CN109627009B - 一种SiC陶瓷及其制备方法 - Google Patents

一种SiC陶瓷及其制备方法 Download PDF

Info

Publication number
CN109627009B
CN109627009B CN201910142064.8A CN201910142064A CN109627009B CN 109627009 B CN109627009 B CN 109627009B CN 201910142064 A CN201910142064 A CN 201910142064A CN 109627009 B CN109627009 B CN 109627009B
Authority
CN
China
Prior art keywords
sic
sintering
parts
sic ceramic
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910142064.8A
Other languages
English (en)
Other versions
CN109627009A (zh
Inventor
李俊国
张睿成
罗杰
沈强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910142064.8A priority Critical patent/CN109627009B/zh
Publication of CN109627009A publication Critical patent/CN109627009A/zh
Application granted granted Critical
Publication of CN109627009B publication Critical patent/CN109627009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种SiC陶瓷及其制备方法,该SiC陶瓷,按重量份计,由75‑85份SiC和15‑25份烧结助剂热压烧结而成;所述烧结助剂包括10‑16.7份Mg2Si和5‑8.3份Al。本发明通过在SiC中加入烧结助剂Mg2Si、Al制备SiC陶瓷,降低了本发明SiC陶瓷的烧结温度,并提高了其致密度、相对密度和力学性能,其中,本发明SiC陶瓷的烧结温度可低至1350℃,致密度可高达99.3%,体积密度可高达3.03g/cm3,维氏硬度可高达1655MPa,抗弯强度可高达592MPa,弹性模量可高达204GPa。

Description

一种SiC陶瓷及其制备方法
技术领域
本发明涉及陶瓷技术领域,特别涉及一种SiC陶瓷及其制备方法。
背景技术
SiC陶瓷具有高硬度、耐高温性、耐磨损性和抗热震性等优点,使其在结构工程中得到广泛的应用,特别是其独特的高温力学性能使之特别适宜于制造高温熔炉部件、火箭燃烧室内衬及燃气涡轮机叶片。
SiC由于强共价键(Si-C键)、烧结致密化所需的体积扩散和晶界扩散速度较小,纯SiC烧结陶瓷很难致密,从而限制其应用。目前,一般通过设计烧结助剂体系的组成和控制烧结条件等来实现致密化,但仍然存在烧结温度高,致密化程度低的问题。
发明内容
有鉴于此,本发明旨在提出一种SiC陶瓷及其制备方法,以解决现有SiC陶瓷烧结温度高、致密化程度低的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种SiC陶瓷,按重量份计,由75-85份SiC和15-25份烧结助剂热压烧结而成;所述烧结助剂包括10-16.7份Mg2Si和5-8.3份Al。
可选地,所述的SiC陶瓷,按重量份计,由75份SiC和25份烧结助剂热压烧结而成;所述烧结助剂包括16.7份Mg2Si和8.3份Al。
可选地,所述SiC的粒径为0.3-0.5μm;所述烧结助剂的粒径为2-5μm。
本发明的另一目的在于提供一种制备上述SiC陶瓷的方法,其包括以下步骤:
1)向所述SiC和所述烧结助剂中加入无水乙醇,球磨,得到粉料A;
2)将所述粉料A烘干并进行筛分处理,得到粉料B;
3)将所述粉料B成型后,热压烧结,即得SiC陶瓷。
可选地,所述步骤1)中所述无水乙醇的用量为所述SiC和所述烧结助剂总量的90%-150%。
可选地,所述步骤1)中所述球磨的球磨时间为1-4h。
可选地,所述步骤2)中所述筛分处理的筛孔尺寸为100目。
可选地,所述步骤3)中所述热压烧结的液相烧结温度为1350-1550℃,烧结压力为30-50MPa,烧结保温时间为3-5min。
相对于现有技术,本发明所述的SiC陶瓷具有以下优势:
1、本发明通过在SiC中加入烧结助剂Mg2Si、Al制备SiC陶瓷,因Mg2Si在高温下有一定程度的分解,产生的Mg与SiC表面的氧化膜反应,可去除SiC表面的氧化膜,进而有利于提高SiC烧结时的扩散速率,且高温熔融的Mg2Si液和Al液可以润湿SiC颗粒,在外加压力作用下能够加快SiC颗粒迁移,使得颗粒重新排列,并在界面张力的作用下将颗粒紧紧拉在一起,增强坯件收缩,从而有利于降低本发明SiC陶瓷的烧结温度,并提高其致密度、相对密度和力学性能,其中,本发明SiC陶瓷的烧结温度可低至1350℃,致密度可高达99.3%,体积密度可高达3.03g/cm3,维氏硬度可高达1655MPa,抗弯强度可高达592MPa,弹性模量可高达204GPa。
2、本发明SiC陶瓷的制备方法简单,热压烧结条件温和,易于工业化应用。
具体实施方式
Mg2Si的熔点为1102℃,其在高温下有一定程度的分解,产生的Mg可与SiC表面的氧化膜反应,进而可去除SiC表面的氧化膜,从而有利于提高SiC烧结时的扩散速率;Al的熔点低(660℃)、沸点高(2500℃),Al在低温时可与SiC反应,生成Al4C3,在高于1600K后,又可被Si还原,生成Al和SiC。Al的加入不会造成SiC的分解,又可与SiC相互作用提高界面结合。本发明基于此,以Mg2Si作为主烧结助剂,以Al作为辅助烧结助剂实现低温条件下高致密化SiC陶瓷的制备。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将结合实施例来详细说明本发明。
实施例1
一种SiC陶瓷,按重量份计,由75份SiC和25份烧结助剂热压烧结而成;烧结助剂包括16.7份Mg2Si和8.3份Al,其中,SiC的粒径为0.3-0.5μm,烧结助剂的粒径为2-5μm,且作为烧结助剂的Mg2Si和Al的粒径均为2-5μm,各原料在该粒径范围内可减少或避免团聚现象的发生,从而避免其对SiC陶瓷的烧结产生不利影响。
上述SiC陶瓷的制备方法,具体包括以下步骤:
1)将SiC和烧结助剂按上述比例称取并放入球磨罐中,然后,加入用量为SiC和烧结助剂总量的110%的无水乙醇,球磨4h,得到粉料A;
2)用鼓风干燥箱将粉料A烘干并用筛孔尺寸为100目的筛进行筛分处理,得到粉料B(筛下粉料);
3)将粉料B放入石墨模具成型后,热压烧结,其中,热压烧结的液相烧结温度为1350℃,烧结压力为40MPa,烧结保温时间为5min,即得SiC陶瓷。
实施例2
一种SiC陶瓷,按重量份计,由80份SiC和20份烧结助剂热压烧结而成;烧结助剂包括13.3份Mg2Si和6.7份Al,其中,SiC的粒径为0.3-0.5μm,烧结助剂的粒径为2-5μm,且作为烧结助剂的Mg2Si和Al的粒径均为2-5μm,各原料在该粒径范围内可减少或避免团聚现象的发生,从而避免其对SiC陶瓷的烧结产生不利影响。
上述SiC陶瓷的制备方法,具体包括以下步骤:
1)将SiC和烧结助剂按上述比例称取并放入球磨罐中,然后,加入用量为SiC和烧结助剂总量的110%的无水乙醇,球磨4h,得到粉料A;
2)用鼓风干燥箱将粉料A烘干并用筛孔尺寸为100目的筛进行筛分处理,得到粉料B(筛下粉料);
3)将粉料B放入石墨模具成型后,热压烧结,其中,热压烧结的液相烧结温度为1350℃,烧结压力为40MPa,烧结保温时间为5min,即得SiC陶瓷。
实施例3
一种SiC陶瓷,按重量份计,由85份SiC和15份烧结助剂热压烧结而成;烧结助剂包括10份Mg2Si和5份Al,其中,SiC的粒径为0.3-0.5μm,烧结助剂的粒径为2-5μm,且作为烧结助剂的Mg2Si和Al的粒径均为2-5μm,各原料在该粒径范围内可减少或避免团聚现象的发生,从而避免其对SiC陶瓷的烧结产生不利影响。
上述SiC陶瓷的制备方法,具体包括以下步骤:
1)将SiC和烧结助剂按上述比例称取并放入球磨罐中,然后,加入用量为SiC和烧结助剂总量的110%的无水乙醇,球磨4h,得到粉料A;
2)用鼓风干燥箱将粉料A烘干并用筛孔尺寸为100目的筛进行筛分处理,得到粉料B(筛下粉料);
3)将粉料B放入石墨模具成型后,热压烧结,其中,热压烧结的液相烧结温度为1550℃,烧结压力为40MPa,烧结保温时间为5min,即得SiC陶瓷。
对实施例1~实施例3的SiC陶瓷的性能进行测试,测试结果如表1所示。
表1
Figure BDA0001978858610000051
由表1可知,实施例1~实施例3的SiC陶瓷的体积密度、致密度以及力学性能均较高,说明本发明通过在SiC中添加烧结助剂Mg2Si和Al可以实现低温烧结高致密化SiC陶瓷产品,且所得SiC陶瓷产品足以在较高强度工况下使用。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种SiC陶瓷,其特征在于,按重量份计,由75-85份SiC和15-25份烧结助剂热压烧结而成;所述烧结助剂包括10-16.7份Mg2Si和5-8.3份Al;
所述SiC陶瓷通过以下方法制得:
1)向所述SiC和所述烧结助剂中加入无水乙醇,球磨,得到粉料A;
2)将所述粉料A烘干并进行筛分处理,得到粉料B;
3)将所述粉料B成型后,热压烧结,即得SiC陶瓷;所述热压烧结的烧结工艺参数为:液相烧结温度:1350-1550℃,烧结压力:30-50MPa,烧结保温时间:3-5min。
2.根据权利要求1所述的SiC陶瓷,其特征在于,按重量份计,由75份SiC和25份烧结助剂热压烧结而成;所述烧结助剂包括16.7份Mg2Si和8.3份Al。
3.根据权利要求1或2所述的SiC陶瓷,其特征在于,所述SiC的粒径为0.3-0.5μm;所述烧结助剂的粒径为2-5μm。
4.制备权利要求1或2或3所述的SiC陶瓷的方法,其特征在于,包括以下步骤:
1)向所述SiC和所述烧结助剂中加入无水乙醇,球磨,得到粉料A;
2)将所述粉料A烘干并进行筛分处理,得到粉料B;
3)将所述粉料B成型后,热压烧结,即得SiC陶瓷。
5.根据权利要求4所述的SiC陶瓷的制备方法,其特征在于,所述步骤1)中所述无水乙醇的用量为所述SiC和所述烧结助剂总量的90%-150%。
6.根据权利要求4所述的SiC陶瓷的制备方法,其特征在于,所述步骤1)中所述球磨的球磨时间为1-4h。
7.根据权利要求4所述的SiC陶瓷的制备方法,其特征在于,所述步骤2)中所述筛分处理的筛孔尺寸为100目。
8.根据权利要求4所述的SiC陶瓷的制备方法,其特征在于,所述步骤3)中所述热压烧结的液相烧结温度为1350-1550℃,烧结压力为30-50MPa,烧结保温时间为3-5min。
CN201910142064.8A 2019-02-26 2019-02-26 一种SiC陶瓷及其制备方法 Active CN109627009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910142064.8A CN109627009B (zh) 2019-02-26 2019-02-26 一种SiC陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910142064.8A CN109627009B (zh) 2019-02-26 2019-02-26 一种SiC陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109627009A CN109627009A (zh) 2019-04-16
CN109627009B true CN109627009B (zh) 2022-01-04

Family

ID=66065911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910142064.8A Active CN109627009B (zh) 2019-02-26 2019-02-26 一种SiC陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN109627009B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285692A (zh) * 2020-02-21 2020-06-16 武汉理工大学 一种高导热Si3N4陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093687A (en) * 1977-01-03 1978-06-06 General Electric Company Hot pressing of silicon nitride using magnesium silicide
EP0073523A2 (en) * 1981-09-01 1983-03-09 Kabushiki Kaisha Toshiba Sintered body of ceramics and preparation thereof
CN1986490A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
CN104030687A (zh) * 2014-04-28 2014-09-10 宁波东联密封件有限公司 一种碳化硅陶瓷及其低温烧结方法
CN107188595A (zh) * 2017-07-14 2017-09-22 芜湖乾凯材料科技有限公司 高密度碳化硅陶瓷及其无压烧结方法
CN108642316A (zh) * 2018-05-22 2018-10-12 新沂市中诺新材料科技有限公司 一种Al-Mg/SiC复合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093687A (en) * 1977-01-03 1978-06-06 General Electric Company Hot pressing of silicon nitride using magnesium silicide
EP0073523A2 (en) * 1981-09-01 1983-03-09 Kabushiki Kaisha Toshiba Sintered body of ceramics and preparation thereof
CN1986490A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
CN104030687A (zh) * 2014-04-28 2014-09-10 宁波东联密封件有限公司 一种碳化硅陶瓷及其低温烧结方法
CN107188595A (zh) * 2017-07-14 2017-09-22 芜湖乾凯材料科技有限公司 高密度碳化硅陶瓷及其无压烧结方法
CN108642316A (zh) * 2018-05-22 2018-10-12 新沂市中诺新材料科技有限公司 一种Al-Mg/SiC复合材料

Also Published As

Publication number Publication date
CN109627009A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN109320251B (zh) 一种高性能无压烧结碳化硅复合陶瓷的制备方法
US7919040B2 (en) Method of preparing pressureless sintered, highly dense boron carbide materials
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
CN111825458A (zh) 一种高致密碳化硼陶瓷材料及其无压烧结的制备方法
JPH0577632B2 (zh)
CN109627009B (zh) 一种SiC陶瓷及其制备方法
CN111116202A (zh) 一种放电等离子反应烧结碳化硼-硼化钛材料的方法
US5126294A (en) Sintered silicon nitride and production method thereof
CN104775045B (zh) 一种基于负热膨胀颗粒的Cu基复合材料的制备方法
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
EP0636594A2 (en) Ceramic matrix composite material and method of producing thereof
CN110877980A (zh) 一种高强度碳化硅/氮化硅复相陶瓷及其制备方法
CN113773083B (zh) 一种兼具高强度和高热电性能的碲化铋基材料及其制备方法
JPS62876B2 (zh)
KR102555662B1 (ko) 질화규소 소결체의 제조방법 및 이에 따라 제조된 질화규소 소결체
CN110330349B (zh) 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法
AU2010284750B9 (en) A process for producing a metal-matrix composite of significant deltaCTE between the hard base-metal and the soft matrix
JPS593955B2 (ja) 高強度耐熱性ケイ素化合物焼成成形体の製造方法
CN116987924B (zh) 一种SiC/Al复合材料的制备方法
JPH025711B2 (zh)
CN114573351B (zh) 一种碳化硼基复合材料及其制备方法
JP2881189B2 (ja) 窒化珪素−炭化珪素複合セラミックスの製造方法
JP2892186B2 (ja) 窒化珪素−炭化珪素質複合焼結体の製造方法
CN117088690A (zh) 一种高导热金刚石-碳化硅复相陶瓷的制备方法及散热基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant