CN109628558A - A kind of capture probe and its application for high-flux sequence detection gene mutation - Google Patents

A kind of capture probe and its application for high-flux sequence detection gene mutation Download PDF

Info

Publication number
CN109628558A
CN109628558A CN201811573666.0A CN201811573666A CN109628558A CN 109628558 A CN109628558 A CN 109628558A CN 201811573666 A CN201811573666 A CN 201811573666A CN 109628558 A CN109628558 A CN 109628558A
Authority
CN
China
Prior art keywords
artificial sequence
dna
probe
capture
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811573666.0A
Other languages
Chinese (zh)
Other versions
CN109628558B (en
Inventor
方楠
刘运超
李伟伟
王建伟
伍启熹
刘倩
刘珂弟
唐宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing You Xun Medical Laboratory Laboratory Co Ltd
Original Assignee
Beijing You Xun Medical Laboratory Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing You Xun Medical Laboratory Laboratory Co Ltd filed Critical Beijing You Xun Medical Laboratory Laboratory Co Ltd
Priority to CN201811573666.0A priority Critical patent/CN109628558B/en
Publication of CN109628558A publication Critical patent/CN109628558A/en
Application granted granted Critical
Publication of CN109628558B publication Critical patent/CN109628558B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms

Abstract

The present invention relates to technical field of gene detection, and in particular to a kind of capture probe and its application for high-flux sequence detection gene mutation.The present invention provides a kind of capture probe for high-flux sequence detection gene mutation, it is single-stranded probe mixture, including since one end of DNA to be measured, respectively for the nucleotide sequence of the positive-sense strand of DNA to be measured and antisense strand, the probe for positive-sense strand and the probe for antisense strand successively designed;In every two adjacent single-stranded probe, one is the single-stranded probe for the design of the nucleotide sequence of positive-sense strand, another is the single-stranded probe for the nucleotide sequence design of antisense strand;The targeted DNA to be measured of every two adjacent single-stranded probe is not overlapped;Single-stranded probe mixture can cover all DNA to be measured.Capture probe provided by the invention can significantly improve storage capacity, capture rate and the sequencing data effective depth in capture library, reduce the repetitive rate of sequencing data, have very high application value.

Description

A kind of capture probe and its application for high-flux sequence detection gene mutation
Technical field
The present invention relates to technical field of gene detection, and in particular to a kind of catching for high-flux sequence detection gene mutation Obtain probe and its application.
Background technique
Genome sequencing can obtain mutation, insertion, missing and the structure variation of full-length genome horizontal extent.So And since gene pool-size is larger, with 30 × carry out sequencing and will generate data volume close to 100G.And tumour etc. is relevant low Frequency of mutation sequencing then needs at least 1000 × coverage can generate up to 3000G if carrying out genome sequencing Data volume.The data volume of scale can also generate huge other than it can cause greatly difficulty to the analysis work of data in this way Sequencing cost.
Target area solution hybridization capture technique is to design the spy complementary with target sequence according to DNA sequence dna complementarity principle Specific probes, and synthesize in solid phase or liquid-phase chip, sample gene group DNA is interrupted, in addition hybridize after sequence measuring joints with probe, Finally target area is captured, it is subsequent by recycling, constructing library and be directly used in high-flux sequence.It mentions both at home and abroad at present Have much for the company of liquid phase hybrid capture technology, such as the external chemical reagent work of Agilent, Roche, IDT, TWIST bioscience The domestic manufacturers such as quotient and Ai Jitaikang, Mai Jinuo.
The probe of the most critical applied to hybrid capture of above-mentioned manufacturer is had nothing in common with each other, and is also had their own characteristics each.Such as: Agilent It is rna probe, Roche and IDT using DNA single-stranded probe with Ai Jitaikang use.Rna probe and the design of DNA single-stranded probe Principle be substantially based on the design method of stacked tile type, keep consistent with genomic sense strand is referred to or on the contrary, can only catch It receives and is then dropped with the positive-sense strand or the consistent library part of antisense strand, another chain for referring to genome, in such cases, If capture effect is bad, two chains that will lead to library are all lost, and reduce the richness in library.TWIST Bioscience, Mai Jinuo carry out library capture using double-chain probe, can guarantee that two chains in library are all captured in this way, still Since double-chain probe is reverse complemental structure, has and hybridized mutually between many probes, result in the need for the dosage of probe compared with Greatly or cause capture rate relatively low.Therefore, it develops capture rate height, can be avoided the interaction between probe, and can The capture probe for improving library richness is of great significance.
Summary of the invention
In order to solve the technical problems existing in the prior art, the object of the present invention is to provide one kind to be used for high-flux sequence Detect capture probe and its application of gene mutation.
To solve single-stranded capture probe and double-strand capture probe in the prior art, it may be assumed that (1) single-stranded Probe can only capture a chain of target fragment, cause the template of capture few, since probe is only directed to the probe of antisense strand, only Having two antisense strands of segment 1 and segment 2 can be captured, and two positive-sense strands can not be captured due to identical as probe sequence And lose (as shown in Figure 1).(2) although positive-sense strand and antisense strand that double-chain probe can capture target fragment 1 and segment 2 (such as Shown in Fig. 2), but since double-chain probe is reverse complemental structure, it has and is hybridized mutually between many probes, result in the need for visiting The dosage of needle is larger or causes capture rate relatively low.The present invention creatively proposes a kind of completely new capture probe design side Method, the present invention use the single-stranded probe for positive-sense strand and the single-stranded probe for antisense strand to be staggered, cover whole purposes The form in region had both avoided the mutual hybridization between probe, caused capture rate and probe utilization rate to reduce, and can be simultaneously Two chains of target fragment in library are captured, library total amount and richness, probe design diagram such as Fig. 3 institute of the invention are improved Show.
Firstly, the present invention provides a kind of capture probe for high-flux sequence detection gene mutation, the capture probe For single-stranded probe mixture, the single-stranded probe mixture includes since one end of DNA to be measured, respectively for DNA's to be measured The nucleotide sequence of positive-sense strand and antisense strand, the probe for positive-sense strand and the probe for antisense strand successively designed;Every two In a adjacent single-stranded probe, one is the single-stranded probe for the design of the nucleotide sequence of positive-sense strand, another is for anti- The single-stranded probe of the nucleotide sequence design of adopted chain;The targeted DNA to be measured of every two adjacent single-stranded probe is not overlapped;Institute All DNA to be measured can be covered by stating single-stranded probe mixture.
Suitable probe length and mixed proportion can preferably improve probe capture rate, described single-stranded in the present invention The length of probe is 90~120nt;Each single-stranded probe is mixed in the single-stranded probe mixture with identical molar ratio.
Preferably, in the present invention, the length of the single-stranded probe is 110~120nt.
On this basis, the present invention also provides the capture probes examines in gene order-checking library construction or high-flux sequence Application in cls gene mutation.
The present invention also provides a kind of construction methods of gene mutation sequencing library, to interrupt genomic DNA, using this The invention capture probe constructs sequencing library.
Specifically, the construction method of gene mutation sequencing library includes the following steps:
(1) genomic DNA is extracted, is interrupted as small fragment;
(2) library preparation is carried out to the small fragment DNA that step (1) obtains;
(3) the small fragment DNA library that step (2) obtains is hybridized with capture probe of the present invention, captures mesh Segment;
(4) segment of step (3) capture is expanded, machine on amplified production is sequenced.
Under the guidance of above-mentioned capture probe and preparation method thereof, the present invention is by taking EGFR genetic mutation detects as an example, exploitation For the capture probe of EGFR gene.
The present invention provides a kind of specific capture probe of EGFR gene comprising such as SEQ ID NO.172~SEQ ID Single-stranded probe shown in NO.228.
In the present invention, the capture probe can be marked using the biomarker that any this field allows, as One embodiment of the present invention, the present invention use the above-mentioned single-stranded probe of biotin labeling.
On the basis of above-mentioned capture probe, the present invention provides a kind of kit for detecting EGFR genetic mutation comprising The specific capture probe of the EGFR gene.
Preferably, the capture probe is rubbed as single-stranded probe as shown in SEQ ID NO.172~SEQ ID NO.228 etc. You form in ratio mixing.
It is highly preferred that the working concentration of the capture probe is 0.1pM~0.75pM.
For the high-flux sequence for being easy to implement EGFR genetic mutation, in the present invention, the kit further includes Hybridization Buffer Liquid, elution buffer, positive quality control product, negative quality-control product.
Further, the present invention also provides the specific capture probe of the EGFR gene or include the special of EGFR gene Property capture probe kit high-flux sequence detect EGFR genetic mutation or building detection EGFR genetic mutation sequencing text Application in library.
As one embodiment of the present invention, using capture probe of the present invention carry out sequencing library building and The method of high-flux sequence includes the following steps:
(1) probe design, synthesis and label;
(2) library construction before capturing: genomic DNA is interrupted as small fragment, progress sequencing library building;
(3) library of step (2) building hybridizes with capture probe, carries out the building in capture library;
(4) machine sequencing and data analysis on.
The beneficial effects of the present invention are: the present invention provides a kind of completely new capture probe preparation methods, will be for just It the probe of adopted chain and is interspersed for the probe of antisense strand, covers whole destination regions, both avoided due between probe Capture rate caused by hybridizing mutually and probe utilization rate reduce, and can capture two chains of target fragment in library simultaneously, mention High library total amount and richness can guarantee the richness and capture rate that capture library simultaneously.It is caught using provided by the invention The EGFR specificity capture probe for obtaining probe design process preparation can when carrying out sequencing library building and high-flux sequence The technical effect that library storage capacity is big, capture rate is high, Data duplication rate is low and data effective depth is high is realized simultaneously, is conducive to mention The working efficiency of high high-flux sequence has very high application value.
Detailed description of the invention
Fig. 1 is the design diagram of traditional single-stranded probe in summary of the invention of the present invention.
Fig. 2 is the design diagram of traditional double-chain probe in summary of the invention of the present invention.
Fig. 3 is to show in summary of the invention of the present invention for the probe design that the single-stranded probe of positive-sense strand and antisense strand is interspersed It is intended to.
Specific embodiment
The preferred embodiment of the present invention is described in detail below in conjunction with embodiment.It will be appreciated that following real Providing merely to play the purpose of explanation for example is applied, is not used to limit the scope of the present invention.The skill of this field Art personnel without departing from the spirit and purpose of the present invention, can carry out various modifications and replace to the present invention.
Experimental method used in following embodiments is conventional method unless otherwise specified.
The materials, reagents and the like used in the following examples is commercially available unless otherwise specified.
Embodiment 1
The present embodiment verifies the design side of capture probe provided by the invention by taking EGF-R ELISA EGFR as an example Method.For the probe of EGFR full exon region distribution three kinds of forms of design: traditional single-stranded probe (control group 1), double-strand are visited Needle (control group 2) and positive-sense strand probe provided by the invention and the staggered single-stranded probe of antisense strand probe (experimental group), And the sequencing analysis of human genome library construction and EGFR hybrid capture library is carried out, library storage capacity, capture to building Efficiency, repetitive rate, data effective depth etc. are analyzed, the capture effect of more different capture probes.
One, probe designs
(1) using the design method of traditional single-stranded probe, single-stranded probe is designed, for the single-stranded probe such as SEQ ID of EGFR Shown in NO.1~SEQ ID NO.57.
(2) using the design method of traditional double-chain probe, double-chain probe is designed, double-chain probe increases than above-mentioned single-stranded probe Reverse complemental probe, for EGFR double-chain probe as shown in SEQ ID NO.58~SEQ ID NO.171.
(3) capture probe being interspersed using probe design process design positive-sense strand of the invention and antisense strand, probe As shown in SEQ ID NO.172~SEQ ID NO.228.
Above-mentioned probe carries out subregion by full exon region to EGFR gene, design a plurality of length be 120nt or The probe of 120bp guarantees that each region of EGFR gene exon is covered by probe.Use the online probe design software of IDT (https: //sg.idtdna.com/site/order/ngs) design of probe is carried out, preset parameter is as follows: probe length 120bp, multiplier 1 ×, behave with reference to genome Human (Feb.2009GRCh37/hg19) with reference to genome, complete outer (do not include UTR).The exon of EGFR gene is separated by multiple intrones generates the different exon subregion of 28 length, in above-mentioned (3) When the design for the capture probe that positive-sense strand and antisense strand are interspersed, when the length of exon subregion is just covered by a probe When, then there is the subregion and only has the case where positive-sense strand probe.5 ' ends of above-mentioned all probes are all made of biotin labeling.
Two, library construction
1, library construction before capturing: using the whole blood cells of people as sample, genomic DNA is extracted, is interrupted as 200bp's Segment.9 parts of above-mentioned genomic DNAs for interrupting segment as 200bp are taken, every part of 1 μ g carries out routine illumina library construction, tool Body method is as follows:
(1) end repairs and adds A: configure reaction solution by reaction system shown in table 1 in PCR pipe, with rifle gently on Lower pressure-vaccum mixes.Above-mentioned reaction system is put into PCR instrument, program is set by conditional parameter shown in table 2, is reacted.
Repair and add A reaction system in 1 end of table
Repair and add A response procedures in 2 end of table
(2) adaptor connection: configuring reaction solution by reaction system shown in table 3 in PCR pipe, gently upper and lower with rifle Pressure-vaccum mixes.Above-mentioned reaction system is divided into 2 pipes, is put in PCR instrument, 20 DEG C of warm bath 15min.With the AMPure of 1 times of volume XP magnetic beads for purifying DNA sample, with the water elution of 23 μ l nuclease frees.
Table 3adaptor coupled reaction system
(3) library of PCR amplification connection adaptor: reaction solution is configured by reaction system shown in table 4 in PCR pipe, is used Gently pressure-vaccum mixes rifle up and down.Above-mentioned reaction system is put into PCR instrument, is carried out by the setting program of response procedures shown in table 5 Reaction.With 1.8 times of AMPure XP magnetic beads for purifying amplified productions, the water elution of 30 μ l nuclease frees, by obtain 9 libraries point It Bian Hao not be Y1-Y9.
4 PCR amplification of table connects the reaction system in the library of adaptor
5 PCR amplification of table connects the response procedures in the library of adaptor
2, Library hybridization capture and elution
It takes the library Y1-Y9 of the above-mentioned building of 500ng in a new centrifuge tube respectively, drains machine with vacuum and be concentrated Until library is evaporated.Using IDT hybrid capture kit, method to specifications carries out hybrid capture and elution.Hybridized It must guarantee that pipe lid covers tightly in journey, minimize the evaporation for reducing hybrid mixed liquid product, otherwise will will affect crossbreeding effect.Its In, single-stranded probe (SEQ ID NO.1~SEQ ID NO.57) the progress hybrid capture of the library Y1, Y2, Y3 use synthesis, Y4, The library Y5, Y6 carries out hybrid capture, Y7, Y8, Y9 using the double-chain probe (SEQ ID NO.58~SEQ ID NO.171) of synthesis Library uses the probe (SEQ ID NO.172~SEQ ID NO.228) synthesized using design method of the invention to be captured. The response procedures of hybrid capture are as shown in table 6.
6 hybrid capture response procedures of table
3, PCR amplification captures library
PCR reaction solution is prepared according to reaction system shown in table 7 on ice, confirmation mixes the reaction solution containing magnetic bead Afterwards, pipe is put into PCR instrument and is expanded, response procedures are as shown in table 8:
Table 7 captures Library PCR amplification reaction system
Table 8 captures Library PCR amplification response procedures
The library obtained using the above-mentioned PCR amplification of AMPure XP magnetic beads for purifying of 1.8 times of volumes, with 20 μ l nuclease frees Water elution, whole library is respectively designated as Z1-Z9 (corresponding respectively to the library Y1-Y9), the library Z1-Z9 outbound situation such as 9 institute of table Show, the results showed that, the storage capacity for carrying out the library of hybrid capture acquisition using single-stranded probe is minimum, is hybridized using double-chain probe Capture and using positive anti-chain of the invention interlock the library that single-stranded probe carries out hybrid capture acquisition storage capacity it is close.
Table 9Z1-Z9 library outbound situation
Bank number Library amount
Z1 15ng
Z2 17ng
Z3 13ng
Z4 30ng
Z5 32ng
Z6 29ng
Z7 25ng
Z8 27ng
Z9 30ng
4, the sequencing in the library Z1-Z9 is carried out using 500 sequenator of Illumina nextseq, sequencing data analyzes result As shown in table 10, final sequencing data analysis the result shows that, in terms of capture rate, (Z1- is captured using single-stranded probe Z3) suitable with the capture rate of (Z7-Z9) is captured using probe of the invention, and (Z4- is captured using double-chain probe Z6 efficiency) is minimum;In terms of repetitive rate, the weight for capturing with being captured using probe of the invention is carried out using double-chain probe Rate is suitable again, and the repetitive rate highest captured using single-stranded probe;In terms of data effective depth, using single-stranded probe into Row capture number suitable, and being captured using probe of the invention with the data effective depth captured using double-chain probe It is significantly improved according to effective depth.
10 library sequencing data of table analyzes result
In conclusion the EGFR specificity capture probe prepared using capture probe design method provided by the invention, It carries out sequencing library building and when high-flux sequence, can be achieved at the same time that library storage capacity is big, capture rate is high, Data duplication rate is low The high technical effect with data effective depth, solves existing for traditional single-stranded probe and double-chain probe that library storage capacity is low, catches Low efficiency and the low problem of data effective depth are obtained, there is very high application value.
The above is only a preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, several improvements and modifications can also be made, these improvements and modifications Also it should be regarded as protection scope of the present invention.
Sequence table
<110>Beijing You Xun Laboratory of medical test Co., Ltd
<120>a kind of capture probe and its application for high-flux sequence detection gene mutation
<130> KHP181118639.8
<160> 228
<170> SIPOSequenceListing 1.0
<210> 1
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 1
tcttcgggga gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgct 60
ggctgcgctc tgcccggcga gtcgggctct ggaggaaaag aaaggtaagg gcgtgtctcg 120
<210> 2
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 2
ctatcattcc tttgggccta ggattgcatt tatttccatg acaaaagggc ctgtctggtg 60
tttcagcaaa tgaaaacaaa aatataaagc ccatctcctt ttgaatgagc tctaaaacag 120
<210> 3
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 3
ttctccactg gacttcagaa caagagggag ctctgggctg ctggctggtt gtgcatttgc 60
tgtgggttcc ctccggcagg cgacctctcc gcgctgagaa ggttatccgg ataaccaagt 120
<210> 4
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 4
tgcatttctc agtatttcat gtgatatctg tctttttctt ccagtttgcc aaggcacgag 60
taacaagctc acgcagttgg gcacttttga agatcatttt ctcagcctcc agaggatgtt 120
<210> 5
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 5
caataactgt gaggtggtcc ttgggaattt ggaaattacc tatgtgcaga ggaattatga 60
tctttccttc ttaaaggttg gtgactttga ttttcctaca caaataaaat tggagaaaat 120
<210> 6
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 6
atcacgcatt tatgttttct cttcttagac catccaggag gtggctggtt atgtcctcat 60
tgccctcaac acagtggagc gaattccttt ggaaaacctg cagatcatca gaggaaatat 120
<210> 7
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 7
gtactacgaa aattcctatg ccttagcagt cttatctaac tatgatgcaa ataaaaccgg 60
actgaaggag ctgcccatga gaaatttaca gggtgagagg ctgggatgcc aaggctgggg 120
<210> 8
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 8
ggaatttaaa ggagctggaa agagtgctca ccgcagttcc attctcccgc agaaatcctg 60
catggcgccg tgcggttcag caacaaccct gccctgtgca acgtggagag catccagtgg 120
<210> 9
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 9
cgggacatag tcagcagtga ctttctcagc aacatgtcga tggacttcca gaaccacctg 60
ggcagctgta agtgtcgcat acacactatc tctgcctcca gctcctatgg gggacagctc 120
<210> 10
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 10
atgcatctat tacttttaca tttcaggcca aaagtgtgat ccaagctgtc ccaatgggag 60
ctgctggggt gcaggagagg agaactgcca gaaacgtaag tcagtgaaca gcctcagacc 120
<210> 11
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 11
tgaccaaaat catctgtgcc cagcagtgct ccgggcgctg ccgtggcaag tcccccagtg 60
actgctgcca caaccagtgt gctgcaggct gcacaggccc ccgggagagc gactgcctgg 120
<210> 12
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 12
gctgagtgta cttacctcac ttgcccagcg tgtcctctct cctccatagg tctgccgcaa 60
attccgagac gaagccacgt gcaaggacac ctgcccccca ctcatgctct acaaccccac 120
<210> 13
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 13
cacgtaccag atggatgtga accccgaggg caaatacagc tttggtgcca cctgcgtgaa 60
gaagtgtccc cgtgagtcct cctctgtggg ccctctaact ggtcaggcat ccttgtcccg 120
<210> 14
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 14
aggtaattat gtggtgacag atcacggctc gtgcgtccga gcctgtgggg ccgacagcta 60
tgagatggag gaagacggcg tccgcaagtg taagaagtgc gaagggcctt gccgcaaagg 120
<210> 15
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 15
agctattctt aatccaacaa atgtgaacgg aatacacgtc tctcttatct ctgcagtgtg 60
taacggaata ggtattggtg aatttaaaga ctcactctcc ataaatgcta cgaatattaa 120
<210> 16
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 16
acacttcaaa aactgcacct ccatcagtgg cgatctccac atcctgccgg tggcatttag 60
ggggtgagtc acaggttcag ttgcttgtat aaagaaaaac aaaatctgcc tttttaactg 120
<210> 17
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 17
taatcaccct gttgtttgtt tcagtgactc cttcacacat actcctcctc tggatccaca 60
ggaactggat attctgaaaa ccgtaaagga aatcacaggt ttgagctgaa ttatcacatg 120
<210> 18
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 18
aatataaatg ggaaatcagt gttttagaga gagaactttt cgacatattt cctgttccct 60
tggaataaaa acatttcttc tgaaatttta ccgttaatgg ctgatgtttt gatatttttc 120
<210> 19
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 19
catctgcctt acagggtttt tgctgattca ggcttggcct gaaaacagga cggacctcca 60
tgcctttgag aacctagaaa tcatacgcgg caggaccaag caacagtaag ttgaccacag 120
<210> 20
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 20
ttttcttctc tccaatgtag tggtcagttt tctcttgcag tcgtcagcct gaacataaca 60
tccttgggat tacgctccct caaggagata agtgatggag atgtgataat ttcaggaaac 120
<210> 21
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 21
aaaaatttgt gctatgcaaa tacaataaac tggaaaaaac tgtttgggac ctccggtcag 60
aaaaccaaaa ttataagcaa cagaggtgaa aacagctgca gtaagtcacc gctttctgtt 120
<210> 22
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 22
cccctcgggt ccctgctctg tcactgactg ctgtgaccca ctctgtctcc gcagaggcca 60
caggccaggt ctgccatgcc ttgtgctccc ccgagggctg ctggggcccg gagcccaggg 120
<210> 23
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 23
actgcgtctc ttgccggaat gtcagccgag gcagggaatg cgtggacaag tgcaaccttc 60
tggaggggta ggaggttatt tctttaatcc ccttgcgttg atcaaaaata aggctccagg 120
<210> 24
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 24
cttcctcctc tcagtgagcc aagggagttt gtggagaact ctgagtgcat acagtgccac 60
ccagagtgcc tgcctcaggc catgaacatc acctgcacag gacgggtaag agccccttgc 120
<210> 25
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 25
gaaagagaca tgcatgaaca tttttctcca ccttggtgca gggaccagac aactgtatcc 60
agtgtgccca ctacattgac ggcccccact gcgtcaagac ctgcccggca ggagtcatgg 120
<210> 26
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 26
gagaaaacaa caccctggtc tggaagtacg cagacgccgg ccatgtgtgc cacctgtgcc 60
atccaaactg cacctacggg tgagtggaaa gtgaaggaga acagaacatt tcctctcttg 120
<210> 27
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 27
ccaggtccta ataaatcttc actgtctgac tttagtctcc cactaaaact gcatttcctt 60
tctacaattt caatttctcc ctttgcttca aataaagtcc tgacactatt catttgacat 120
<210> 28
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 28
ttaggatcag attatagtgt tacaccaggg ctccccaggc ctctcacata ttgaaatgta 60
cttgtccatc tttctccagg ccaggaaatg agagtctcaa agccatgtta ttctgccttt 120
<210> 29
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 29
ttaaactatc atcctgtaat caaagtaatg atggcagcgt gtcccaccag agcgggagcc 60
cagctgctca ggagtcatgc ttaggatgga tcccttctct tctgccgtca gagtttcagc 120
<210> 30
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 30
tgggttgggg tggatgcagc cacctccatg cctggccttc tgcatctgtg atcatcacgg 60
cctcctcctg ccactgagcc tcatgccttc acgtgtctgt tccccccgct tttcctttct 120
<210> 31
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 31
gccacccctg cacgtgggcc gccaggttcc caagagtatc ctacccattt ccttccttcc 60
actccctttg ccagtgcctc tcaccccaac tagtagctaa ccatcacccc caggactgac 120
<210> 32
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 32
ctcttcctcc tcgctgccag atgattgttc aaagcacaga atttgtcaga aacctgcagg 60
gactccatgc tgccagcctt ctccgtaatt agcatggccc cagtccatgc ttctagcctt 120
<210> 33
<211> 119
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 33
ggttccttct gcccctctgt ttgaaattct agagccagct gtgggacaat tatctgtgtc 60
aaaagccaga tgtgaaaaca tctcaataac aaactggctg ctttgttcaa tgctagaac 119
<210> 34
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 34
aatgcataat aaataattaa ccaccaatcc aacatccaga cacatagtga ttttaattat 60
ttaagagtag tttagcatat attgctttat gatttaatta aaaatctcca aaatatatgc 120
<210> 35
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 35
agaatgagaa aaatgtatat ttctctttca cttcctacag atgcactggg ccaggtcttg 60
aaggctgtcc aacgaatggg taagtgttca cagctctgtg tcacatggac ctcgtcaaga 120
<210> 36
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 36
ttagaagcta catagtgtct cactttccaa gatcattcta caagatgtca gtgcactgaa 60
acatgcaggg gcgtgttgag tgccaaggcc atggaatctg tcagcaacct cacccttcct 120
<210> 37
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 37
ggaatctgtc agcaacctca cccttccttg ttcctccacc tcattccagg cctaagatcc 60
cgtccatcgc cactgggatg gtgggggccc tcctcttgct gctggtggtg gccctgggga 120
<210> 38
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 38
tcggcctctt catgcgaagg cgccacatcg ttcggaagcg cacgctgcgg aggctgctgc 60
aggagaggga ggtgagtgcc agtcctgggt gggctcagga gccctcgcac cccgacagga 120
<210> 39
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 39
ctttccagca tggtgagggc tgaggtgacc cttgtctctg tgttcttgtc ccccccagct 60
tgtggagcct cttacaccca gtggagaagc tcccaaccaa gctctcttga ggatcttgaa 120
<210> 40
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 40
ggaaactgaa ttcaaaaaga tcaaagtgct gggctccggt gcgttcggca cggtgtataa 60
ggtaaggtcc ctggcacagg cctctgggct gggccgcagg gcctctcatg gtctggtggg 120
<210> 41
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 41
tctgtcatag ggactctgga tcccagaagg tgagaaagtt aaaattcccg tcgctatcaa 60
ggaattaaga gaagcaacat ctccgaaagc caacaaggaa atcctcgatg tgagtttctg 120
<210> 42
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 42
cactgacgtg cctctccctc cctccaggaa gcctacgtga tggccagcgt ggacaacccc 60
cacgtgtgcc gcctgctggg catctgcctc acctccaccg tgcagctcat cacgcagctc 120
<210> 43
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 43
atgcccttcg gctgcctcct ggactatgtc cgggaacaca aagacaatat tggctcccag 60
tacctgctca actggtgtgt gcagatcgca aaggtaatca gggaagggag atacggggag 120
<210> 44
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 44
catgatgatc tgtccctcac agcagggtct tctctgtttc agggcatgaa ctacttggag 60
gaccgtcgct tggtgcaccg cgacctggca gccaggaacg tactggtgaa aacaccgcag 120
<210> 45
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 45
catgtcaaga tcacagattt tgggctggcc aaactgctgg gtgcggaaga gaaagaatac 60
catgcagaag gaggcaaagt aaggaggtgg ctttaggtca gccagcattt tcctgacacc 120
<210> 46
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 46
cctcatctct caccatccca aggtgcctat caagtggatg gcattggaat caattttaca 60
cagaatctat acccaccaga gtgatgtctg gagctacggt gagtcataat cctgatgcta 120
<210> 47
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 47
ttcattcatg atcccactgc cttcttttct tgcttcatcc tctcaggggt gactgtttgg 60
gagttgatga cctttggatc caagccatat gacggaatcc ctgccagcga gatctcctcc 120
<210> 48
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 48
atcctggaga aaggagaacg cctccctcag ccacccatat gtaccatcga tgtctacatg 60
atcatggtca agtgtgagtg actggtgggt ctgtccacac tgcctagctg agccttggtg 120
<210> 49
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 49
tccttcccca ggctggatga tagacgcaga tagtcgccca aagttccgtg agttgatcat 60
cgaattctcc aaaatggccc gagaccccca gcgctacctt gtcattcagg tacaaattgc 120
<210> 50
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 50
cgggccattc taatagcctc aaaatctctg caccaggggg atgaaagaat gcatttgcca 60
agtcctacag actccaactt ctaccgtgcc ctgatggatg aagaagacat ggacgacgtg 120
<210> 51
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 51
gtggatgccg acgagtacct catcccacag cagggcttct tcagcagccc ctccacgtca 60
cggactcccc tcctgagctc tctggtatga aatctctgtc tctctctctc tctcaagctg 120
<210> 52
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 52
agcattccat gggcaacttc tctgtttctt tttcagagtg caaccagcaa caattccacc 60
gtggcttgca ttgatagaaa tggggtatgt atgaacacct tataagccag aatttacagc 120
<210> 53
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 53
ctgcagctgc aaagctgtcc catcaaggaa gacagcttct tgcagcgata cagctcagac 60
cccacaggcg ccttgactga ggacagcata gacgacacct tcctcccagt gcctggtgag 120
<210> 54
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 54
atcctgcatg ggatggtgct ttgctgatta cttcacctct gatttctttc cactttcaga 60
atacataaac cagtccgttc ccaaaaggcc cgctggctct gtgcagaatc ctgtctatca 120
<210> 55
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 55
caatcagcct ctgaaccccg cgcccagcag agacccacac taccaggacc cccacagcac 60
tgcagtgggc aaccccgagt atctcaacac tgtccagccc acctgtgtca acagcacatt 120
<210> 56
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 56
cgacagccct gcccactggg cccagaaagg cagccaccaa attagcctgg acaaccctga 60
ctaccagcag gacttctttc ccaaggaagc caagccaaat ggcatcttta agggctccac 120
<210> 57
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 57
agctgaaaat gcagaatacc taagggtcgc gccacaaagc agtgaattta ttggagcatg 60
accacggagg atagtatgag ccctaaaaat ccagactctt tcgataccca ggaccaagcc 120
<210> 58
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 58
cgagacacgc ccttaccttt cttttcctcc agagcccgac tcgccgggca gagcgcagcc 60
agcagcgcca ggagcgctgc cccggccgtc ccggagggtc gcatcgctgc tccccgaaga 120
<210> 59
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 59
ctgttttaga gctcattcaa aaggagatgg gctttatatt tttgttttca tttgctgaaa 60
caccagacag gcccttttgt catggaaata aatgcaatcc taggcccaaa ggaatgatag 120
<210> 60
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 60
acttggttat ccggataacc ttctcagcgc ggagaggtcg cctgccggag ggaacccaca 60
gcaaatgcac aaccagccag cagcccagag ctccctcttg ttctgaagtc cagtggagaa 120
<210> 61
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 61
aacatcctct ggaggctgag aaaatgatct tcaaaagtgc ccaactgcgt gagcttgtta 60
ctcgtgcctt ggcaaactgg aagaaaaaga cagatatcac atgaaatact gagaaatgca 120
<210> 62
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 62
attttctcca attttatttg tgtaggaaaa tcaaagtcac caacctttaa gaaggaaaga 60
tcataattcc tctgcacata ggtaatttcc aaattcccaa ggaccacctc acagttattg 120
<210> 63
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 63
atatttcctc tgatgatctg caggttttcc aaaggaattc gctccactgt gttgagggca 60
atgaggacat aaccagccac ctcctggatg gtctaagaag agaaaacata aatgcgtgat 120
<210> 64
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 64
ccccagcctt ggcatcccag cctctcaccc tgtaaatttc tcatgggcag ctccttcagt 60
ccggttttat ttgcatcata gttagataag actgctaagg cataggaatt ttcgtagtac 120
<210> 65
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 65
ccactggatg ctctccacgt tgcacagggc agggttgttg ctgaaccgca cggcgccatg 60
caggatttct gcgggagaat ggaactgcgg tgagcactct ttccagctcc tttaaattcc 120
<210> 66
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 66
gagctgtccc ccataggagc tggaggcaga gatagtgtgt atgcgacact tacagctgcc 60
caggtggttc tggaagtcca tcgacatgtt gctgagaaag tcactgctga ctatgtcccg 120
<210> 67
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 67
ggtctgaggc tgttcactga cttacgtttc tggcagttct cctctcctgc accccagcag 60
ctcccattgg gacagcttgg atcacacttt tggcctgaaa tgtaaaagta atagatgcat 120
<210> 68
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 68
ccaggcagtc gctctcccgg gggcctgtgc agcctgcagc acactggttg tggcagcagt 60
cactggggga cttgccacgg cagcgcccgg agcactgctg ggcacagatg attttggtca 120
<210> 69
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 69
gtggggttgt agagcatgag tggggggcag gtgtccttgc acgtggcttc gtctcggaat 60
ttgcggcaga cctatggagg agagaggaca cgctgggcaa gtgaggtaag tacactcagc 120
<210> 70
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 70
cgggacaagg atgcctgacc agttagaggg cccacagagg aggactcacg gggacacttc 60
ttcacgcagg tggcaccaaa gctgtatttg ccctcggggt tcacatccat ctggtacgtg 120
<210> 71
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 71
cctttgcggc aaggcccttc gcacttctta cacttgcgga cgccgtcttc ctccatctca 60
tagctgtcgg ccccacaggc tcggacgcac gagccgtgat ctgtcaccac ataattacct 120
<210> 72
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 72
ttaatattcg tagcatttat ggagagtgag tctttaaatt caccaatacc tattccgtta 60
cacactgcag agataagaga gacgtgtatt ccgttcacat ttgttggatt aagaatagct 120
<210> 73
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 73
cagttaaaaa ggcagatttt gtttttcttt atacaagcaa ctgaacctgt gactcacccc 60
ctaaatgcca ccggcaggat gtggagatcg ccactgatgg aggtgcagtt tttgaagtgt 120
<210> 74
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 74
catgtgataa ttcagctcaa acctgtgatt tcctttacgg ttttcagaat atccagttcc 60
tgtggatcca gaggaggagt atgtgtgaag gagtcactga aacaaacaac agggtgatta 120
<210> 75
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 75
gaaaaatatc aaaacatcag ccattaacgg taaaatttca gaagaaatgt ttttattcca 60
agggaacagg aaatatgtcg aaaagttctc tctctaaaac actgatttcc catttatatt 120
<210> 76
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 76
ctgtggtcaa cttactgttg cttggtcctg ccgcgtatga tttctaggtt ctcaaaggca 60
tggaggtccg tcctgttttc aggccaagcc tgaatcagca aaaaccctgt aaggcagatg 120
<210> 77
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 77
gtttcctgaa attatcacat ctccatcact tatctccttg agggagcgta atcccaagga 60
tgttatgttc aggctgacga ctgcaagaga aaactgacca ctacattgga gagaagaaaa 120
<210> 78
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 78
aacagaaagc ggtgacttac tgcagctgtt ttcacctctg ttgcttataa ttttggtttt 60
ctgaccggag gtcccaaaca gttttttcca gtttattgta tttgcatagc acaaattttt 120
<210> 79
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 79
ccctgggctc cgggccccag cagccctcgg gggagcacaa ggcatggcag acctggcctg 60
tggcctctgc ggagacagag tgggtcacag cagtcagtga cagagcaggg acccgagggg 120
<210> 80
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 80
cctggagcct tatttttgat caacgcaagg ggattaaaga aataacctcc tacccctcca 60
gaaggttgca cttgtccacg cattccctgc ctcggctgac attccggcaa gagacgcagt 120
<210> 81
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 81
gcaaggggct cttacccgtc ctgtgcaggt gatgttcatg gcctgaggca ggcactctgg 60
gtggcactgt atgcactcag agttctccac aaactccctt ggctcactga gaggaggaag 120
<210> 82
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 82
ccatgactcc tgccgggcag gtcttgacgc agtgggggcc gtcaatgtag tgggcacact 60
ggatacagtt gtctggtccc tgcaccaagg tggagaaaaa tgttcatgca tgtctctttc 120
<210> 83
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 83
caagagagga aatgttctgt tctccttcac tttccactca cccgtaggtg cagtttggat 60
ggcacaggtg gcacacatgg ccggcgtctg cgtacttcca gaccagggtg ttgttttctc 120
<210> 84
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 84
atgtcaaatg aatagtgtca ggactttatt tgaagcaaag ggagaaattg aaattgtaga 60
aaggaaatgc agttttagtg ggagactaaa gtcagacagt gaagatttat taggacctgg 120
<210> 85
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 85
aaaggcagaa taacatggct ttgagactct catttcctgg cctggagaaa gatggacaag 60
tacatttcaa tatgtgagag gcctggggag ccctggtgta acactataat ctgatcctaa 120
<210> 86
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 86
gctgaaactc tgacggcaga agagaaggga tccatcctaa gcatgactcc tgagcagctg 60
ggctcccgct ctggtgggac acgctgccat cattactttg attacaggat gatagtttaa 120
<210> 87
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 87
agaaaggaaa agcgggggga acagacacgt gaaggcatga ggctcagtgg caggaggagg 60
ccgtgatgat cacagatgca gaaggccagg catggaggtg gctgcatcca ccccaaccca 120
<210> 88
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 88
gtcagtcctg ggggtgatgg ttagctacta gttggggtga gaggcactgg caaagggagt 60
ggaaggaagg aaatgggtag gatactcttg ggaacctggc ggcccacgtg caggggtggc 120
<210> 89
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 89
aaggctagaa gcatggactg gggccatgct aattacggag aaggctggca gcatggagtc 60
cctgcaggtt tctgacaaat tctgtgcttt gaacaatcat ctggcagcga ggaggaagag 120
<210> 90
<211> 119
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 90
gttctagcat tgaacaaagc agccagtttg ttattgagat gttttcacat ctggcttttg 60
acacagataa ttgtcccaca gctggctcta gaatttcaaa cagaggggca gaaggaacc 119
<210> 91
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 91
gcatatattt tggagatttt taattaaatc ataaagcaat atatgctaaa ctactcttaa 60
ataattaaaa tcactatgtg tctggatgtt ggattggtgg ttaattattt attatgcatt 120
<210> 92
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 92
tcttgacgag gtccatgtga cacagagctg tgaacactta cccattcgtt ggacagcctt 60
caagacctgg cccagtgcat ctgtaggaag tgaaagagaa atatacattt ttctcattct 120
<210> 93
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 93
aggaagggtg aggttgctga cagattccat ggccttggca ctcaacacgc ccctgcatgt 60
ttcagtgcac tgacatcttg tagaatgatc ttggaaagtg agacactatg tagcttctaa 120
<210> 94
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 94
tccccagggc caccaccagc agcaagagga gggcccccac catcccagtg gcgatggacg 60
ggatcttagg cctggaatga ggtggaggaa caaggaaggg tgaggttgct gacagattcc 120
<210> 95
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 95
tcctgtcggg gtgcgagggc tcctgagccc acccaggact ggcactcacc tccctctcct 60
gcagcagcct ccgcagcgtg cgcttccgaa cgatgtggcg ccttcgcatg aagaggccga 120
<210> 96
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 96
ttcaagatcc tcaagagagc ttggttggga gcttctccac tgggtgtaag aggctccaca 60
agctgggggg gacaagaaca cagagacaag ggtcacctca gccctcacca tgctggaaag 120
<210> 97
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 97
cccaccagac catgagaggc cctgcggccc agcccagagg cctgtgccag ggaccttacc 60
ttatacaccg tgccgaacgc accggagccc agcactttga tctttttgaa ttcagtttcc 120
<210> 98
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 98
cagaaactca catcgaggat ttccttgttg gctttcggag atgttgcttc tcttaattcc 60
ttgatagcga cgggaatttt aactttctca ccttctggga tccagagtcc ctatgacaga 120
<210> 99
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 99
gagctgcgtg atgagctgca cggtggaggt gaggcagatg cccagcaggc ggcacacgtg 60
ggggttgtcc acgctggcca tcacgtaggc ttcctggagg gagggagagg cacgtcagtg 120
<210> 100
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 100
ctccccgtat ctcccttccc tgattacctt tgcgatctgc acacaccagt tgagcaggta 60
ctgggagcca atattgtctt tgtgttcccg gacatagtcc aggaggcagc cgaagggcat 120
<210> 101
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 101
ctgcggtgtt ttcaccagta cgttcctggc tgccaggtcg cggtgcacca agcgacggtc 60
ctccaagtag ttcatgccct gaaacagaga agaccctgct gtgagggaca gatcatcatg 120
<210> 102
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 102
ggtgtcagga aaatgctggc tgacctaaag ccacctcctt actttgcctc cttctgcatg 60
gtattctttc tcttccgcac ccagcagttt ggccagccca aaatctgtga tcttgacatg 120
<210> 103
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 103
tagcatcagg attatgactc accgtagctc cagacatcac tctggtgggt atagattctg 60
tgtaaaattg attccaatgc catccacttg ataggcacct tgggatggtg agagatgagg 120
<210> 104
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 104
ggaggagatc tcgctggcag ggattccgtc atatggcttg gatccaaagg tcatcaactc 60
ccaaacagtc acccctgaga ggatgaagca agaaaagaag gcagtgggat catgaatgaa 120
<210> 105
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 105
caccaaggct cagctaggca gtgtggacag acccaccagt cactcacact tgaccatgat 60
catgtagaca tcgatggtac atatgggtgg ctgagggagg cgttctcctt tctccaggat 120
<210> 106
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 106
gcaatttgta cctgaatgac aaggtagcgc tgggggtctc gggccatttt ggagaattcg 60
atgatcaact cacggaactt tgggcgacta tctgcgtcta tcatccagcc tggggaagga 120
<210> 107
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 107
cacgtcgtcc atgtcttctt catccatcag ggcacggtag aagttggagt ctgtaggact 60
tggcaaatgc attctttcat ccccctggtg cagagatttt gaggctatta gaatggcccg 120
<210> 108
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 108
cagcttgaga gagagagaga gacagagatt tcataccaga gagctcagga ggggagtccg 60
tgacgtggag gggctgctga agaagccctg ctgtgggatg aggtactcgt cggcatccac 120
<210> 109
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 109
gctgtaaatt ctggcttata aggtgttcat acatacccca tttctatcaa tgcaagccac 60
ggtggaattg ttgctggttg cactctgaaa aagaaacaga gaagttgccc atggaatgct 120
<210> 110
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 110
ctcaccaggc actgggagga aggtgtcgtc tatgctgtcc tcagtcaagg cgcctgtggg 60
gtctgagctg tatcgctgca agaagctgtc ttccttgatg ggacagcttt gcagctgcag 120
<210> 111
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 111
tgatagacag gattctgcac agagccagcg ggccttttgg gaacggactg gtttatgtat 60
tctgaaagtg gaaagaaatc agaggtgaag taatcagcaa agcaccatcc catgcaggat 120
<210> 112
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 112
aatgtgctgt tgacacaggt gggctggaca gtgttgagat actcggggtt gcccactgca 60
gtgctgtggg ggtcctggta gtgtgggtct ctgctgggcg cggggttcag aggctgattg 120
<210> 113
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 113
gtggagccct taaagatgcc atttggcttg gcttccttgg gaaagaagtc ctgctggtag 60
tcagggttgt ccaggctaat ttggtggctg cctttctggg cccagtgggc agggctgtcg 120
<210> 114
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 114
ggcttggtcc tgggtatcga aagagtctgg atttttaggg ctcatactat cctccgtggt 60
catgctccaa taaattcact gctttgtggc gcgaccctta ggtattctgc attttcagct 120
<210> 115
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 115
tcttcgggga gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgct 60
ggctgcgctc tgcccggcga gtcgggctct ggaggaaaag aaaggtaagg gcgtgtctcg 120
<210> 116
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 116
ctatcattcc tttgggccta ggattgcatt tatttccatg acaaaagggc ctgtctggtg 60
tttcagcaaa tgaaaacaaa aatataaagc ccatctcctt ttgaatgagc tctaaaacag 120
<210> 117
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 117
ttctccactg gacttcagaa caagagggag ctctgggctg ctggctggtt gtgcatttgc 60
tgtgggttcc ctccggcagg cgacctctcc gcgctgagaa ggttatccgg ataaccaagt 120
<210> 118
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 118
tgcatttctc agtatttcat gtgatatctg tctttttctt ccagtttgcc aaggcacgag 60
taacaagctc acgcagttgg gcacttttga agatcatttt ctcagcctcc agaggatgtt 120
<210> 119
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 119
caataactgt gaggtggtcc ttgggaattt ggaaattacc tatgtgcaga ggaattatga 60
tctttccttc ttaaaggttg gtgactttga ttttcctaca caaataaaat tggagaaaat 120
<210> 120
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 120
atcacgcatt tatgttttct cttcttagac catccaggag gtggctggtt atgtcctcat 60
tgccctcaac acagtggagc gaattccttt ggaaaacctg cagatcatca gaggaaatat 120
<210> 121
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 121
gtactacgaa aattcctatg ccttagcagt cttatctaac tatgatgcaa ataaaaccgg 60
actgaaggag ctgcccatga gaaatttaca gggtgagagg ctgggatgcc aaggctgggg 120
<210> 122
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 122
ggaatttaaa ggagctggaa agagtgctca ccgcagttcc attctcccgc agaaatcctg 60
catggcgccg tgcggttcag caacaaccct gccctgtgca acgtggagag catccagtgg 120
<210> 123
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 123
cgggacatag tcagcagtga ctttctcagc aacatgtcga tggacttcca gaaccacctg 60
ggcagctgta agtgtcgcat acacactatc tctgcctcca gctcctatgg gggacagctc 120
<210> 124
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 124
atgcatctat tacttttaca tttcaggcca aaagtgtgat ccaagctgtc ccaatgggag 60
ctgctggggt gcaggagagg agaactgcca gaaacgtaag tcagtgaaca gcctcagacc 120
<210> 125
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 125
tgaccaaaat catctgtgcc cagcagtgct ccgggcgctg ccgtggcaag tcccccagtg 60
actgctgcca caaccagtgt gctgcaggct gcacaggccc ccgggagagc gactgcctgg 120
<210> 126
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 126
gctgagtgta cttacctcac ttgcccagcg tgtcctctct cctccatagg tctgccgcaa 60
attccgagac gaagccacgt gcaaggacac ctgcccccca ctcatgctct acaaccccac 120
<210> 127
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 127
cacgtaccag atggatgtga accccgaggg caaatacagc tttggtgcca cctgcgtgaa 60
gaagtgtccc cgtgagtcct cctctgtggg ccctctaact ggtcaggcat ccttgtcccg 120
<210> 128
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 128
aggtaattat gtggtgacag atcacggctc gtgcgtccga gcctgtgggg ccgacagcta 60
tgagatggag gaagacggcg tccgcaagtg taagaagtgc gaagggcctt gccgcaaagg 120
<210> 129
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 129
agctattctt aatccaacaa atgtgaacgg aatacacgtc tctcttatct ctgcagtgtg 60
taacggaata ggtattggtg aatttaaaga ctcactctcc ataaatgcta cgaatattaa 120
<210> 130
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 130
acacttcaaa aactgcacct ccatcagtgg cgatctccac atcctgccgg tggcatttag 60
ggggtgagtc acaggttcag ttgcttgtat aaagaaaaac aaaatctgcc tttttaactg 120
<210> 131
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 131
taatcaccct gttgtttgtt tcagtgactc cttcacacat actcctcctc tggatccaca 60
ggaactggat attctgaaaa ccgtaaagga aatcacaggt ttgagctgaa ttatcacatg 120
<210> 132
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 132
aatataaatg ggaaatcagt gttttagaga gagaactttt cgacatattt cctgttccct 60
tggaataaaa acatttcttc tgaaatttta ccgttaatgg ctgatgtttt gatatttttc 120
<210> 133
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 133
catctgcctt acagggtttt tgctgattca ggcttggcct gaaaacagga cggacctcca 60
tgcctttgag aacctagaaa tcatacgcgg caggaccaag caacagtaag ttgaccacag 120
<210> 134
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 134
ttttcttctc tccaatgtag tggtcagttt tctcttgcag tcgtcagcct gaacataaca 60
tccttgggat tacgctccct caaggagata agtgatggag atgtgataat ttcaggaaac 120
<210> 135
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 135
aaaaatttgt gctatgcaaa tacaataaac tggaaaaaac tgtttgggac ctccggtcag 60
aaaaccaaaa ttataagcaa cagaggtgaa aacagctgca gtaagtcacc gctttctgtt 120
<210> 136
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 136
cccctcgggt ccctgctctg tcactgactg ctgtgaccca ctctgtctcc gcagaggcca 60
caggccaggt ctgccatgcc ttgtgctccc ccgagggctg ctggggcccg gagcccaggg 120
<210> 137
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 137
actgcgtctc ttgccggaat gtcagccgag gcagggaatg cgtggacaag tgcaaccttc 60
tggaggggta ggaggttatt tctttaatcc ccttgcgttg atcaaaaata aggctccagg 120
<210> 138
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 138
cttcctcctc tcagtgagcc aagggagttt gtggagaact ctgagtgcat acagtgccac 60
ccagagtgcc tgcctcaggc catgaacatc acctgcacag gacgggtaag agccccttgc 120
<210> 139
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 139
gaaagagaca tgcatgaaca tttttctcca ccttggtgca gggaccagac aactgtatcc 60
agtgtgccca ctacattgac ggcccccact gcgtcaagac ctgcccggca ggagtcatgg 120
<210> 140
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 140
gagaaaacaa caccctggtc tggaagtacg cagacgccgg ccatgtgtgc cacctgtgcc 60
atccaaactg cacctacggg tgagtggaaa gtgaaggaga acagaacatt tcctctcttg 120
<210> 141
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 141
ccaggtccta ataaatcttc actgtctgac tttagtctcc cactaaaact gcatttcctt 60
tctacaattt caatttctcc ctttgcttca aataaagtcc tgacactatt catttgacat 120
<210> 142
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 142
ttaggatcag attatagtgt tacaccaggg ctccccaggc ctctcacata ttgaaatgta 60
cttgtccatc tttctccagg ccaggaaatg agagtctcaa agccatgtta ttctgccttt 120
<210> 143
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 143
ttaaactatc atcctgtaat caaagtaatg atggcagcgt gtcccaccag agcgggagcc 60
cagctgctca ggagtcatgc ttaggatgga tcccttctct tctgccgtca gagtttcagc 120
<210> 144
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 144
tgggttgggg tggatgcagc cacctccatg cctggccttc tgcatctgtg atcatcacgg 60
cctcctcctg ccactgagcc tcatgccttc acgtgtctgt tccccccgct tttcctttct 120
<210> 145
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 145
gccacccctg cacgtgggcc gccaggttcc caagagtatc ctacccattt ccttccttcc 60
actccctttg ccagtgcctc tcaccccaac tagtagctaa ccatcacccc caggactgac 120
<210> 146
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 146
ctcttcctcc tcgctgccag atgattgttc aaagcacaga atttgtcaga aacctgcagg 60
gactccatgc tgccagcctt ctccgtaatt agcatggccc cagtccatgc ttctagcctt 120
<210> 147
<211> 119
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 147
ggttccttct gcccctctgt ttgaaattct agagccagct gtgggacaat tatctgtgtc 60
aaaagccaga tgtgaaaaca tctcaataac aaactggctg ctttgttcaa tgctagaac 119
<210> 148
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 148
aatgcataat aaataattaa ccaccaatcc aacatccaga cacatagtga ttttaattat 60
ttaagagtag tttagcatat attgctttat gatttaatta aaaatctcca aaatatatgc 120
<210> 149
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 149
agaatgagaa aaatgtatat ttctctttca cttcctacag atgcactggg ccaggtcttg 60
aaggctgtcc aacgaatggg taagtgttca cagctctgtg tcacatggac ctcgtcaaga 120
<210> 150
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 150
ttagaagcta catagtgtct cactttccaa gatcattcta caagatgtca gtgcactgaa 60
acatgcaggg gcgtgttgag tgccaaggcc atggaatctg tcagcaacct cacccttcct 120
<210> 151
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 151
ggaatctgtc agcaacctca cccttccttg ttcctccacc tcattccagg cctaagatcc 60
cgtccatcgc cactgggatg gtgggggccc tcctcttgct gctggtggtg gccctgggga 120
<210> 152
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 152
tcggcctctt catgcgaagg cgccacatcg ttcggaagcg cacgctgcgg aggctgctgc 60
aggagaggga ggtgagtgcc agtcctgggt gggctcagga gccctcgcac cccgacagga 120
<210> 153
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 153
ctttccagca tggtgagggc tgaggtgacc cttgtctctg tgttcttgtc ccccccagct 60
tgtggagcct cttacaccca gtggagaagc tcccaaccaa gctctcttga ggatcttgaa 120
<210> 154
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 154
ggaaactgaa ttcaaaaaga tcaaagtgct gggctccggt gcgttcggca cggtgtataa 60
ggtaaggtcc ctggcacagg cctctgggct gggccgcagg gcctctcatg gtctggtggg 120
<210> 155
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 155
tctgtcatag ggactctgga tcccagaagg tgagaaagtt aaaattcccg tcgctatcaa 60
ggaattaaga gaagcaacat ctccgaaagc caacaaggaa atcctcgatg tgagtttctg 120
<210> 156
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 156
cactgacgtg cctctccctc cctccaggaa gcctacgtga tggccagcgt ggacaacccc 60
cacgtgtgcc gcctgctggg catctgcctc acctccaccg tgcagctcat cacgcagctc 120
<210> 157
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 157
atgcccttcg gctgcctcct ggactatgtc cgggaacaca aagacaatat tggctcccag 60
tacctgctca actggtgtgt gcagatcgca aaggtaatca gggaagggag atacggggag 120
<210> 158
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 158
catgatgatc tgtccctcac agcagggtct tctctgtttc agggcatgaa ctacttggag 60
gaccgtcgct tggtgcaccg cgacctggca gccaggaacg tactggtgaa aacaccgcag 120
<210> 159
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 159
catgtcaaga tcacagattt tgggctggcc aaactgctgg gtgcggaaga gaaagaatac 60
catgcagaag gaggcaaagt aaggaggtgg ctttaggtca gccagcattt tcctgacacc 120
<210> 160
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 160
cctcatctct caccatccca aggtgcctat caagtggatg gcattggaat caattttaca 60
cagaatctat acccaccaga gtgatgtctg gagctacggt gagtcataat cctgatgcta 120
<210> 161
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 161
ttcattcatg atcccactgc cttcttttct tgcttcatcc tctcaggggt gactgtttgg 60
gagttgatga cctttggatc caagccatat gacggaatcc ctgccagcga gatctcctcc 120
<210> 162
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 162
atcctggaga aaggagaacg cctccctcag ccacccatat gtaccatcga tgtctacatg 60
atcatggtca agtgtgagtg actggtgggt ctgtccacac tgcctagctg agccttggtg 120
<210> 163
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 163
tccttcccca ggctggatga tagacgcaga tagtcgccca aagttccgtg agttgatcat 60
cgaattctcc aaaatggccc gagaccccca gcgctacctt gtcattcagg tacaaattgc 120
<210> 164
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 164
cgggccattc taatagcctc aaaatctctg caccaggggg atgaaagaat gcatttgcca 60
agtcctacag actccaactt ctaccgtgcc ctgatggatg aagaagacat ggacgacgtg 120
<210> 165
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 165
gtggatgccg acgagtacct catcccacag cagggcttct tcagcagccc ctccacgtca 60
cggactcccc tcctgagctc tctggtatga aatctctgtc tctctctctc tctcaagctg 120
<210> 166
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 166
agcattccat gggcaacttc tctgtttctt tttcagagtg caaccagcaa caattccacc 60
gtggcttgca ttgatagaaa tggggtatgt atgaacacct tataagccag aatttacagc 120
<210> 167
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 167
ctgcagctgc aaagctgtcc catcaaggaa gacagcttct tgcagcgata cagctcagac 60
cccacaggcg ccttgactga ggacagcata gacgacacct tcctcccagt gcctggtgag 120
<210> 168
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 168
atcctgcatg ggatggtgct ttgctgatta cttcacctct gatttctttc cactttcaga 60
atacataaac cagtccgttc ccaaaaggcc cgctggctct gtgcagaatc ctgtctatca 120
<210> 169
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 169
caatcagcct ctgaaccccg cgcccagcag agacccacac taccaggacc cccacagcac 60
tgcagtgggc aaccccgagt atctcaacac tgtccagccc acctgtgtca acagcacatt 120
<210> 179
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 179
cgacagccct gcccactggg cccagaaagg cagccaccaa attagcctgg acaaccctga 60
ctaccagcag gacttctttc ccaaggaagc caagccaaat ggcatcttta agggctccac 120
<210> 171
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 171
agctgaaaat gcagaatacc taagggtcgc gccacaaagc agtgaattta ttggagcatg 60
accacggagg atagtatgag ccctaaaaat ccagactctt tcgataccca ggaccaagcc 120
<210> 172
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 172
tcttcgggga gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgct 60
ggctgcgctc tgcccggcga gtcgggctct ggaggaaaag aaaggtaagg gcgtgtctcg 120
<210> 173
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 173
ctatcattcc tttgggccta ggattgcatt tatttccatg acaaaagggc ctgtctggtg 60
tttcagcaaa tgaaaacaaa aatataaagc ccatctcctt ttgaatgagc tctaaaacag 120
<210> 174
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 174
acttggttat ccggataacc ttctcagcgc ggagaggtcg cctgccggag ggaacccaca 60
gcaaatgcac aaccagccag cagcccagag ctccctcttg ttctgaagtc cagtggagaa 120
<210> 175
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 175
tgcatttctc agtatttcat gtgatatctg tctttttctt ccagtttgcc aaggcacgag 60
taacaagctc acgcagttgg gcacttttga agatcatttt ctcagcctcc agaggatgtt 120
<210> 176
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 176
attttctcca attttatttg tgtaggaaaa tcaaagtcac caacctttaa gaaggaaaga 60
tcataattcc tctgcacata ggtaatttcc aaattcccaa ggaccacctc acagttattg 120
<210> 177
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 177
atcacgcatt tatgttttct cttcttagac catccaggag gtggctggtt atgtcctcat 60
tgccctcaac acagtggagc gaattccttt ggaaaacctg cagatcatca gaggaaatat 120
<210> 178
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 178
ccccagcctt ggcatcccag cctctcaccc tgtaaatttc tcatgggcag ctccttcagt 60
ccggttttat ttgcatcata gttagataag actgctaagg cataggaatt ttcgtagtac 120
<210> 179
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 179
ggaatttaaa ggagctggaa agagtgctca ccgcagttcc attctcccgc agaaatcctg 60
catggcgccg tgcggttcag caacaaccct gccctgtgca acgtggagag catccagtgg 120
<210> 180
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 180
gagctgtccc ccataggagc tggaggcaga gatagtgtgt atgcgacact tacagctgcc 60
caggtggttc tggaagtcca tcgacatgtt gctgagaaag tcactgctga ctatgtcccg 120
<210> 181
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 181
atgcatctat tacttttaca tttcaggcca aaagtgtgat ccaagctgtc ccaatgggag 60
ctgctggggt gcaggagagg agaactgcca gaaacgtaag tcagtgaaca gcctcagacc 120
<210> 182
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 182
tgaccaaaat catctgtgcc cagcagtgct ccgggcgctg ccgtggcaag tcccccagtg 60
actgctgcca caaccagtgt gctgcaggct gcacaggccc ccgggagagc gactgcctgg 120
<210> 183
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 183
gctgagtgta cttacctcac ttgcccagcg tgtcctctct cctccatagg tctgccgcaa 60
attccgagac gaagccacgt gcaaggacac ctgcccccca ctcatgctct acaaccccac 120
<210> 184
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 184
cgggacaagg atgcctgacc agttagaggg cccacagagg aggactcacg gggacacttc 60
ttcacgcagg tggcaccaaa gctgtatttg ccctcggggt tcacatccat ctggtacgtg 120
<210> 185
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 185
aggtaattat gtggtgacag atcacggctc gtgcgtccga gcctgtgggg ccgacagcta 60
tgagatggag gaagacggcg tccgcaagtg taagaagtgc gaagggcctt gccgcaaagg 120
<210> 186
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 186
agctattctt aatccaacaa atgtgaacgg aatacacgtc tctcttatct ctgcagtgtg 60
taacggaata ggtattggtg aatttaaaga ctcactctcc ataaatgcta cgaatattaa 120
<210> 187
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 187
cagttaaaaa ggcagatttt gtttttcttt atacaagcaa ctgaacctgt gactcacccc 60
ctaaatgcca ccggcaggat gtggagatcg ccactgatgg aggtgcagtt tttgaagtgt 120
<210> 188
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 188
taatcaccct gttgtttgtt tcagtgactc cttcacacat actcctcctc tggatccaca 60
ggaactggat attctgaaaa ccgtaaagga aatcacaggt ttgagctgaa ttatcacatg 120
<210> 189
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 189
gaaaaatatc aaaacatcag ccattaacgg taaaatttca gaagaaatgt ttttattcca 60
agggaacagg aaatatgtcg aaaagttctc tctctaaaac actgatttcc catttatatt 120
<210> 190
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 190
catctgcctt acagggtttt tgctgattca ggcttggcct gaaaacagga cggacctcca 60
tgcctttgag aacctagaaa tcatacgcgg caggaccaag caacagtaag ttgaccacag 120
<210> 191
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 191
ttttcttctc tccaatgtag tggtcagttt tctcttgcag tcgtcagcct gaacataaca 60
tccttgggat tacgctccct caaggagata agtgatggag atgtgataat ttcaggaaac 120
<210> 192
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 192
aacagaaagc ggtgacttac tgcagctgtt ttcacctctg ttgcttataa ttttggtttt 60
ctgaccggag gtcccaaaca gttttttcca gtttattgta tttgcatagc acaaattttt 120
<210> 193
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 193
cccctcgggt ccctgctctg tcactgactg ctgtgaccca ctctgtctcc gcagaggcca 60
caggccaggt ctgccatgcc ttgtgctccc ccgagggctg ctggggcccg gagcccaggg 120
<210> 194
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 194
cctggagcct tatttttgat caacgcaagg ggattaaaga aataacctcc tacccctcca 60
gaaggttgca cttgtccacg cattccctgc ctcggctgac attccggcaa gagacgcagt 120
<210> 195
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 195
cttcctcctc tcagtgagcc aagggagttt gtggagaact ctgagtgcat acagtgccac 60
ccagagtgcc tgcctcaggc catgaacatc acctgcacag gacgggtaag agccccttgc 120
<210> 196
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 196
gaaagagaca tgcatgaaca tttttctcca ccttggtgca gggaccagac aactgtatcc 60
agtgtgccca ctacattgac ggcccccact gcgtcaagac ctgcccggca ggagtcatgg 120
<210> 197
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 197
caagagagga aatgttctgt tctccttcac tttccactca cccgtaggtg cagtttggat 60
ggcacaggtg gcacacatgg ccggcgtctg cgtacttcca gaccagggtg ttgttttctc 120
<210> 198
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 198
ccaggtccta ataaatcttc actgtctgac tttagtctcc cactaaaact gcatttcctt 60
tctacaattt caatttctcc ctttgcttca aataaagtcc tgacactatt catttgacat 120
<210> 199
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 199
ttaggatcag attatagtgt tacaccaggg ctccccaggc ctctcacata ttgaaatgta 60
cttgtccatc tttctccagg ccaggaaatg agagtctcaa agccatgtta ttctgccttt 120
<210> 200
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 200
gctgaaactc tgacggcaga agagaaggga tccatcctaa gcatgactcc tgagcagctg 60
ggctcccgct ctggtgggac acgctgccat cattactttg attacaggat gatagtttaa 120
<210> 201
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 201
tgggttgggg tggatgcagc cacctccatg cctggccttc tgcatctgtg atcatcacgg 60
cctcctcctg ccactgagcc tcatgccttc acgtgtctgt tccccccgct tttcctttct 120
<210> 202
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 202
gtcagtcctg ggggtgatgg ttagctacta gttggggtga gaggcactgg caaagggagt 60
ggaaggaagg aaatgggtag gatactcttg ggaacctggc ggcccacgtg caggggtggc 120
<210> 203
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 203
ctcttcctcc tcgctgccag atgattgttc aaagcacaga atttgtcaga aacctgcagg 60
gactccatgc tgccagcctt ctccgtaatt agcatggccc cagtccatgc ttctagcctt 120
<210> 204
<211> 119
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 204
gttctagcat tgaacaaagc agccagtttg ttattgagat gttttcacat ctggcttttg 60
acacagataa ttgtcccaca gctggctcta gaatttcaaa cagaggggca gaaggaacc 119
<210> 205
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 205
aatgcataat aaataattaa ccaccaatcc aacatccaga cacatagtga ttttaattat 60
ttaagagtag tttagcatat attgctttat gatttaatta aaaatctcca aaatatatgc 120
<210> 206
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 206
agaatgagaa aaatgtatat ttctctttca cttcctacag atgcactggg ccaggtcttg 60
aaggctgtcc aacgaatggg taagtgttca cagctctgtg tcacatggac ctcgtcaaga 120
<210> 207
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 207
ttagaagcta catagtgtct cactttccaa gatcattcta caagatgtca gtgcactgaa 60
acatgcaggg gcgtgttgag tgccaaggcc atggaatctg tcagcaacct cacccttcct 120
<210> 208
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 208
ggaatctgtc agcaacctca cccttccttg ttcctccacc tcattccagg cctaagatcc 60
cgtccatcgc cactgggatg gtgggggccc tcctcttgct gctggtggtg gccctgggga 120
<210> 209
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 209
tcctgtcggg gtgcgagggc tcctgagccc acccaggact ggcactcacc tccctctcct 60
gcagcagcct ccgcagcgtg cgcttccgaa cgatgtggcg ccttcgcatg aagaggccga 120
<210> 210
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 210
ctttccagca tggtgagggc tgaggtgacc cttgtctctg tgttcttgtc ccccccagct 60
tgtggagcct cttacaccca gtggagaagc tcccaaccaa gctctcttga ggatcttgaa 120
<210> 211
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 211
cccaccagac catgagaggc cctgcggccc agcccagagg cctgtgccag ggaccttacc 60
ttatacaccg tgccgaacgc accggagccc agcactttga tctttttgaa ttcagtttcc 120
<210> 212
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 212
tctgtcatag ggactctgga tcccagaagg tgagaaagtt aaaattcccg tcgctatcaa 60
ggaattaaga gaagcaacat ctccgaaagc caacaaggaa atcctcgatg tgagtttctg 120
<210> 213
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 213
cactgacgtg cctctccctc cctccaggaa gcctacgtga tggccagcgt ggacaacccc 60
cacgtgtgcc gcctgctggg catctgcctc acctccaccg tgcagctcat cacgcagctc 120
<210> 214
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 214
ctccccgtat ctcccttccc tgattacctt tgcgatctgc acacaccagt tgagcaggta 60
ctgggagcca atattgtctt tgtgttcccg gacatagtcc aggaggcagc cgaagggcat 120
<210> 215
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 215
catgatgatc tgtccctcac agcagggtct tctctgtttc agggcatgaa ctacttggag 60
gaccgtcgct tggtgcaccg cgacctggca gccaggaacg tactggtgaa aacaccgcag 120
<210> 216
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 216
ggtgtcagga aaatgctggc tgacctaaag ccacctcctt actttgcctc cttctgcatg 60
gtattctttc tcttccgcac ccagcagttt ggccagccca aaatctgtga tcttgacatg 120
<210> 217
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 217
cctcatctct caccatccca aggtgcctat caagtggatg gcattggaat caattttaca 60
cagaatctat acccaccaga gtgatgtctg gagctacggt gagtcataat cctgatgcta 120
<210> 218
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 218
ttcattcatg atcccactgc cttcttttct tgcttcatcc tctcaggggt gactgtttgg 60
gagttgatga cctttggatc caagccatat gacggaatcc ctgccagcga gatctcctcc 120
<210> 219
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 219
caccaaggct cagctaggca gtgtggacag acccaccagt cactcacact tgaccatgat 60
catgtagaca tcgatggtac atatgggtgg ctgagggagg cgttctcctt tctccaggat 120
<210> 220
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 220
tccttcccca ggctggatga tagacgcaga tagtcgccca aagttccgtg agttgatcat 60
cgaattctcc aaaatggccc gagaccccca gcgctacctt gtcattcagg tacaaattgc 120
<210> 221
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 221
cgggccattc taatagcctc aaaatctctg caccaggggg atgaaagaat gcatttgcca 60
agtcctacag actccaactt ctaccgtgcc ctgatggatg aagaagacat ggacgacgtg 120
<210> 222
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 222
cagcttgaga gagagagaga gacagagatt tcataccaga gagctcagga ggggagtccg 60
tgacgtggag gggctgctga agaagccctg ctgtgggatg aggtactcgt cggcatccac 120
<210> 223
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 223
agcattccat gggcaacttc tctgtttctt tttcagagtg caaccagcaa caattccacc 60
gtggcttgca ttgatagaaa tggggtatgt atgaacacct tataagccag aatttacagc 120
<210> 224
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 224
ctgcagctgc aaagctgtcc catcaaggaa gacagcttct tgcagcgata cagctcagac 60
cccacaggcg ccttgactga ggacagcata gacgacacct tcctcccagt gcctggtgag 120
<210> 225
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 225
atcctgcatg ggatggtgct ttgctgatta cttcacctct gatttctttc cactttcaga 60
atacataaac cagtccgttc ccaaaaggcc cgctggctct gtgcagaatc ctgtctatca 120
<210> 226
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 226
aatgtgctgt tgacacaggt gggctggaca gtgttgagat actcggggtt gcccactgca 60
gtgctgtggg ggtcctggta gtgtgggtct ctgctgggcg cggggttcag aggctgattg 120
<210> 227
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 227
cgacagccct gcccactggg cccagaaagg cagccaccaa attagcctgg acaaccctga 60
ctaccagcag gacttctttc ccaaggaagc caagccaaat ggcatcttta agggctccac 120
<210> 228
<211> 120
<212> DNA
<213>artificial sequence (Artificial Sequence)
<400> 228
ggcttggtcc tgggtatcga aagagtctgg atttttaggg ctcatactat cctccgtggt 60
catgctccaa taaattcact gctttgtggc gcgaccctta ggtattctgc attttcagct 120

Claims (10)

1. a kind of capture probe for high-flux sequence detection gene mutation, which is characterized in that the capture probe is single-stranded Probe mixture, the single-stranded probe mixture include being directed to the positive-sense strand of DNA to be measured respectively since one end of DNA to be measured With the nucleotide sequence of antisense strand, the probe for positive-sense strand and the probe for antisense strand successively designed;Every two is adjacent Single-stranded probe in, one for for positive-sense strand nucleotide sequence design single-stranded probe, another be for antisense strand The single-stranded probe of nucleotide sequence design;The targeted DNA to be measured of every two adjacent single-stranded probe is not overlapped;It is described single-stranded Probe mixture can cover all DNA to be measured.
2. capture probe according to claim 1, which is characterized in that the length of the single-stranded probe is 90~120nt;Institute Each single-stranded probe in single-stranded probe mixture is stated to mix with identical molar ratio;
Preferably, the length of the single-stranded probe is 110~120nt.
3. capture probe of any of claims 1 or 2 detects gene mutation in gene order-checking library construction or high-flux sequence In application.
4. a kind of construction method of gene mutation sequencing library, which is characterized in that interrupt genomic DNA, using claim 1 Or capture probe described in 2 constructs sequencing library.
5. construction method according to claim 4, which comprises the steps of:
(1) genomic DNA is extracted, is interrupted as small fragment;
(2) library preparation is carried out to the small fragment DNA that step (1) obtains;
(3) the small fragment DNA library that step (2) obtains is hybridized with capture probe of any of claims 1 or 2, is captured Target fragment;
(4) segment of step (3) capture is expanded, machine on amplified production is sequenced.
6. a kind of specific capture probe of EGFR gene, which is characterized in that including such as SEQ ID NO.172~SEQ ID Single-stranded probe shown in NO.228.
7. a kind of kit for detecting EGFR genetic mutation, which is characterized in that it includes capture probe as claimed in claim 6.
8. kit according to claim 7, which is characterized in that the capture probe is by such as SEQ ID NO.172~SEQ The mixing composition of single-stranded probe equimolar ratio shown in ID NO.228.
9. kit according to claim 7 or 8, which is characterized in that the working concentration of the capture probe be 0.1pM~ 0.75pM。
10. capture probe as claimed in claim 6 or the described in any item kits of claim 7~9 are examined in high-flux sequence Survey the application in the sequencing library of EGFR genetic mutation or building detection EGFR genetic mutation.
CN201811573666.0A 2018-12-21 2018-12-21 Capture probe for detecting gene mutation through high-throughput sequencing and application thereof Active CN109628558B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811573666.0A CN109628558B (en) 2018-12-21 2018-12-21 Capture probe for detecting gene mutation through high-throughput sequencing and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811573666.0A CN109628558B (en) 2018-12-21 2018-12-21 Capture probe for detecting gene mutation through high-throughput sequencing and application thereof

Publications (2)

Publication Number Publication Date
CN109628558A true CN109628558A (en) 2019-04-16
CN109628558B CN109628558B (en) 2020-01-14

Family

ID=66076444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811573666.0A Active CN109628558B (en) 2018-12-21 2018-12-21 Capture probe for detecting gene mutation through high-throughput sequencing and application thereof

Country Status (1)

Country Link
CN (1) CN109628558B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110564818A (en) * 2019-08-29 2019-12-13 北京优迅医学检验实验室有限公司 Capture probe, kit and library construction method for DNA sample containing INDEL region
CN115011594A (en) * 2022-05-16 2022-09-06 纳昂达(南京)生物科技有限公司 Liquid phase hybridization capture probe for detecting HPV, application and kit thereof
EP4028586A4 (en) * 2019-09-13 2023-10-04 University Health Network Detection of circulating tumor dna using double stranded hybrid capture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232753A (en) * 2014-07-22 2014-12-24 百世诺(北京)医疗科技有限公司 17beta-hydroxylase deficiency related gene mutation detecting kit
CN106086013A (en) * 2016-06-30 2016-11-09 厦门艾德生物医药科技股份有限公司 A kind of probe for nucleic acid enriching capture and method for designing
CN106381334A (en) * 2016-09-14 2017-02-08 埃提斯生物技术(上海)有限公司 Quality control method for detecting human BRCA1/2 genovariation based on high-throughput sequencing and reagent kit
CN106399546A (en) * 2016-11-04 2017-02-15 埃提斯生物技术(上海)有限公司 Capture probe and kit used for high-flux sequencing detection of human circulating tumor DNA EGFR gene
CN106834507A (en) * 2017-03-16 2017-06-13 北京迈博恒业科技有限责任公司 DMD gene traps probe and its application in DMD detection in Gene Mutation
CN107083430A (en) * 2017-04-25 2017-08-22 安徽安龙基因医学检验所有限公司 A kind of kit and its detection method for detecting mankind's KRAS gene mutation
CN107338292A (en) * 2017-07-10 2017-11-10 上海思路迪生物医学科技有限公司 Method and kit based on high-flux sequence detection human genome mutational load
CN107858451A (en) * 2017-11-01 2018-03-30 中山大学肿瘤防治中心 A kind of EBV capture probes and the method for obtaining EBV Genomic sequence informations in sample
CN108753954A (en) * 2018-06-26 2018-11-06 中南大学湘雅医院 Capture probe group, kit, library constructing method and the purposes of dull-witted related gene

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232753A (en) * 2014-07-22 2014-12-24 百世诺(北京)医疗科技有限公司 17beta-hydroxylase deficiency related gene mutation detecting kit
CN106086013A (en) * 2016-06-30 2016-11-09 厦门艾德生物医药科技股份有限公司 A kind of probe for nucleic acid enriching capture and method for designing
CN106381334A (en) * 2016-09-14 2017-02-08 埃提斯生物技术(上海)有限公司 Quality control method for detecting human BRCA1/2 genovariation based on high-throughput sequencing and reagent kit
CN106399546A (en) * 2016-11-04 2017-02-15 埃提斯生物技术(上海)有限公司 Capture probe and kit used for high-flux sequencing detection of human circulating tumor DNA EGFR gene
CN106834507A (en) * 2017-03-16 2017-06-13 北京迈博恒业科技有限责任公司 DMD gene traps probe and its application in DMD detection in Gene Mutation
CN107083430A (en) * 2017-04-25 2017-08-22 安徽安龙基因医学检验所有限公司 A kind of kit and its detection method for detecting mankind's KRAS gene mutation
CN107338292A (en) * 2017-07-10 2017-11-10 上海思路迪生物医学科技有限公司 Method and kit based on high-flux sequence detection human genome mutational load
CN107858451A (en) * 2017-11-01 2018-03-30 中山大学肿瘤防治中心 A kind of EBV capture probes and the method for obtaining EBV Genomic sequence informations in sample
CN108753954A (en) * 2018-06-26 2018-11-06 中南大学湘雅医院 Capture probe group, kit, library constructing method and the purposes of dull-witted related gene

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DI SHAO1 等: "A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma", 《SCIENTIFIC REPORTS》 *
HEATHER FAIRFIELD 等: "Mutation discovery in mice by whole exome sequencing", 《GENOME BIOLOGY》 *
SHELLY Y. SHIH 等: "Applications of Probe Capture Enrichment Next Generation Sequencing for Whole Mitochondrial Genome and 426 Nuclear SNPs for Forensically Challenging Samples", 《GENES》 *
郑军 等: "非小细胞肺癌EGFR 基因突变的临床意义研究", 《中国肿瘤临床》 *
郝虎 等: "基于目的基因捕获的高通量测序技术在遗传代谢病诊断中的应用", 《中华实用儿科临床杂志》 *
陈丹 等: "用于高通量测序的基因组靶序列捕获方法的建立", 《遗传》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110564818A (en) * 2019-08-29 2019-12-13 北京优迅医学检验实验室有限公司 Capture probe, kit and library construction method for DNA sample containing INDEL region
EP4028586A4 (en) * 2019-09-13 2023-10-04 University Health Network Detection of circulating tumor dna using double stranded hybrid capture
CN115011594A (en) * 2022-05-16 2022-09-06 纳昂达(南京)生物科技有限公司 Liquid phase hybridization capture probe for detecting HPV, application and kit thereof
CN115011594B (en) * 2022-05-16 2023-10-20 纳昂达(南京)生物科技有限公司 Liquid phase hybridization capture probe for detecting HPV, application and kit thereof

Also Published As

Publication number Publication date
CN109628558B (en) 2020-01-14

Similar Documents

Publication Publication Date Title
CN109628558A (en) A kind of capture probe and its application for high-flux sequence detection gene mutation
CN109536579B (en) Construction method and application of single-chain sequencing library
CN106399546B (en) Capture probe and kit for detecting human circulating tumor DNA EGFR gene by high-throughput sequencing
CN113308562B (en) Cotton whole genome 40K single nucleotide site and application thereof in cotton genotyping
CN107532213A (en) Method for detecting multiple nucleotide sequences in sample simultaneously
CN110396539A (en) For detecting the kit and method of hypertension medication related gene polymorphism
CN111690748B (en) Probe set for detecting microsatellite instability by using high-throughput sequencing, kit and microsatellite instability detection method
CN109628573B (en) Kit for noninvasive prenatal detection of 12 chromosome microdeletion and microduplication syndrome and special probe set thereof
CN108823296B (en) Method and kit for detecting nucleic acid sample pollution and application
CN112662762A (en) Probe composition for detecting 5 tumors of digestive tract
CN108085387A (en) Detect specific capture probe, kit, sequencing library and its construction method of people&#39;s BRCA1/2 gene mutations
CN110387400A (en) Parallel solution hybridization catching method that is a kind of while capturing the positive antisense double-strand of genome target region
CN108624686B (en) A kind of probe library, detection method and the kit of detection BRCA1/2 mutation
CN112662765A (en) Probe composition for detecting 6 Chinese high-incidence cancers
CN112662759A (en) Probe composition for detecting 3 lumen organ tumors
CN109609617B (en) Primer group and kit for detecting ATP7B gene mutation of hepatolenticular degeneration disease
CN112662761A (en) Probe composition for detecting 3 parenchymal organ tumors
CN112662763A (en) Probe composition for detecting common amphoteric cancers
CN111996274B (en) Large-scale quantitative detection method for plant pathogenic fungi by high-throughput sequencing
CN114085926A (en) Primer, probe, kit and detection method for SNP site polymorphism of ABCB1 gene C3435T
CN112029892A (en) Method for rapidly identifying specificity of transgenic herbicide-tolerant soybean ZH10-6 transformant
CN112662764A (en) Probe composition for detecting 11 cancers
WO2020232635A1 (en) Method and system for constructing sequencing library on the basis of methylated dna target region, and use thereof
CN104087657A (en) Kit for examining Liddle&#39;s related gene mutation
CN111718981A (en) ACE gene detection primer group, detection kit and detection method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant