CN109626984B - 一种低电场高介电可调锆掺杂钡铁氧体及其制备方法 - Google Patents

一种低电场高介电可调锆掺杂钡铁氧体及其制备方法 Download PDF

Info

Publication number
CN109626984B
CN109626984B CN201910093259.8A CN201910093259A CN109626984B CN 109626984 B CN109626984 B CN 109626984B CN 201910093259 A CN201910093259 A CN 201910093259A CN 109626984 B CN109626984 B CN 109626984B
Authority
CN
China
Prior art keywords
zirconium
barium ferrite
temperature
doped barium
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910093259.8A
Other languages
English (en)
Other versions
CN109626984A (zh
Inventor
杜丕一
王敏
马宁
王宗荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910093259.8A priority Critical patent/CN109626984B/zh
Publication of CN109626984A publication Critical patent/CN109626984A/zh
Application granted granted Critical
Publication of CN109626984B publication Critical patent/CN109626984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种低电场高介电可调锆掺杂钡铁氧体及其制备方法,所述的锆掺杂钡铁氧体陶瓷为单相材料,通过Zr4+取代BaFe12O19晶格中的部分Fe3+,形成共存于体系中由锆掺杂引入的Fe2+,相应的Fe2+和体系中的相关Fe3+之间形成稳定的缺陷偶极子对,得到的锆掺杂钡铁氧体陶瓷,在优异磁性能的基础上,同时具有高的介电常数、高的介电可调性和极低的介电可调驱动电场。本发明采用溶胶凝胶制备方法和空气气氛及高氧气氛协同烧结工艺,过程简单、可控性强、制备周期短、成本低廉,可以得到在超低调制电压下表现出高介电调谐率的单相锆掺杂钡铁氧体陶瓷材料。这种锆掺杂钡铁氧体陶瓷在介电可调器件和磁、电复合多功能器件领域有广泛的应用。

Description

一种低电场高介电可调锆掺杂钡铁氧体及其制备方法
技术领域
本发明涉及一种低电场高介电可调的锆掺杂钡铁氧体陶瓷材料及其制备方法,这种材料同时是一种磁、电共存材料,属于介电可调及磁、电共存单相陶瓷领域。
背景技术
随着集成微电子器件的飞速发展,介电可调材料由于其巨大的潜在应用价值,得到研究者的广泛关注。介电可调材料可用于制备可变电容器、介质移相器、滤波器、混频器、振荡器等元器件,应用前景十分乐观。
目前研究较多的介电可调材料主要集中于铁电材料,包括铁电陶瓷钛酸钡BaTiO3(BT)以及它的固溶体,铁电体锆钛酸铅Pb(Ti,Zr)O3和铅基钙钛矿型弛豫型铁电体钛酸铅(Pb,Sr)TiO3(PST)等,这些材料都表现出了非常明显的介电非线性,已经被实际应用于可调器件中。然而,对于上述介电可调材料,大多具有明显的铁电性,且其铁电性的来源与晶体结构密切相关。自发极化来源于晶格中的正负离子电荷中心的位移,那么极化状态的改变必然与正负离子的位移以及晶格畸变密切相关,而离子位移和晶格畸变的产生通常需要较高的能量。因此对于这类材料,一般需要高的调制电压,通常在10~100kV/cm的强电场下才能使介电常数产生比较明显的随电场变化的变化,这意味着通常要在高直流偏置电场下才能实现有效的介电调谐,这明显限制了其在可调器件中的广泛应用。
六角M型钡铁氧体是一种应用十分广泛的亚铁磁性材料,具有优异的磁性能。近年来,部分研究者通过离子掺杂在钡铁氧体中成功引入了介电性能,使其成为磁性、介电性共存的多功能材料,在电子信息材料领域具有潜在的应用价值。例如,杜丕一等研究者已经发现,通过掺杂高价离子取代钡铁氧体晶格中的Fe3+,可在体系内形成Fe2+,在外电场作用下,Fe2+和Fe3+之间的电子跳跃可形成不均匀电导,从而贡献高的介电常数;更进一步,在Fe2+和Fe3+之间会形成缺陷偶极子对,因而表现出电偶极子对介电常数贡献的特征。相关研究发表在Sci.Rep.5(2015)9498上,并已成功申请专利CN103274677A。也即,通过掺杂可控制钡铁氧体的介电性能,其中既包含非均匀性对介电性能的贡献,也包含缺陷偶极子对介电性能的贡献。再则,控制掺杂含量可控制体系内Fe2+的产生,因而也影响了缺陷偶极子的形成量。且这种缺陷偶极子浓度的增加,同时有利于增加由这种缺陷偶极子对介电常数的贡献,其所贡献的介电常数也随之增加。也即若控制体系内产生大量Fe2+,进而产生大量缺陷偶极子,有可得到很高的介电常数。当然体系中这种缺陷偶极子对也并非可以无限形成的,因为Fe2+离子的形成同时还受到体系电荷平衡的控制,以及受到掺杂的同时引起的晶格畸变等因素的共同控制。这是因为,根据缺陷反应及电荷平衡关系,高价离子掺杂在导致Fe2+离子的形成而生成缺陷偶极子并提高介电常数的同时,由于
Figure BDA0001963853760000021
离子和
Figure BDA0001963853760000022
的离子半径都比
Figure BDA0001963853760000023
大,随掺杂量的增加及Fe2+的大量形成必然造成严重的晶格膨胀,不利于晶格的稳定。显然,从晶格稳定性考虑,Fe2+的浓度很难大幅度提高。实际上,体系由于受到晶格畸变的限制,掺杂量达到某一极限值后,由高价离子引入的过量正电荷将不再按照缺陷平衡关系通过形成Fe2+离子来实现电荷平衡,而是通过消耗原来在体系中必然存在的平衡态氧空位的方式来进行平衡,也即由高价离子引入的过量正电荷将通过等量的已经存在于体系内的带正电氧空位的减少来实现电价平衡,这样有利于降低体系的晶格畸变。可见如何控制体系内既稳定保持电价平衡关系,又维持更高的Fe2+离子浓度将是产生更高的由电子偶极子贡献的介电常数的关键。合理控制体系内的掺杂量和氧空位浓度以使体系内的Fe2+的浓度达到最大,进而使缺陷偶极子浓度最大,将获得更高介电常数。
更重要的是,在外加直流电场的作用下,这种缺陷偶极子受到相应电场力的作用将会沿着外电场的方向发生偏转,也即Fe2+离子上所束缚的电子将通过电场力的作用从原来的位置向更偏向于外电场方向的Fe3+离子跃迁转移,使这个新的Fe3+离子消失进而形成Fe2+离子,而原来Fe2+离子则重新转变为Fe3+离子,以此形成了更偏向于电场方向的新缺陷偶极子对。外加电场越高,相应电子跃迁的能力就越强,也即缺陷偶极子越易发生偏转。实际上,我们知道(J.Mater.Chem.,2011,21,10808),这种偏转同时使偶极子对介电常数的贡献减小,也即随着偏转的方向最终与外电场方向完全平行时,从理论上讲这时偶极子对介电常数的贡献也达到了最小。很明显,由于这种偶极子的存在,使材料表现出了介电可调特性,向着电场方向转向的偶极子多少在一定程度上决定了介电可调特性的大小。再则,根据软模理论,还可以知道,当体系内的Fe2+离子的数目增加时,体系内晶格振动模的频率会随之升高,造成“软模硬化”的现象,晶格振动的能量也会随之增加,而电子则根据电子-声子的相互作用使得自身能量也随之升高。由于考虑到上述所谓偶极子的转向过程,实际上是通过电子跳跃来实现的,当电子能量越高,被束缚电子越容易脱离原来的位置,也即只需提供更小的外场力便可使被束缚的电子产生跃迁而被更偏向于电场方向的Fe3+离子俘获;再则考虑这种电子的跃迁实际上满足一定的分布,作为一个系统,所谓更容易跃迁即表示同样的外场力作用下会有可能使更多的电子产生跃迁,这就表明体系有更多的偶极子偏转而减小了对介电常数的贡献。换言之,也表明可通过施加更小的电场就能使介电常数得到同样的下降。很明显,这种体系既有利于增强介电可调特性,又有利于降低调制电压。因此,控制掺杂,尽量提高Fe2+的浓度,一方面通过形成缺陷偶极子提高体系的基础介电常数;另一方面使晶格振动模硬化,使得在同样的外场下电子更容易跃迁而使更多偶极子向着电场方向偏转,从而使介电常数降得更低。可以形成一种具有很高可调性的材料新体系。
更进一步,由于这种缺陷偶极子的转向仅与电子跃迁脱出有关而并不像传统离子位移型偶极子那样涉及晶格畸变,因而相对很低的外场能量就可使这种偶极子产生偏转。故而这种体系的可调性只需施加极小的直流电场就可产生,也即可见,这本身就是一种可在极低调制电场下实现介电可调的材料新体系。
很显然,综合分析上述几方面对介电常数影响的关系来看,要想在这种体系中于极低电压下获得高的介电可调性,控制形成更多的Fe2+离子以形成相应的Fe2+/Fe3+缺陷偶极子对是关键,一方面提高基础介电常数,另一方面在极低电场下即可使这种偶极子实现高效偏转而大幅降低外加电场下的介电常数,获得在极低电场驱动下的高可调性。然而掺杂Zr4+离子时为达到电荷平衡而形成的Fe2+离子含量实际上在体系晶格畸变达到某一极限时出现最大值,这是由于这时体系内为尽量减小晶格畸变,其电价平衡开始转为随Zr4+离子掺入而通过消耗本征氧空位来实现。因而,要控制形成更高浓度的Fe2+离子,必需控制体系出现这种不同的电价平衡机制之间的转变发生在更多Zr4+离子掺入的条件下,也即保证Zr4 +离子掺入时通过形成更多由其引入的Fe2+离子来平衡电荷而不是以消耗氧空位来平衡。根据热力学原理,我们知道,不管是形成锆掺杂引入的Fe2+离子,还是消耗本征氧空位,都需要克服势垒。很明显在体系中如果能控制更少形成本征氧空位,也即相对氧空位浓度低(本征Fe2+离子浓度也低)的体系,由Zr4+离子掺入形成Fe2+离子向消耗氧空位转变的过程就会比较困难,就需要在更高掺杂量的条件下才由形成Fe2+离子转变为消耗本征氧空位来平衡体系内的电荷。或者说可以维持在更高掺杂锆浓度下通过形成其引入的Fe2+离子来平衡电荷,即体系中可能稳定形成的由锆掺杂引入的Fe2+离子浓度会更高,从而使由此才能形成的Fe2 +/Fe3+缺陷偶极子含量更高。
本发明利用溶胶凝胶法制备锆掺杂钡铁氧体,设计特定的制备工艺,在高磁性能的基础上,提高Fe2+/Fe3+缺陷偶极子的形成量,得到了极低调制电压和很高的介电可调特性的锆掺杂钡铁氧体,有望解决BT,PST介电可调材料的高调制电场的问题,实现在新型介电可调器件和磁电复合器件中的广泛应用。
发明内容
本发明的目的在于针对现有的介电可调材料调制电场高的缺点,提供一种超低调制电压、高介电调谐率的锆掺杂钡铁氧体陶瓷材料及其制备方法。
本发明的超低电压介电可调锆掺杂钡铁氧体陶瓷材料,其化学式为BaFe12- xZrxO19,其中x=0.1~0.2。所述的锆掺杂钡铁氧体陶瓷为单相多晶材料,在优异磁性能的基础上,Zr4+取代BaFe12O19晶胞中的Fe3+,钡铁氧体中同时存在Fe3+和Fe2+,形成Fe2+/Fe3+缺陷偶极子对。
本发明的锆掺杂钡铁氧体极低电场高介电可调陶瓷材料的制备方法,具体如下:
(1)将硝酸钡、硝酸铁、硝酸锆和柠檬酸按照摩尔比1:11.8~11.9:0.1~0.2:19.05~19.1混合,加入去离子水搅拌,直至溶质完全溶解,得到溶液A;
(2)调节溶液A的pH至6~7,得到溶液B,随后将溶液B在75~90℃的水浴中加热搅拌3~5h,使溶剂挥发得到溶胶前驱体,将得到的溶胶前驱体在115~125℃下干燥4~6天,得到蓬松的黑色凝胶;
(3)将得到的黑色凝胶在研钵中进行研磨,然后将其放入马弗炉中进行预烧,得到锆掺杂钡铁氧体粉体;
(4)将预烧得到的锆掺杂钡铁氧体粉体与质量分数为6~7%的PVA溶液混合,随后使用研钵研磨造粒,随后,将颗粒物料在8~9MPa的压力下成型得到坯体;
(5)将坯体置于高温炉中依次在空气和高含氧气氛下烧结,具体如下:
烧结时首先在空气气氛下以4~6℃/min的速度缓慢升温至400℃,并在此温度下保温30~45min,进行充分的排胶;再以5℃/min的速度升温至900~1000℃,保温3~4h;之后通入高含氧气氛,再以2℃/min的升温速率升温至1250~1275℃,继续保温2~3h;随后在高温炉内随炉逐渐降温,慢速冷却至600℃以下时停止通入高含氧气氛改为空气气氛,之后继续降温至室温,最终获得锆掺杂钡铁氧体极低电场介电可调陶瓷材料。
上述技术方案中,进一步的,步骤(5)所述的高含氧气氛为O2与N2混合气,且O2/N2摩尔比为30~40/70~60。
进一步的,烧结时控制氧气与空气同时流入高温炉中获得高含氧气氛环境,氧气的流入速度控制为3~7.5cc/min,空气的流入速度为24cc/min(因空气中含有的除氧气、氮气外的其他气体含量极少,可以忽略不计)。
进一步的,所述的步骤(3)中陶瓷粉体原料预烧步骤具体如下:以5~8℃/min的升温速率升温至210℃,并在此温度下保温2~2.5h,再以5~10℃/min的升温速率升温至450℃,并在此温度下保温2~2.5h,使得黑色凝胶完全燃烧分解,最后再以8~10℃/min的升温速率升温至800℃,并在此温度下保温2.5~3.5h,之后随炉冷却。
本发明方案中,结合在空气气氛和高氧气氛混合烧结工艺,合理控制掺杂量和体系中的氧空位含量,可制备得到具有极低调制电场的介电可调锆掺杂钡铁氧体陶瓷。
与现有技术相比,本发明具有的有益效果是:本发明控制Zr4+掺杂含量和氧空位形成,可在体系内形成大量的Fe2+;通过其与Fe3+离子耦合形成Fe2+/Fe3+缺陷偶极子对并同时在体系内晶粒与晶界间产生电导不均匀性。两者的协同作用使掺杂钡铁氧体在很大的频域范围内具有高介电特性,介电常数>10k;在外加电场的作用下,这种缺陷偶极子十分容易沿外场方向发生偏转,更多的缺陷偶极子偏转使介电常数在同样的外场作用下大幅下降,表现出很高的介电可调性,达到50%以上;更由于这种偶极子偏转出自于电子的迁移,相对仅需极小的能量,也就是说仅需施加非常小的直流偏置电场,就可以使Fe2+/Fe3+偶极子向外电场的方向转动,其可调性的驱动电压<40V/cm,远远低于现有广泛应用的介电可调材料。本发明工艺过程简单,实验周期短,具有推广性,制备得到的锆掺杂钡铁氧体可在非常低的调制电压下得到高的介电调谐性,有望在新型低电压介电可调器件中得到广泛应用。
附图说明
图1为实施例1制得的陶瓷的xps图;
图2表示在1275℃下烧结、锆掺杂含量为x=0.1的钡铁氧体陶瓷的介电频谱;
图3表示在1275℃下烧结、锆掺杂含量为x=0.1的钡铁氧体陶瓷的介电常数偏压曲线;
图4表示在1275℃下烧结、锆掺杂含量为x=0.2的钡铁氧体陶瓷的介电频谱;
图5表示在1275℃下烧结、锆掺杂含量为x=0.2的钡铁氧体陶瓷的介电常数偏压曲线;
图6表示在1250℃下烧结、锆掺杂含量为x=0.1的钡铁氧体陶瓷的介电频谱;
图7表示在1250℃下烧结、锆掺杂含量为x=0.1的钡铁氧体陶瓷的介电常数偏压曲线;
具体实施方式
下面对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出任何创造性劳动前提下通过简单改变烧结温度、时间和气氛等,以及基于相同机理简单改变组成等所获得的所有其他实施例,都属于本发明保护的范围。
下面根据具体的实施例详细的描述本发明。
实例1
(1)将硝酸钡、硝酸铁、硝酸锆和柠檬酸按照摩尔比1:11.9:0.1:19.05混合,加入去离子水搅拌,直至溶质完全溶解,得到溶液A。
(2)调节溶液A的pH至7,得到溶液B。随后将溶液B在90℃的水浴中加热搅拌4h,使溶剂挥发得到溶胶前驱体。将得到的溶胶前驱体在120℃下干燥4天,得到蓬松的黑色凝胶。
(3)将得到的干凝胶在研钵中进行研磨,然后将其放入马弗炉中进行预烧。预烧具体为:以8℃/min的升温速率升温至210℃,并在此温度下保温2h,再以6℃/min的升温速率升温至450℃,并在此温度下保温2.5h,使得干凝胶完全燃烧分解,最后再以9℃/min的升温速率升温至800℃,并在此温度下保温3h,之后随炉冷却得到锆掺杂钡铁氧体粉体。
(4)将预烧得到的锆掺杂钡铁氧体粉体与质量分数为6%的PVA溶液混合,随后使用研钵研磨造粒,随后,将颗粒物料在8.5MPa的压力下成型得到坯体。
(5)将坯体置于高温炉中在空气和高含氧气氛下烧结,高氧气氛下烧结时控制气氛O2/N2摩尔比在40/60,烧结时控制流入高温炉中气体流速为7.5cc/min,空气的流入速度为24cc/min:烧结时首先在空气气氛下以6℃/min的速度缓慢升温至400℃,并在此温度下保温35min,进行充分的排胶;再以5℃/min的速度升温至950℃,保温3.5h;之后在高氧气氛下,再以2℃/min的升温速率升温至1275℃,继续保温3h;随后在高温炉内随炉逐渐降温,慢速冷却至600℃以下时停止通入高含氧气氛改为空气气氛,之后继续降温至室温,最终获得锆掺杂钡铁氧体极低电场介电可调陶瓷材料。
本例制得的BaFe11.9Zr0.1O19陶瓷为单相多晶材料,其xps图如图1所示,体系内同时存在Fe2+和Fe3+,并形成了缺陷偶极子。其介电性能和介电可调性能采用Agilent 4294A精密阻抗分析仪测试。测试前将本发明实例的陶瓷试样进行抛光处理,再在试样上下表面溅射银电极。
图2是实施例1获得的BaFe11.9Zr0.1O19陶瓷的介电频谱。可以看到,介电常数较大,在数十千赫兹范围内,介电常数达到20k以上。
图3是实施例1获得的BaFe11.9Zr0.1O19陶瓷在10kHz下的介电常数-偏压曲线。可以看出,该实施例获得的样品表现出极低调制电场下的介电可调特性,在直流偏置电场<25V/cm的作用下,可调性达到65%。
实例2
(1)将硝酸钡、硝酸铁、硝酸锆和柠檬酸按照摩尔比1:11.8:0.2:19.1混合,加入去离子水搅拌,直至溶质完全溶解,得到溶液A。
(2)调节溶液A的pH至6,得到溶液B。随后将溶液B在80℃的水浴中加热搅拌3.5h,使溶剂挥发得到溶胶前驱体。将得到的溶胶前驱体在118℃下干燥5天,得到蓬松的黑色凝胶。
(3)将得到的黑色凝胶在研钵中进行研磨,然后将其放入马弗炉中进行预烧。预烧具体为:以6℃/min的升温速率升温至210℃,并在此温度下保温2.5h,再以8℃/min的升温速率升温至450℃,并在此温度下保温2h,使得黑色凝胶完全燃烧分解,最后再以9℃/min的升温速率升温至800℃,并在此温度下保温3h,之后随炉冷却得到锆掺杂钡铁氧体粉体。
(4)将预烧得到的锆掺杂钡铁氧体粉体与质量分数为6.5%的PVA溶液混合,随后使用研钵研磨造粒,随后,将颗粒物料在9MPa的压力下成型得到坯体。
(5)将坯体置于高温炉中在空气和高含氧气氛下烧结,高氧气氛下烧结时控制气氛O2/N2摩尔比在35/65,烧结时控制流入高温炉中气体流速为5cc/min,空气的流入速度为24cc/min:烧结时首先在空气气氛下以4℃/min的速度缓慢升温至400℃,并在此温度下保温45min,进行充分的排胶;再以5℃/min的速度升温至1000℃,保温4h;之后在高氧气氛下,再以2℃/min的升温速率升温至1275℃,继续保温2h;随后在高温炉内随炉逐渐降温,慢速冷却至600℃以下时停止通入高含氧气氛改为空气气氛,之后继续降温至室温,最终获得锆掺杂钡铁氧体极低电场介电可调陶瓷材料。
本例制得的BaFe11.8Zr0.2O19陶瓷为单相多晶材料,体系内同时存在Fe2+和Fe3+,并形成了缺陷偶极子。其介电性能和介电可调性能采用Agilent 4294A精密阻抗分析仪测试。测试前将本发明实例的陶瓷试样进行抛光处理,再在试样上下表面溅射银电极。
图4是实施例2获得的BaFe11.8Zr0.2O19陶瓷的介电频谱。可以看到,介电常数较大,在数十千赫兹范围内,介电常数达到15k以上。图5是实施例2获得的BaFe11.8Zr0.2O19陶瓷在10kHz下的介电常数-偏压曲线。可以看出,该实施例获得的样品表现出极低调制电场下的介电可调特性,在直流偏置电场<25V/cm的作用下,可调性达到53%。
实例3
(1)将硝酸钡、硝酸铁、硝酸锆和柠檬酸按照摩尔比1:11.9:0.1:19.05混合,加入去离子水搅拌,直至溶质完全溶解,得到溶液A。
(2)调节溶液A的pH至7,得到溶液B。随后将溶液B在75℃的水浴中加热搅拌3h,使溶剂挥发得到溶胶前驱体。将得到的溶胶前驱体在115℃下干燥6天,得到蓬松的黑色凝胶。
(3)将得到的黑色凝胶在研钵中进行研磨,然后将其放入马弗炉中进行预烧。预烧具体为:以6℃/min的升温速率升温至210℃,并在此温度下保温2h,再以5℃/min的升温速率升温至450℃,并在此温度下保温2h,使得黑色凝胶完全燃烧分解,最后再以10℃/min的升温速率升温至800℃,并在此温度下保温3.5h,之后随炉冷却得到锆掺杂钡铁氧体粉体。
(4)将预烧得到的锆掺杂钡铁氧体粉体与质量分数为6%的PVA溶液混合,随后使用研钵研磨造粒,随后,将颗粒物料在8MPa的压力下成型得到坯体。
(5)将坯体置于高温炉中在空气和高含氧气氛下烧结,高氧气氛下烧结时控制气氛O2/N2摩尔比在30/70,烧结时控制流入高温炉中气体流速为3cc/min,空气的流入速度为24cc/min:烧结时首先在空气气氛下以4℃/min的速度缓慢升温至400℃,并在此温度下保温35min,进行充分的排胶;再以5℃/min的速度升温至960℃,保温3.5h;之后在高氧气氛下,再以2℃/min的升温速率升温至1250℃,继续保温2.5h;随后在高温炉内随炉逐渐降温,慢速冷却至600℃以下时停止通入高含氧气氛改为空气气氛,之后继续降温至室温,最终获得锆掺杂钡铁氧体极低电场介电可调陶瓷材料。
图6是实施例3获得的BaFe11.9Zr0.1O19陶瓷的介电频谱。可以看到,介电常数较大,在数十千赫兹范围内,介电常数达到10k以上。图7是实施例3获得的BaFe11.9Zr0.1O19陶瓷在10kHz下的介电常数-偏压曲线。可以看出,该实施例获得的样品表现出极低调制电场下的介电可调特性,在直流偏置电场<40V/cm的作用下,可调性达到58%。

Claims (2)

1.一种锆掺杂钡铁氧体极低电场高介电可调陶瓷材料,其特征在于,形成的锆掺杂钡铁氧体陶瓷为单相多晶材料,锆掺杂钡铁氧体陶瓷中Zr4+离子取代部分Fe3+离子,同时引入相关Fe2+离子,钡铁氧体中Fe3+和这种Fe2+同时存在,且Fe2+离子与周围存在的Fe3+离子耦合形成Fe3+/Fe2+缺陷偶极子对;其化学式为BaFe12-xZrxO19,其中x=0.1~0.2;其采用如下步骤制得:
(1)将硝酸钡、硝酸铁、硝酸锆和柠檬酸按照摩尔比1:11.8~11.9:0.1~0.2:19.05~19.1混合,加入去离子水搅拌,直至溶质完全溶解,得到溶液A;
(2)调节溶液A的pH至6~7,得到溶液B,随后将溶液B在75~90℃的水浴中加热搅拌3~5h,使溶剂挥发得到溶胶前驱体,将得到的溶胶前驱体在115~125℃下干燥4~6天,得到蓬松的黑色凝胶;
(3)将得到的黑色凝胶在研钵中进行研磨,然后将其放入马弗炉中进行预烧,得到锆掺杂钡铁氧体粉体;
(4)将预烧得到的锆掺杂钡铁氧体粉体与质量分数为6~7%的PVA溶液混合,随后使用研钵研磨造粒,随后,将颗粒物料在8~9MPa的压力下成型得到坯体;
(5)将坯体置于高温炉中依次在空气和高含氧气氛下烧结,具体如下:
烧结时首先在空气气氛下以4~6℃/min的速度缓慢升温至400℃,并在此温度下保温30~45min,进行充分的排胶;再以5℃/min的速度升温至900~1000℃,保温3~4h;之后通入高含氧气氛,再以2℃/min的升温速率升温至1250~1275℃,继续保温2~3h;随后在高温炉内随炉逐渐降温,慢速冷却至600℃以下时停止通入高含氧气氛改为空气气氛,之后继续降温至室温,最终获得锆掺杂钡铁氧体极低电场介电可调陶瓷材料;所述的高含氧气氛为O2与N2的混合气,且O2/N2摩尔比为30~40/70~60,烧结时控制氧气与空气同时流入高温炉中获得高含氧气氛环境,其中氧气氛的流速控制为3~7.5 cc/min,空气的流入速度为24 cc/min。
2. 根据权利要求1所述的锆掺杂钡铁氧体极低电场高介电可调陶瓷材料,其特征在于,所述的步骤(3)中陶瓷粉体原料预烧步骤具体如下:以 5~8℃/min的升温速率升温至210℃,并在此温度下保温2~2.5h,再以5~10℃/min 的升温速率升温至450℃,并在此温度下保温2~2.5h,使得黑色凝胶完全燃烧分解,最后再以8~10℃/min的升温速率升温至800℃,并在此温度下保温2.5~3.5h,之后随炉冷却。
CN201910093259.8A 2019-01-30 2019-01-30 一种低电场高介电可调锆掺杂钡铁氧体及其制备方法 Active CN109626984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910093259.8A CN109626984B (zh) 2019-01-30 2019-01-30 一种低电场高介电可调锆掺杂钡铁氧体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910093259.8A CN109626984B (zh) 2019-01-30 2019-01-30 一种低电场高介电可调锆掺杂钡铁氧体及其制备方法

Publications (2)

Publication Number Publication Date
CN109626984A CN109626984A (zh) 2019-04-16
CN109626984B true CN109626984B (zh) 2020-11-27

Family

ID=66064321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910093259.8A Active CN109626984B (zh) 2019-01-30 2019-01-30 一种低电场高介电可调锆掺杂钡铁氧体及其制备方法

Country Status (1)

Country Link
CN (1) CN109626984B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180934B (zh) * 2022-07-19 2023-01-06 浙江大学 一种具有复合微结构介电可调协同掺杂钡铁氧体薄膜及其制备方法
CN115216839B (zh) * 2022-07-19 2023-10-17 浙江大学 具有低调制电场和高介电可调性的蠕虫结构取向生长钡铁氧体薄膜及其制备方法
CN115784316A (zh) * 2022-11-24 2023-03-14 南京航空航天大学 一种双位高价掺杂钡铁氧体吸波剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117285A (zh) * 2007-07-26 2008-02-06 同济大学 Ba(1-x)SrxTiO3-BaX6Ti6O19(X=Mg,Zn)两相复合微波陶瓷材料及其制备方法
CN101172850A (zh) * 2007-10-26 2008-05-07 同济大学 一种介电可调的复相陶瓷质材料
CN102336568A (zh) * 2011-06-09 2012-02-01 西北工业大学 一种介电可调氧化镁复合锆钛酸钡陶瓷

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088623A1 (en) * 2000-05-17 2001-11-22 Heidelberg Digital L.L.C. Method for using hard magnetic carriers in an electrographic process
CN104844182B (zh) * 2015-01-29 2017-02-22 浙江大学 一种锆钛共掺杂钡铁氧体吸波粉体材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117285A (zh) * 2007-07-26 2008-02-06 同济大学 Ba(1-x)SrxTiO3-BaX6Ti6O19(X=Mg,Zn)两相复合微波陶瓷材料及其制备方法
CN101172850A (zh) * 2007-10-26 2008-05-07 同济大学 一种介电可调的复相陶瓷质材料
CN102336568A (zh) * 2011-06-09 2012-02-01 西北工业大学 一种介电可调氧化镁复合锆钛酸钡陶瓷

Also Published As

Publication number Publication date
CN109626984A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
Lu et al. Energy storage properties of (Bi0. 5Na0. 5) 0.93 Ba0. 07TiO3 lead-free ceramics modified by La and Zr co-doping
Cui et al. Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications
Liu et al. Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics
Li et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors
CN109626984B (zh) 一种低电场高介电可调锆掺杂钡铁氧体及其制备方法
Li et al. Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb 0.97 La 0.02)(Zr 0.95 Ti 0.05) O 3 ceramics with a large energy-density for dielectric energy storage
Guo et al. Ultrahigh energy storage performance and fast charge-discharge capability in Dy-modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering
CN109626983B (zh) 一种低电场介电可调铌掺杂钡铁氧体材料及制备方法
Huang et al. Defect dipoles induced high‐energy storage density in Mn‐doped BST ceramics prepared by spark plasma sintering
Menesklou et al. Nonlinear ceramics for tunable microwave devices part I: materials properties and processing
CN109851343B (zh) 一种低电场介电可调钛掺杂钡铁氧体材料及制备方法
Li et al. Poling effects on the structural, electrical and photoluminescence properties in Sm doped BCST piezoelectric ceramics
Wang et al. Relaxor ferroelectric Bi0. 5Na0. 5TiO3–Sr0. 7Nd0. 2TiO3 ceramics with high energy storage density and excellent stability under a low electric field
Liu et al. Enhanced dielectric tunability and reduced dielectric loss in the La/Fe co-doped Ba0. 65Sr0. 35TiO3 ceramics
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
You et al. Grain size engineering enhanced dielectric, ferroelectric and energy storage properties in SnO2 modified BCZT lead-free ceramics
JP2023020876A (ja) 高誘電率および低誘電損失を有するセラミック誘電体並びにその製造方法
Zhang et al. Excellent energy storage performance of paraelectric Ba0. 4Sr0. 6TiO3 based ceramics through induction of polar nano-regions
Wei et al. Simultaneously achieving high energy storage performance and low electrostrictive strain in BT‐based ceramics
Tian et al. High energy storage properties of NaNbO3-based relaxor antiferroelectric ceramics for capacitor applications
Aggarwal et al. Modulation of polar dynamics with oxygen vacancies in Zn doped BaZr0. 1Ti0. 9O3
Dong et al. Enhanced optical and energy storage properties of K0. 5Na0. 5NbO3 lead-free ceramics by doping Bi (Sr0. 5Zr0. 5) O3
Han et al. Effective regulation of breakdown strength through the synergistic effect of defect chemistry and energy band engineering in Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3-based lead-free ceramics
CN110357629B (zh) 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法
Yin et al. Enhanced energy storage properties of Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3—8% BiFeO3 ceramics by doping of Mg ions and Ti ions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant