信号放大稳定在一定电压值,供给时刻鉴别电路。
如图1所示,本发明脉冲激光测距系统晶体管型接收电路误差修正方法,包括如下步骤:
(10)接收电路建模:根据电路结构及晶体管经典模型,列出电路方程组,对接收电路建模;
(20)电路方程组求解:利用离散化和数值分析,求解电路方程组的数值近似解;
如图2所示,所述(20)电路方程组求解步骤包括:
(21)时间变量离散化:对电路方程组的每一个方程在时域上把时间变量离散化,从而将微分方程离散化化为差分方程;
(22)差分方程迭代:对差分方程进行迭代计算,得到电路方程组的数值近似解。
所述(22)差分方程迭代步骤具体为:
采用数值分析工具MATLAB对差分方程进行迭代计算,得到电路方程组的数值近似解。
(30)电路方程组简化:根据电路方程组的数值近似解对电路方程组做大项保留简化处理,得到线性微分方程组;
(40)线性微分方程组求解:求解线性微分方程组,得到游走误差与输入电流的近似关系;
(50)误差关系确定:将电路测得的双阈值时刻代入游走误差与输入电流的近似关系,得到游走误差与双阈值时刻的关系;
(60)时间误差修正:将双阈值时刻具体数值代入游走误差与双阈值时刻的关系,得到双阈值时刻具体数值对应的误差值,将测得的时间间隔减去双阈值时刻具体数值对应的误差值,求得精确时间间隔。
本发明的工作原理如下:
本发明首先需要对晶体管接收放大系统电路进行系统性建模分析,建模建立在经典的双极型晶体管模型咖码-潘模型之上,列出多元非线性微分方程组。此时,一般情况下,电路方程非常复杂,无法求出方程组的解析解。因此,需要借助数值分析工具比如MATLAB等对方程组进行分析。分析过程的一般步骤为:先将微分方程的时间离散化,即把关于时间的微分方程化为大量的差分方程。每个差分方程中,认为时间固定,而且前一个差分方程的解是后一个差分方程的初值。最后经过大量的迭代,就可以求出非线性微分方程的数值解。根据数值解的情况,依据均方差大小来保留方程组的‘最重要’的项,其余的都略去,最后方程组就可以求出解析解,而这个解析解就被认为是近似解。即求出输入电流与输出电压的时域关系,因此,当在某一固定阈值下,就可求出上升时间与输入电流的关系。此时,当在额外的一组阈值情况下,就可以通过联立方程组,用两个测出的阈值时刻值表示出上升时间的大小即游走误差大小,最终在时间间隔测量中,减去这一误差值,就可以大大减少游走误差对精度的影响。
该发明方法的应用是以脉冲激光测距系统为硬件背景的。该系统一般包括激光发射模块,激光接收模块,时间间隔测量模块,以及信号控制模块。该方法主要针对测距系统的激光接收模块和时间间隔测量模块。首先需要构建以双极型晶体管为核心元件的接收放大电路,然后将它的输出与时间间隔测量模块相连,并在核心元件GP21芯片中配置好以实现双阈值时刻测量的硬件连接。硬件系统搭建好后,便可以通过控制模块读出不同条件下时间间隔测量模块的相应的双阈值时刻。最后应用本发明方法进行误差修正,就可以测出较为精准的距离值。
本发明首先从原理上对接收系统电路结合了晶体管咖码-潘模型进行了系统性建模,通过数值化简的方式对电路进行近似求解,得到了误差值与双阈值时刻的近似关系。而一般的双阈值误差修正往往由于无法解出误差与双阈值时刻之间的关系,因此仅仅只能对高低阈值作线性修正,仍然存在一定较大偏差。其次,现有的双阈值修正方法使用双触发器进行时刻鉴别,而本发明直接使用德国ACAM公司的通用型高精度TDC芯片GP21。它内部的双通道设计使得不需要其他额外的芯片就能实现双阈值电路测量配置。因此,本发明是将时刻鉴别的双阈值结果直接送入该芯片的两个通道中。大大提高了效率,减少了器件的使用,增加了电路的可靠性并在一定程度降低了噪声的干扰。

Claims (3)

1.一种脉冲激光测距系统晶体管型接收电路误差修正方法,其特征在于,包括如下步骤:
(10)接收电路建模:根据电路结构及晶体管经典模型,列出电路方程组,对接收电路建模;
(20)电路方程组求解:利用离散化和数值分析,求解电路方程组的数值近似解;
(30)电路方程组简化:根据电路方程组的数值近似解对电路方程组做大项保留简化处理,得到线性微分方程组;
(40)线性微分方程组求解:求解线性微分方程组,得到游走误差与输入电流的近似关系;
所述(20)电路方程组求解、(30)电路方程组简化及(40)线性微分方程组求解包括:
经过大量的迭代,求出非线性微分方程的数值近似解,根据数值近似解的情况,依据均方差大小来保留方程组的最重要的项,其余的都略去,最后求出方程组的解析解,即求出输入电流与输出电压的时域关系,当在某一固定阈值下,就可求出上升时间与输入电流的关系,当在额外的一组阈值情况下,就可以通过联立方程组,用两个测出的阈值时刻值表示出上升时间的大小,即游走误差大小,从而得到游走误差与输入电流的近似关系;
(50)误差关系确定:将电路测得的双阈值时刻代入游走误差与输入电流的近似关系,得到游走误差与双阈值时刻的关系;
(60)时间误差修正:将双阈值时刻具体数值代入游走误差与双阈值时刻的关系,得到双阈值时刻具体数值对应的误差值,将测得的时间间隔减去双阈值时刻具体数值对应的误差值,求得精确时间间隔。
2.根据权利要求1所述的误差修正方法,其特征在于,所述(20)电路方程组求解步骤包括:
(21)时间变量离散化:对电路方程组的每一个方程在时域上把时间变量离散化,从而将微分方程离散化化为差分方程;
(22)差分方程迭代:对差分方程进行迭代计算,得到电路方程组的数值近似解。
3.根据权利要求2所述的误差修正方法,其特征在于,所述(22)差分方程迭代步骤具体为:
采用数值分析工具MATLAB对差分方程进行迭代计算,得到电路方程组的数值近似解。
CN201811528827.4A 2018-12-14 2018-12-14 脉冲激光测距系统晶体管型接收电路误差修正方法 Active CN109633610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811528827.4A CN109633610B (zh) 2018-12-14 2018-12-14 脉冲激光测距系统晶体管型接收电路误差修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811528827.4A CN109633610B (zh) 2018-12-14 2018-12-14 脉冲激光测距系统晶体管型接收电路误差修正方法

Publications (2)

Publication Number Publication Date
CN109633610A CN109633610A (zh) 2019-04-16
CN109633610B true CN109633610B (zh) 2019-12-27

Family

ID=66073743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811528827.4A Active CN109633610B (zh) 2018-12-14 2018-12-14 脉冲激光测距系统晶体管型接收电路误差修正方法

Country Status (1)

Country Link
CN (1) CN109633610B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273260B (zh) * 2020-03-03 2023-10-27 丹阳钒曦光电科技有限公司 一种脉冲激光测距系统晶体管型接收电路距离测量精度提高方法
CN111983625B (zh) * 2020-07-20 2022-10-18 重庆邮电大学 一种基于gabp的脉冲激光测距误差补偿方法
CN112782709B (zh) * 2020-12-28 2022-09-27 杭州电子科技大学 一种基于动态多阈值误差修正的激光测距方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940463B1 (fr) * 2008-12-23 2012-07-27 Thales Sa Systeme d'imagerie passive equipe d'un telemetre
CN103792526B (zh) * 2014-02-24 2016-03-30 武汉大学 一种基于脉冲回波形态的激光测高仪动态阈值选取方法
CN108732553B (zh) * 2018-06-01 2022-02-01 北京航空航天大学 一种激光雷达波形时刻鉴别方法与在线测距系统

Also Published As

Publication number Publication date
CN109633610A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109633610B (zh) 脉冲激光测距系统晶体管型接收电路误差修正方法
WO2017181453A1 (zh) 一种基于波形时域匹配的激光测距系统及方法
US7911589B2 (en) Optical distance measuring method and corresponding optical distance measurement device
CN109581399A (zh) 一种大动态范围厘米级精度激光测距方法
CN107462900B (zh) 基于波长可调谐激光源的气体成分探测激光雷达
Palojarvi et al. A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser rangefinder
CN104777470A (zh) 一种扩展脉冲激光近程动态增益范围电路
CN110940992B (zh) 可提高激光雷达探测距离和精度的信号检测方法和系统
CN103674916A (zh) 新型荧光信号解调装置以及荧光信号解调方法
CN103364790A (zh) 基于波形时域配准分析的脉冲激光测距系统和方法
CN103792526A (zh) 一种基于脉冲回波形态的激光测高仪动态阈值选取方法
US9874441B1 (en) Circuitry and method for reducing echo walk error in a time-of-flight laser distance device
CN107817484B (zh) 激光雷达放大电路的放大倍数处理方法及装置
CN114428239A (zh) 激光雷达及其飞行时间获取方法、测距方法和存储介质
Xiao et al. A continuous wavelet transform-based modulus maxima approach for the walk error compensation of pulsed time-of-flight laser rangefinders
US11448738B2 (en) Light detection and ranging signal correction methods and systems
CN108008373A (zh) 一种基于脉冲式激光测距的回波补偿系统
Xu et al. Research on FPGA pulse laser ranging method based on deep learning
CN111273260B (zh) 一种脉冲激光测距系统晶体管型接收电路距离测量精度提高方法
US20230288538A1 (en) Laser receiving system and laser ranging system
US20220155442A1 (en) Light detection device, lidar device including the same, and method of measuring distance
CN114624671A (zh) 一种星载激光测高饱和波形信号特征恢复方法
EP3789793B1 (en) An optical proximity sensor and corresponding method of operation
Kurtti et al. Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder
KR20190032938A (ko) 거리 측정 장치, 시간 디지털 변환기, 및 이동체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant