CN109633243A - 一种基于多相位采样的束流信号峰值幅度精确提取方法 - Google Patents

一种基于多相位采样的束流信号峰值幅度精确提取方法 Download PDF

Info

Publication number
CN109633243A
CN109633243A CN201910057486.5A CN201910057486A CN109633243A CN 109633243 A CN109633243 A CN 109633243A CN 201910057486 A CN201910057486 A CN 201910057486A CN 109633243 A CN109633243 A CN 109633243A
Authority
CN
China
Prior art keywords
electrode
signal
peak amplitude
beam current
current signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910057486.5A
Other languages
English (en)
Other versions
CN109633243B (zh
Inventor
周逸媚
冷用斌
陈方舟
赖龙伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Alliance Investment Ltd
Shanghai Institute of Applied Physics of CAS
Original Assignee
Shanghai Institute of Applied Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Applied Physics of CAS filed Critical Shanghai Institute of Applied Physics of CAS
Priority to CN201910057486.5A priority Critical patent/CN109633243B/zh
Publication of CN109633243A publication Critical patent/CN109633243A/zh
Application granted granted Critical
Publication of CN109633243B publication Critical patent/CN109633243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • G01R19/0061Measuring currents of particle-beams, currents from electron multipliers, photocurrents, ion currents; Measuring in plasmas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Radiation (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Particle Accelerators (AREA)

Abstract

本发明涉及一种基于多相位采样的束流信号峰值幅度精确提取方法,其包括:步骤S1,分别为钮扣束流位置探头的N个电极连接两根具有相同的固定延迟时间的电缆;步骤S2,为数据采集板卡外接时钟信号,并调节所述时钟信号以使每个所述电极的两个采样点保持在电极信号的峰值两端的相位平衡对称位置;步骤S3,通过所述数据采集板卡对所述N个电极在束流通过所述钮扣束流位置探头时所输出的电极信号进行采样;以及步骤S4,采用加权平均法计算得到所述N个电极分别对应的束流位置探头信号峰值幅度。本发明利用多相位采样法对这些电极信号多个采样点进行处理,从而不仅能够有效消除束流信号纵向相位带来的影响,而且还能有效提高束流峰值幅度的精度提取。

Description

一种基于多相位采样的束流信号峰值幅度精确提取方法
技术领域
本发明涉及粒子加速器物理束流诊断技术,尤其涉及一种基于多相位采样的束流信号峰值幅度精确提取方法。
背景技术
对于多电极的束流位置探测器,以图1所示的电子储存环上的带有四个电极A、B、C、D的钮扣型束流位置探测器(探头)(BPM)为例,其设计频率达到几百兆赫兹,为获得束流通过时的峰值幅度信息,需要对探头的四个电极输出的信号先分别进行处理之后,再用数据采集板卡进行采集。
当前获取BPM各个探头电极信号峰值幅度的处理方法是峰值检测,测量原理(如图2所示)如下:通常采用调整数据采集系统的外部时钟的方法,使每个电极信号的数据采集点为信号峰值点以保证数据获取的信噪比,从而得到用于进行后续运算的数值。
然而,由于加速器在运行过程中,束流横向位置和纵向相位都发生了变化,而以上的处理方法是直接采样电极信号的峰值点作为信号幅度值进行计算,忽略了束流纵向相位带来的影响,从而会导致测量结果的误差。
发明内容
为了解决上述现有技术存在的问题,本发明旨在提供一种基于多相位采样的束流信号峰值幅度精确提取方法,以提高测量质量及精度。
本发明所述的一种基于多相位采样的束流信号峰值幅度精确提取方法,其包括以下步骤:
步骤S1,分别为一钮扣束流位置探头的N个电极连接两根具有相同的固定延迟时间的电缆,以使每个所述电极的两个采样点之间保持固定相位差;
步骤S2,为一数据采集板卡外接一加速器装置定时系统提供的时钟信号,并调节所述时钟信号,以使每个所述电极的两个采样点保持在该电极输出的电极信号的峰值两端的相位平衡对称位置;
步骤S3,将所述数据采集板卡与所述电缆连接,并通过该数据采集板卡的2N个通道分别对所述N个电极在束流通过所述钮扣束流位置探头时所输出的电极信号进行采样,以获得每个所述电极的两个采样点的电压信号Vi,1和Vi,2,i=1,2,……,N;以及
步骤S4,根据以下公式计算得到所述N个电极分别对应的束流位置探头信号峰值幅度:
其中,k1和k2分别为所述两个电压信号Vi,1和Vi,2在束流纵向变化相同相位时检测到的束流信号幅度变化的比重。
在上述的基于多相位采样的束流信号峰值幅度精确提取方法中,所述步骤S1还包括:在连接所述电缆之前,通过N个功分器分别对所述N个电极输出的N个电极信号进行功分,然后为每个所述功分器连接两根所述电缆。
在上述的基于多相位采样的束流信号峰值幅度精确提取方法中,所述电缆的固定延迟时间为100ps。
在上述的基于多相位采样的束流信号峰值幅度精确提取方法中,所述步骤S2还包括:通过一移相器调节所述时钟信号。
由于采用了上述的技术解决方案,本发明通过综合探头的多个电极信号,以利用多相位采样法同时处理多电极束流位置探头的输出信号,从而获得束流在轨道中峰值,由此,不仅能够有效消除束流信号纵向相位带来的影响,而且还能有效提高束流峰值幅度的测量精度。
附图说明
图1是现有的钮扣型束流位置探测器的结构示意图;
图2是现有的基于峰值检测法的束流幅度测量方法的原理图;
图3是本发明一种基于多相位采样的束流信号峰值幅度精确提取方法的原理图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
本发明,即一种基于多相位采样的束流信号峰值幅度精确提取方法,包括以下步骤:
步骤S1,为了在同一束流电极信号上采集两个采样点,需通过N个功分器分别对钮扣束流位置探头的N个电极输出的N个电极信号分别进行功分,然后,为使每个电极的两个采样点之间保持固定相位差,分别为功分器两端连接两根具有相同的固定延迟时间的电缆,以便于后续采用具有2N个通道的数据采集板卡对功分后的2N个信号进行采集;为保证采样的精度,电缆的固定延迟时间选取不能太大,一般采用100ps即可;
步骤S2,为数据采集板卡外接加速器装置定时系统提供的时钟信号,并通过移相器调节该时钟信号,以使每个电极的两个采样点保持在电极信号峰值两端的相位平衡对称位置;
步骤S3,通过数据采集板卡的2N个通道分别对N个电极在束流通过钮扣束流位置探头时所输出的电极信号进行采样,以获得每个电极的两个采样点的电压信号Vi,1和Vi,2,i=1,2,……,N;
步骤S4,根据加权平均法计算得到N个电极分别对应的束流位置探头信号峰值幅度具体的计算公式如下:
其中,k1和k2分别为两个电压信号Vi,1和Vi,2在束流纵向变化相同相位时检测到的束流信号幅度变化的比重;在电极输出的两个电压信号关于峰值点完全对称的情况下,当束流位置发生变化时,电极的两个采样点同相变化的相位差和幅度差是相同的,即k1=k2,则每个电极的束流位置探头信号峰值幅度为两个电压信号Vi,1和Vi,2的平均值。
下面对本发明的原理进行详细说明。
由于理想的电极对同一个束团(或束团串)的响应是完全相同的,因此所有电极在时域中获得的信号波形应该完全相似。有束流通过时,各电极信号幅度的获取由于外部时钟的确定,而采集在固定的信号采样点,而当束流存在纵向相位上的振荡时,固定的信号采样点无法确定为电极信号的峰值点,因此会引入束流纵向相位振荡而引起的测量误差。
以带有N(例如N=4)个电极的钮扣型束流位置探头(BPM)为例,电极探测到的束流位置探头信号为类正弦信号,经过射频前端处理后,电极信号的峰值幅度通常采用峰值检测来确定,如若束流存在纵向相位的偏移,则在同一个采样时刻获取到的信号峰值幅度将存在误差(如图2所示)。具体来说,对相同束流信号(类正弦信号)在同一位置进行采集(图2中的虚线所在的位置),黑点为信号采集点,当束流信号存在纵向偏移时(如图2(b)、(c)所示),得到的采集点将与理想位置(峰值点,图2(a))发生偏差,从而引入测量误差。
然而,如图3所示,采用本发明的多相位采样法来确定束流位置探头信号的峰值幅度,在相对峰值点的两端对称采样两个点,则当束流信号存在纵向振荡时,采集的两个点在时间轴上同相偏移相同的时间(如图3(b)、(c)所示,相同相位变化量),则幅度变化表现为一个点变大,一个点变小(如图3(b)、(c)所示,相同幅度变化量),采用加权平均法即可获得电极信号的幅度值。如若电极信号是完全对称的,则变化的幅度大小也是相同的(如图3(a)所示),取两点的平均值即可代表该电极信号的幅度,从而有效地去除了束流纵向相位振荡带来的测量偏差。
另外,需要注意的是,在本发明中,加权平均法是一种已有的数学分析方法,被广泛的应用在统计、测量等领域。但在加速器领域,现有技术中技术人员仅利用该方法进行信号数据处理,而从未作为一种测量手段进行束流峰值幅度信息分析。由于各学术领域之间的交流并不是很及时,有些在其他领域广泛应用的算法在加速器领域很可能还没有发现它的用处。
综上所述,本发明针对多电极探头输出信号的数据采集测量,没有采用通常的峰值检测方法,而是采用多相位采样的手段,直接在测量方法上去除了束流纵向相位振荡带来的影响,不仅省去了在后续数据处理上繁琐的相位因子的修正,也提高了信号处理的质量,进而有效了提高束流峰值幅度的测量精度。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (4)

1.一种基于多相位采样的束流信号峰值幅度精确提取方法,其特征在于,所述方法包括以下步骤:
步骤S1,分别为一钮扣束流位置探头的N个电极连接两根具有相同的固定延迟时间的电缆,以使每个所述电极的两个采样点之间保持固定相位差;
步骤S2,为一数据采集板卡外接一加速器装置定时系统提供的时钟信号,并调节所述时钟信号,以使每个所述电极的两个采样点保持在该电极输出的电极信号的峰值两端的相位平衡对称位置;
步骤S3,将所述数据采集板卡与所述电缆连接,并通过该数据采集板卡的2N个通道分别对所述N个电极在束流通过所述钮扣束流位置探头时所输出的电极信号进行采样,以获得每个所述电极的两个采样点的电压信号Vi,1和Vi,2,i=1,2,......,N;以及
步骤S4,根据以下公式计算得到所述N个电极分别对应的束流位置探头信号峰值幅度:
其中,k1和k2分别为所述两个电压信号Vi,1和Vi,2在束流纵向变化相同相位时检测到的束流信号幅度变化的比重。
2.根据权利要求1所述的基于多相位采样的束流信号峰值幅度精确提取方法,其特征在于,所述步骤S1还包括:在连接所述电缆之前,通过N个功分器分别对所述N个电极输出的N个电极信号进行功分,然后为每个所述功分器连接两根所述电缆。
3.根据权利要求1所述的基于多相位采样的束流信号峰值幅度精确提取方法,其特征在于,所述电缆的固定延迟时间为100ps。
4.根据权利要求1所述的基于多相位采样的束流信号峰值幅度精确提取方法,其特征在于,所述步骤S2还包括:通过一移相器调节所述时钟信号。
CN201910057486.5A 2019-01-22 2019-01-22 一种基于多相位采样的束流信号峰值幅度精确提取方法 Active CN109633243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910057486.5A CN109633243B (zh) 2019-01-22 2019-01-22 一种基于多相位采样的束流信号峰值幅度精确提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910057486.5A CN109633243B (zh) 2019-01-22 2019-01-22 一种基于多相位采样的束流信号峰值幅度精确提取方法

Publications (2)

Publication Number Publication Date
CN109633243A true CN109633243A (zh) 2019-04-16
CN109633243B CN109633243B (zh) 2021-06-18

Family

ID=66062981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910057486.5A Active CN109633243B (zh) 2019-01-22 2019-01-22 一种基于多相位采样的束流信号峰值幅度精确提取方法

Country Status (1)

Country Link
CN (1) CN109633243B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175569A (zh) * 2020-02-20 2020-05-19 中国科学院上海应用物理研究所 一种基于宽带串行化的极窄束流信号峰值幅度提取方法
CN112698096A (zh) * 2020-12-09 2021-04-23 中国科学院上海高等研究院 一种逐束团三维位置测量系统及测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242591A (ja) * 1990-02-19 1991-10-29 Nissin Electric Co Ltd ビーム電流密度分布計測装置
JPH0745674A (ja) * 1993-07-28 1995-02-14 Fujitsu Ltd 電子ビームテスタの電圧波形測定方法
CN104181577A (zh) * 2014-09-01 2014-12-03 中国科学技术大学 一种基于全数字化技术的束流位置和相位测量系统及方法
CN104180824A (zh) * 2014-08-18 2014-12-03 中国科学院上海应用物理研究所 一种基于主成分分析算法提高探头测量精度的方法
CN106501604A (zh) * 2016-10-24 2017-03-15 中国科学院上海应用物理研究所 一种测量粒子加速器束团纵向相位的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242591A (ja) * 1990-02-19 1991-10-29 Nissin Electric Co Ltd ビーム電流密度分布計測装置
JPH0745674A (ja) * 1993-07-28 1995-02-14 Fujitsu Ltd 電子ビームテスタの電圧波形測定方法
CN104180824A (zh) * 2014-08-18 2014-12-03 中国科学院上海应用物理研究所 一种基于主成分分析算法提高探头测量精度的方法
CN104181577A (zh) * 2014-09-01 2014-12-03 中国科学技术大学 一种基于全数字化技术的束流位置和相位测量系统及方法
CN106501604A (zh) * 2016-10-24 2017-03-15 中国科学院上海应用物理研究所 一种测量粒子加速器束团纵向相位的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赖龙伟等: ""自由电子激光装置数字化束流位置信号处理器研制及应用"", 《核技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175569A (zh) * 2020-02-20 2020-05-19 中国科学院上海应用物理研究所 一种基于宽带串行化的极窄束流信号峰值幅度提取方法
CN112698096A (zh) * 2020-12-09 2021-04-23 中国科学院上海高等研究院 一种逐束团三维位置测量系统及测量方法

Also Published As

Publication number Publication date
CN109633243B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
US8519719B2 (en) System for complex impedance measurement
CN109187656A (zh) 测量物质的电学性能的装置和方法
CN107003296B (zh) 溶血检测方法和系统
CN110632387A (zh) 一种基于交流量子电压的谐波电压测量方法
JP2006276006A (ja) 電力系統における高調波解析法
CN109828141B (zh) 基于弱耦合微机械谐振器的高灵敏度电压测量装置及测量方法
CN109633243A (zh) 一种基于多相位采样的束流信号峰值幅度精确提取方法
CN103744035B (zh) 工作点迁移法计数式超导磁力仪及确定磁场变化方向的方法
CN107728036A (zh) 霍尔效应测试仪及测试方法
CN101871974A (zh) 一种阻抗谱的测量方法
CN109239463B (zh) 一种基于线性修正算法的介质损耗测量方法
CN104502998B (zh) 地震检波器特性参数测试仪及测试方法
CN109581062A (zh) 用于示波器校准仪探头的高精度阻抗测量系统
Bergsten et al. Precision measurement system for characterisation of phase displacement of voltage dividers up to 1 MHz
CN106840230A (zh) 一种振弦式传感器的信号处理装置及方法
CN105676143A (zh) 蓄电池出厂参数在线检测装置
US6469492B1 (en) Precision RMS measurement
JPH03176678A (ja) Icテスタのac評価方法
RU2363005C1 (ru) Способ спектрального анализа полигармонических сигналов и устройство для его реализации
US9759751B1 (en) Line cycle correlated spectral analysis for power measurement systems
JP4225651B2 (ja) 回路素子測定器の位相誤差補正方法
CN105445553A (zh) 一种精确获取变压器50Hz处短路阻抗值的方法
Rosu-Hamzescu et al. High Performance Low Cost Impedance Spectrometer for Biosensing
Kekelj et al. An FPGA implementation of the Goertzel algorithm in a Non-Destructive Eddy current Testing
CN111650634B (zh) 一种基于纵向相位测量的束流位置探测器机械中心标定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221219

Address after: 201800 Shanghai city Jiading District Road No. 2019

Patentee after: SHANGHAI INSTITUTE OF APPLIED PHYSICS, CHINESE ACADEMY OF SCIENCES

Patentee after: Shanghai Alliance Investment Ltd.

Address before: 201800 Shanghai city Jiading District Road No. 2019

Patentee before: SHANGHAI INSTITUTE OF APPLIED PHYSICS, CHINESE ACADEMY OF SCIENCES