CN109632944A - 一种基于组合特征的多层管柱结构脉冲涡流无损检测方法 - Google Patents
一种基于组合特征的多层管柱结构脉冲涡流无损检测方法 Download PDFInfo
- Publication number
- CN109632944A CN109632944A CN201910045210.5A CN201910045210A CN109632944A CN 109632944 A CN109632944 A CN 109632944A CN 201910045210 A CN201910045210 A CN 201910045210A CN 109632944 A CN109632944 A CN 109632944A
- Authority
- CN
- China
- Prior art keywords
- assemblage characteristic
- pipe string
- multilayer pipe
- string structure
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9046—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9013—Arrangements for scanning
- G01N27/902—Arrangements for scanning by moving the sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/904—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
本发明公开一种基于组合特征的多层管柱结构脉冲涡流无损检测方法,通过使用组合特征进行分类识别,能够有效提高多层管柱结构缺陷的检测准确度,为被测多层管柱结构的健康状态评估及寿命预测提供支持。本方法首先三方向探头对被测多层管柱结构进行脉冲涡流检测,并对检测信号进行采样;其次通过预处理方法去除信号中存在的干扰;然后通过对三方向探头对应的信号分别进行特征提取,并形成组合特征量;最后根据组合特征量,使用分类识别算法进行分析,得到分类识别结果。
Description
技术领域
本发明涉及导电结构无损检测领域,尤其涉及一种基于组合特征的多层管柱结构脉冲涡流无损检测方法。
背景技术
现代工业中多层管柱导电结构被广泛使用,如:油气采集使用的油套管结构等,由于长期服役在严苛的工作环境中,这些多层管柱导电结构往往会出现不同程度的缺陷,如:孔洞、裂缝、变形等,这些缺陷会严重影响整体结构的完整性,带来安全隐患。
不同类型的缺陷会对整体结构产生不同的影响,相应的修复措施也不尽相同,因此实现对多层管柱结构缺陷的分类识别很有意义。脉冲涡流检测是多层管柱导电结构缺陷检测的有效方法,不同类型的缺陷会对脉冲涡流检测信号有着不同的影响,根据检测信号进行适当的处理可以获得缺陷的分类信息。
针对导电结构脉冲涡流检测方法,已有一些学者开展了相关研究。Sophian等人提出了提取信号峰值和峰值时间作为特征值,并通过研究发现缺陷的体积信息可由信号峰值表征,缺陷所在的位置可由信号峰值时间表征。张曦郁等人结合了远场涡流和脉冲涡流技术,提出了基于堆叠自编码器神经网络的分类方法,实现了对油套管内管外壁腐蚀、外管内壁腐蚀和外管外壁腐蚀的分类。王立敏等人在连续油管上设计并预制了裂纹、腐蚀缺陷和椭圆度缺陷,对连续油管的缺陷和椭圆度进行试验评价,通过分析缺陷处的磁场异常特征,实现缺陷的定位、定性和定量分析。Mao等人在铁磁性管道的测厚研究中使用了基于Levenberg-Marquardt算法和变量变换的检测算法,获得了较好的检测结果。然而现有的检测方法存在一些问题:提取的特征,如:峰值、峰值时间等,容易受到各种外界干扰的影响,造成分类结果不准确;采用的分类方法往往只能区分几种区别明显的类型,如:横向裂缝和纵向裂缝,而难以将实际工况中出现的全部类型进行区分。
发明内容
为了克服现有技术的不足,本发明提供一种基于组合特征的多层管柱结构脉冲涡流无损检测方法。
本发明的目的是通过以下技术方案来实现的:一种基于组合特征的多层管柱结构脉冲涡流无损检测方法,该方法包括如下步骤:
(1)实验数据采集,包括以下子步骤:
(1.1)使用线圈空间轴线两两垂直的三个线圈探头对被测多层管柱结构进行从上至下的扫描检测,获得脉冲涡流电压信号;
(1.2)对检测到的脉冲涡流电压信号的有效区域进行积分采样,得到数字化的采样信号;
(2)对步骤1采集的实验数据进行预处理,去除基线干扰,包括以下子步骤:
(2.1)对步骤1.2采集的数据按照多层管柱结构的连接的节箍进行分段处理;
(2.2)对分段后每一段上的数据通过最小二乘法进行信号处理,得到每段数据的基线信号,从每一段上的数据中减去基线信号,得到了去除基线干扰的检测信号;
(3)对步骤2预处理后的信号进行特征提取并形成组合特征量,包括以下子步骤:
(3.1)对步骤2.2获得的三个探头的信号分别进行主成分分析;
(3.2)提取每个探头的第一主成分,形成组合特征量;
(4)使用步骤3获得的组合特征量进行分类识别,包括以下子步骤:
(4.1)将步骤3.2获得的组合特征量输入到随机森林分类器中,通过随机森林分类器得到是否存在缺陷的识别结果;
(4.2)在步骤4.1的基础上通过随机森林分类器进一步进行分类识别,获得缺陷类型的识别结果。
本发明的有益效果如下:
1.本发明检测过程中采用三个方向探头进行检测,能够获取被测结构完整的空间三维信息;
2.本发明采用了最小二乘法对基线干扰进行了去除,能够有效提高最终的分类准确度;
3.本发明使用三个方向检测信号的第一主成分组成的组合特征进行分类识别,充分利用了检测到的空间三维信息,最终分类准确度高;
4.本发明采用随机森林进行分类识别,结果可靠准确,运算速度快,具有较好的应用前景。
附图说明
图1是本发明使用的三个方向探头空间分布示意图;
图2是本积分采样示意图;
图3是本发明的组合特征提取流程图;
图4是本发明的检测流程图;
图中,第一横向探头1、第二横向探头2、纵向探头3。
具体实施方式
以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明基于组合特征的多层管柱结构脉冲涡流无损检测方法,该方法包括如下步骤:
S1:实验数据采集,本发明的实施例中,共获得4465组实验数据;
S1.1:使用线圈空间轴线两两垂直的三个线圈探头对被测多层管柱结构进行从上至下的快速扫描检测,获得脉冲涡流电压信号。
所使用的三个方向探头空间分布如图1所示,第一横向探头1和第二横向探头2的空间轴线水平且相互垂直,纵向探头3的空间轴线水平竖直。
S1.2:对检测到的脉冲涡流电压信号的有效区域进行积分采样,得到数字化的采样信号,如图2所示,从在信号中期开始,每隔相同的3-5ms进行一次采样,每次采样持续2-5ms,且为了保证采样数据的准确性,电压值越小的部分采样时间越长,对采样时间内的数据求积分值,之后除以采样时长,得到每个采样点上的采样数值;
S2:对S1.2采集的数据进行预处理,去除基线干扰;
S2.1:对S1.2采集的数据按照多层管柱结构的连接的节箍进行分段处理;
S2.2:对分段后每一段上的数据通过最小二乘法进行信号处理,得到每段数据的基线信号,从每一段上的数据中减去基线信号,得到了去除基线干扰的检测信号;
S3:对S2.2获得的信号进行特征提取并形成组合特征量;
S3.1:对S2.2获得的三个探头的信号分别进行主成分分析;
S3.2:提取每个探头的第一主成分,形成组合特征量;
S4:使用S3.2获得的组合特征量进行分类识别。本发明的实施例中,共获得4465组实验数据,其中无缺陷数据2669组,有缺陷数据1796组,有缺陷数据共有11种分类,包括横缝、纵缝、斜缝孔洞、弯曲、单面挤压、双面挤压(对称)、双面挤压(直角)、三面挤压、四面挤压、节箍;
S4.1:将S3.2获得的组合特征量输入到随机森林分类器中,通过随机森林分类器得到是否存在缺陷的识别结果。本发明的实施例中,分类准确度为96.1470%;
S4.2:在S4.1的基础上通过随机森林分类器进一步进行分类识别,获得缺陷类型的识别结果。本发明的实施例中,分类准确度为94.7133%。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。
Claims (5)
1.一种基于组合特征的多层管柱结构脉冲涡流无损检测方法,其特征在于,该方法包括如下步骤:
(1)实验数据采集。
(2)对步骤1采集的实验数据进行预处理,去除基线干扰。
(3)对步骤2预处理后的信号进行特征提取并形成组合特征量。
(4)使用步骤3获得的组合特征量进行分类识别。
2.根据权利要求1所述基于组合特征的多层管柱结构脉冲涡流无损检测方法,其特征在于,所述步骤1包括以下子步骤:
(1.1)使用线圈空间轴线两两垂直的三个线圈探头对被测多层管柱结构进行从上至下的扫描检测,获得脉冲涡流电压信号。
(1.2)对检测到的脉冲涡流电压信号的有效区域进行积分采样,得到数字化的采样信号。
3.根据权利要求2所述基于组合特征的多层管柱结构脉冲涡流无损检测方法,其特征在于,所述步骤2包括以下子步骤:
(2.1)对步骤1.2采集的数据按照多层管柱结构的连接的节箍进行分段处理。
(2.2)对分段后每一段上的数据通过最小二乘法进行信号处理,得到每段数据的基线信号,从每一段上的数据中减去基线信号,得到了去除基线干扰的检测信号。
4.根据权利要求3所述基于组合特征的多层管柱结构脉冲涡流无损检测方法,其特征在于,所述步骤3包括以下子步骤:
(3.1)对步骤2.2获得的三个探头的信号分别进行主成分分析。
(3.2)提取每个探头的第一主成分,形成组合特征量。
5.根据权利要求4所述基于组合特征的多层管柱结构脉冲涡流无损检测方法,其特征在于,所述步骤4包括以下子步骤:
(4.1)将步骤3.2获得的组合特征量输入到随机森林分类器中,通过随机森林分类器得到是否存在缺陷的识别结果。
(4.2)在步骤4.1的基础上通过随机森林分类器进一步进行分类识别,获得缺陷类型的识别结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910045210.5A CN109632944A (zh) | 2019-01-17 | 2019-01-17 | 一种基于组合特征的多层管柱结构脉冲涡流无损检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910045210.5A CN109632944A (zh) | 2019-01-17 | 2019-01-17 | 一种基于组合特征的多层管柱结构脉冲涡流无损检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109632944A true CN109632944A (zh) | 2019-04-16 |
Family
ID=66062082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910045210.5A Pending CN109632944A (zh) | 2019-01-17 | 2019-01-17 | 一种基于组合特征的多层管柱结构脉冲涡流无损检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109632944A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110378370A (zh) * | 2019-06-10 | 2019-10-25 | 浙江大学 | 一种基于脉冲涡流信号的油气井套管缺陷分类方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004253A1 (fr) * | 1997-07-18 | 1999-01-28 | Framatome | Sonde a courants de foucault pour le controle non destructif de la paroi d'un tube et procede de traitement des signaux de la sonde |
JP2016109495A (ja) * | 2014-12-03 | 2016-06-20 | タカノ株式会社 | 分類器生成装置、外観検査装置、分類器生成方法、及びプログラム |
CN109115868A (zh) * | 2018-09-29 | 2019-01-01 | 东北大学 | 一种基于脉冲涡流的缺陷深度检测装置及方法 |
CN109142514A (zh) * | 2018-09-29 | 2019-01-04 | 东北大学 | 一种基于脉冲涡流阵列的缺陷检测装置及方法 |
-
2019
- 2019-01-17 CN CN201910045210.5A patent/CN109632944A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004253A1 (fr) * | 1997-07-18 | 1999-01-28 | Framatome | Sonde a courants de foucault pour le controle non destructif de la paroi d'un tube et procede de traitement des signaux de la sonde |
JP2016109495A (ja) * | 2014-12-03 | 2016-06-20 | タカノ株式会社 | 分類器生成装置、外観検査装置、分類器生成方法、及びプログラム |
CN109115868A (zh) * | 2018-09-29 | 2019-01-01 | 东北大学 | 一种基于脉冲涡流的缺陷深度检测装置及方法 |
CN109142514A (zh) * | 2018-09-29 | 2019-01-04 | 东北大学 | 一种基于脉冲涡流阵列的缺陷检测装置及方法 |
Non-Patent Citations (3)
Title |
---|
JOHN C. ALDRIN, ET AL.: "Sensitivity Analysis Of Inverse Methods In Eddy Current Pit Characterization", 《AIP CONFERENCE PROCEEDINGS》 * |
刘传泽 等: "基于区域筛选分割和随机森林的人造板表面缺陷识别", 《制造业自动化》 * |
王斌 等: "阵列式瞬变电磁探伤采集系统设计", 《现代电子技术》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110378370A (zh) * | 2019-06-10 | 2019-10-25 | 浙江大学 | 一种基于脉冲涡流信号的油气井套管缺陷分类方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | Reduction of lift-off effects for pulsed eddy current NDT | |
DK2108120T3 (en) | Method and device for non-destructive testing using eddy currents | |
RU2419787C2 (ru) | Система и способ контроля трубопроводов импульсными вихревыми токами | |
CN105067239B (zh) | 基于扫频激励振动的梁裂纹故障检测装置及方法 | |
CN109444257B (zh) | 一种基于频域提离交叉点的脉冲涡流检测装置及方法 | |
Giguère et al. | Pulsed eddy current: Finding corrosion independently of transducer lift-off | |
EP3951381B1 (en) | Non-destructive testing method and device for testing and distinguishing internal and external defects of steel wire rope | |
CN103336049A (zh) | 一种消除提离效应的脉冲涡流检测方法及装置 | |
CN104266579A (zh) | 一种对铁磁构件进行脉冲涡流检测的信号特征量的提取方法 | |
CN112229904A (zh) | 一种脉冲远场涡流检测探头及使用方法 | |
EP3344982B1 (en) | A method and system for detecting a material discontinuity in a magnetisable article | |
CN112415088A (zh) | 一种内穿式横向脉冲涡流检测探头及其使用方法 | |
CN103399083A (zh) | 一种脉冲涡流检测提离效应的抑制方法 | |
Faurschou et al. | Pulsed eddy current probe optimization for steel pipe wall thickness measurement | |
Okolo et al. | Axial magnetic field sensing for pulsed magnetic flux leakage hairline crack detection and quantification | |
Lei et al. | Ultrasonic pig for submarine oil pipeline corrosion inspection | |
CN108181377B (zh) | 一种pccp钢丝断丝智能判读系统及方法 | |
CN109632944A (zh) | 一种基于组合特征的多层管柱结构脉冲涡流无损检测方法 | |
CN110378370A (zh) | 一种基于脉冲涡流信号的油气井套管缺陷分类方法 | |
CN109916997A (zh) | 一种石油管道在线检测装置 | |
CN201527411U (zh) | 二维低频脉冲涡流探头 | |
CN111197471B (zh) | 井下筛管瞬变电磁检测计算模型及检测方法 | |
Zhang et al. | Online Magnetic Flux Leakage Detection System for Sucker Rod Defects Based on LabVIEW Programming. | |
CN201527412U (zh) | 低频脉冲涡流探头 | |
Qi | Experimental study of interference factors and simulation on oil-gas pipeline magnetic flux leakage density signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190416 |
|
WD01 | Invention patent application deemed withdrawn after publication |