CN109603857A - 一种钴掺杂的硫化钒电催化剂的制备及应用 - Google Patents

一种钴掺杂的硫化钒电催化剂的制备及应用 Download PDF

Info

Publication number
CN109603857A
CN109603857A CN201811591305.9A CN201811591305A CN109603857A CN 109603857 A CN109603857 A CN 109603857A CN 201811591305 A CN201811591305 A CN 201811591305A CN 109603857 A CN109603857 A CN 109603857A
Authority
CN
China
Prior art keywords
catalyst
cobalt
vanadic
cobalt doped
elctro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811591305.9A
Other languages
English (en)
Inventor
曹丽云
王琳琳
冯亮亮
黄剑锋
巩颖波
王潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201811591305.9A priority Critical patent/CN109603857A/zh
Publication of CN109603857A publication Critical patent/CN109603857A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钴掺杂的硫化钒纳米粒子电催化剂的制备方法及其在作为电催化裂解水产氢催化剂方面的应用。属于催化剂合成技术与应用领域。本发明以富硫有机物为硫源,以金属钒盐为钒源,金属钴盐为钴源,通过机械法混合均匀后通过一步煅烧得到钴掺杂的硫化钒纳米粒子,钴掺杂的硫化钒纳米粒子材料化学组成均一和在全PH电解液中有电催化活性的产氢电催化剂。本发明合成原料廉价,合成方法简单,生产成本低,可控性高。

Description

一种钴掺杂的硫化钒电催化剂的制备及应用
技术领域
本发明属于催化剂的合成与应用技术领域,具体涉及一种钴掺杂的硫化钒纳米粒子电催化剂的制备方法及其在作为电催化裂解水产氢催化剂方面的应用。
背景技术
面对全球能源危机和相关的环境问题,氢被认为是最佳的绿色能源载体,因为它的热值高且燃烧产物是水。水在地球上含量丰富,人们发现,氢气可以由水电解生成。在酸性溶液中,铂(Pt)催化剂可以高效地进行电解水析氢反应(HER)。但是,由于铂金属的昂贵与稀少,其使用范围被严重限制,因此,寻找丰富而廉价的催化剂材料以替代Pt是一项重要的课题。
过渡金属硫属化物由于其有趣的物理和化学性质,近年来被广泛地研究,二硫化钨(WS2)、二硫化钴(CoS2)等都可以用作HER催化剂。实验和理论研究表明,Co掺杂到WS2晶格中,可以显著地增强催化性能。
申请号为CN108046338A的中国专利“一种钴掺杂二硫化钼原位电极及其制备方法”提供一种在室温下,将氯化钼溶于乙醇溶液中,再加入金属钴盐,再加入硫脲,搅拌溶解,得到Co-Mo-S前驱液;将上述前躯液滴涂或旋涂到基底上,70-100℃快速干燥,得到前驱膜;将步骤二中前驱膜于氩气或氮气保护中经500-800℃烧结0.5-2h,随炉冷却取出即可得到钴掺杂二硫化钼原位电极。原位Co掺杂MoS2电极生长具有相对于热解Pt电极更好的稳定性。申请号为CN105948126B的中国专利“钴掺杂硫化钨纳米片、其制备方法及电化学析氢的用途”将硫化钨纳米片和氧化钴纳米线为原料,通过化学气相沉积(CVD)方法制备钴掺杂硫化钨纳米片。本发明所合成的CoxW(1-x)S2纳米片具有化学性稳定、结晶性好和高电化学活性面积等优点;本发明的钴掺杂硫化钨纳米片电化学析氢性能良好、稳定性好。目前,V3S4还没有被用于电催化产氢方面的研究,我们进一步验证掺杂一定量钴的V3S4有好的产氢活性。
本发明公开了一种钴掺杂的硫化钒纳米粒子电催化剂的制备及其在作为电催化裂解水产氢催化剂方面的应用。本发明通过机械法混合均匀后通过一步煅烧得到钴掺杂硫化钒纳米粒子,钴掺杂后物相对应V3S4标准卡片,材料的化学成分均一和在全PH电解液中有电催化活性的产氢电催化剂。
发明内容
本发明公开了一种钴掺杂的硫化钒纳米粒子电催化剂的制备方法及其在作为电催化裂解水产氢催化剂方面的应用。本发明以富硫有机物为硫源,以金属钴盐为钴源和金属钒盐为钒源,通过机械法混合均匀后通过一步煅烧得到钴掺杂的硫化钒纳米粒子,钴掺杂后物相对应V3S4标准卡片,成分均一并且在全PH电解液中产氢活性有一定的提高。
具体技术方案如下:一种钴掺杂的硫化钒纳米粒子电催化剂的制备方法,包括以下步骤:
步骤一:首先将金属钒盐、钴源与富硫有机物三种物质放在研钵里研磨30min,得到均匀的混合物;
步骤二:检查管式炉的气密性;得到的混合物放入管式气氛炉内进行煅烧,温度范围为700℃,保温时间为3h,得到黑色粉体。
进一步地,富硫有机物与钒源,钴源摩尔比为3:1:(5-10)。
进一步地,所述金属钒盐为三氯化钒和偏钒酸胺。
进一步地,所述钴源为六水合硝酸钴。
进一步地,所述富硫有机物为三聚硫氰酸。
相对于现有的技术,本发明至少具有以下有益的效果:
1)合成原料廉价,合成方法简单,生产成本低,可控性高;
2)所得钴掺杂硫化钒纳米粒子物相未发生改变,有一定的创新性;
3)钴掺杂的硫化钒在全pH值范围(0~14),产氢催化活性都有明显的提高。
附图说明
图1为实施例1制备的钴掺杂硫化钒的X-射线衍射(XRD)图谱;
图2为实施例2制备的钴掺杂硫化钒的扫描电镜(SEM)图片;
图3为实施例3制备的钴掺杂硫化钒的透射电镜(TEM)图片;
图4为实施例3制备的钴掺杂前后硫化钒的XPS全谱测试图;
图5为实施例4制备的钴掺杂硫化钒在PH=0下的产氢LSV测试图;
图6为实施例4制备的钴掺杂硫化钒在PH=7下的产氢LSV测试图;
图7为实施例4制备的钴掺杂硫化钒在PH=14下的产氢LSV测试图。
具体实施方案
下面结合附图及实施实例对本发明作进一步详细说明,应理解,这些实例下面仅用于说明而不用于限制本发明的范围。此处应理解,在阅读了本发明授权的内容之后本领域技术人员可以对本发明做任何改动或修改,这些等价同样落于本申请所附权利要求书所限定的范围。
实施例1
步骤一:将400.8mg三聚硫氰酸、66mg六水合硝酸钴和107mg三氯化钒放在研钵内进行研磨,使研钵中原料均匀混合,将所得混合物放入瓷舟中,将瓷舟置于管式气氛炉中,并在管两端各方两个炉塞。
步骤二:向管内通入惰性气体,继而进行8次抽气补气,排尽管内空气,最后一次抽气后不再补气,控制管内气压为-1~0MPa;在气压为-1~0MPa情况下,以10℃/min的升温速率升至700℃,并保温3h;保温结束后,立即打开气阀,以700~800sccm气流通入惰性气体,排出保温过程中产生的硫蒸气,之后要保证冷
却在氩气流下进行。
图1为实施例1制备的钴掺杂硫化钒的X-射线衍射(XRD)图谱;可以看出样品的衍射峰均可指标V3S4,衍射峰尖锐,且强度高,其纯度较高,结晶性好,说明钴掺杂后,并没有产生新的物相。
实施例2
步骤一:将400.8mg三聚硫氰酸、131.5mg六水合硝酸钴和107mg三氯化钒放在研钵内进行研磨,使研钵中原料均匀混合,将所得混合物放入瓷舟中,将瓷舟置于管式气氛炉中,并在管两端各方两个炉塞。
步骤二:向管内通入惰性气体,继而进行5次抽气补气,排尽管内空气,最后一次抽气后不再补气,控制管内气压为-1~0MPa;在气压为-1~0MPa情况下,以10℃/min的升温速率升至700℃,并保温3h;保温结束后,立即打开气阀,以700~800sccm气流通入惰性气体,排出保温过程中产生的硫蒸气,之后要保证冷
却在氩气流下进行。
图2为实施例2制备的钴掺杂硫化钒的扫描电镜(SEM)图片;可以看出样品是颗粒状,粒径较小。
实施例3
步骤一:将400.8mg三聚硫氰酸、131.5mg六水合硝酸钴和80mg偏钒酸胺放在研钵内进行研磨,使研钵中原料均匀混合,将所得混合物放入瓷舟中,将瓷舟置于管式气氛炉中,并在管两端各方两个炉塞。
步骤二:向管内通入惰性气体,继而进行8次抽气补气,排尽管内空气,最后一次抽气后不再补气,控制管内气压为-1~0MPa;在气压为-1~0MPa情况下,以5℃/min的升温速率升至700℃,并保温3h;保温结束后,立即打开气阀,以500~700sccm气流通入惰性气体,排出保温过程中产生的硫蒸气,之后要保证冷
却在氩气流下进行。
图3为实施例2制备的钴掺杂硫化钒的透射电镜(TEM)图片,可以看出物质的结晶性较好,且粒径较小。
图4为实施例4制备的钴掺杂硫化钒的XPS全谱测试图,可以看出物质里除了含硫和钒元素外,有一定量的钴元素。
实施例4
步骤一:将400.8mg三聚硫氰酸、66mg六水合硝酸钴和107mg三氯化钒放在研钵内进行研磨,使研钵中原料均匀混合,将所得混合物放入瓷舟中,将瓷舟置于管式气氛炉中,并在管两端各方两个炉塞。
步骤二:向管内通入惰性气体,继而进行8次抽气补气,排尽管内空气,最后一次抽气后不再补气,控制管内气压为-1~0MPa;在气压为-1~0MPa情况下,以5℃/min的升温速率升至700℃,并保温3h;保温结束后,立即打开气阀,以700~800sccm气流通入惰性气体,排出保温过程中产生的硫蒸气,之后要保证冷
却在氩气流下进行。
图5为本发明实施例4制备的钴掺杂的硫化钒在酸性溶液中的产氢测试图(LSV)图谱;可以看出实例4所制备的钴掺杂的硫化钒,在pH=0测试条件下,当电流密度为10mA/cm2,扫描速率为5 mV/s时,该样品过电势为325mV,有一定的产氢催化活性。
图6为本发明实施例4制备的钴掺杂的硫化钒在中溶液中的产氢测试图(LSV)图谱;可以看出实例4所制备的钴掺杂的硫化钒,在pH=7测试条件下,当电流密度为10mA/cm2,扫描速率为5 mV/s时,该样品过电势为240mV,有一定的产氢催化活性。
图7为本发明实施例4制备的钴掺杂的硫化钒在碱性溶液中的产氢测试图(LSV)图谱;可以看出实例4所制备的钴掺杂的硫化钒,在pH=14测试条件下,当电流密度为10mA/cm2,扫描速率为5 mV/s时,该样品过电势为270mV,有一定的产氢催化活性。
实施例5
步骤一:将107mg三聚硫氰酸、66mg六水合氯化钴和54mg三氯化钒放在研钵内进行研磨,使研钵中原料均匀混合,将所得混合物放入瓷舟中,将瓷舟置于管式气氛炉中,并在管两端各方两个炉塞。
步骤二:向管内通入惰性气体,继而进行5次抽气补气,排尽管内空气,最后一次抽气后不再补气,控制管内气压为-1~0MPa;在气压为-1~0MPa情况下,以5℃/min的升温速率升至900℃,并保温2h;保温结束后,立即打开气阀,以500~800sccm气流通入惰性气体,排出保温过程中产生的硫蒸气,之后要保证冷却在氩气流下进行。

Claims (8)

1.一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,包括以下步骤:
将金属钒盐、钴源与富硫有机物放在研钵里进行研磨,得到均匀的混合物;将前述混合物在700℃、惰性气氛下煅烧3h,得到钴掺杂的硫化钒电催化剂。
2.根据权利要求1所述的一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,所述金属钒盐为三氯化钒和偏钒酸胺。
3.根据权利要求1所述的一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,所述钴源为六水合硝酸钴。
4.根据权利要求1所述的一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,所述富硫有机物为三聚硫氰酸。
5.根据权利要求1所述的一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,富硫有机物与金属钒盐、钴源摩尔比为3:1:(5-10)。
6.根据权利要求1所述的一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,所述混合物在惰性气氛保护下煅烧前,通过以下方法保证煅烧环境的气密性:煅烧前,向反应容器内通入惰性气体,继而进行3~10次抽气补气,排尽容器内的空气,最后一次抽气后不再补气,控制管内气压为-1~0MPa。
7.根据权利要求1所述的一种钴掺杂的硫化钒电催化剂的制备方法,其特征在于,所述混合物在惰性气氛保护下煅烧结束后,立即打开气阀,以500~1500Sccm气流通入惰性气体,排出保温过程中产生的硫蒸气,之后要保证冷却在惰性气氛流下进行。
8.权利要求1~7任一项所述方法得到的一种钴掺杂的硫化钒电催化
权利要求8所述的一种钴掺杂的硫化钒电催化剂作为一种点催花裂解水产氢催化剂的应用。
CN201811591305.9A 2018-12-25 2018-12-25 一种钴掺杂的硫化钒电催化剂的制备及应用 Pending CN109603857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811591305.9A CN109603857A (zh) 2018-12-25 2018-12-25 一种钴掺杂的硫化钒电催化剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811591305.9A CN109603857A (zh) 2018-12-25 2018-12-25 一种钴掺杂的硫化钒电催化剂的制备及应用

Publications (1)

Publication Number Publication Date
CN109603857A true CN109603857A (zh) 2019-04-12

Family

ID=66012301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811591305.9A Pending CN109603857A (zh) 2018-12-25 2018-12-25 一种钴掺杂的硫化钒电催化剂的制备及应用

Country Status (1)

Country Link
CN (1) CN109603857A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939699A (zh) * 2019-04-16 2019-06-28 湘潭大学 一种钼掺杂二硫化钒微米花材料及其制备方法和应用
CN111203254A (zh) * 2020-01-13 2020-05-29 陕西科技大学 一种Co-N高活性物种修饰的硫化钒产氢电催化剂及其制备方法和应用
CN113193198A (zh) * 2021-04-30 2021-07-30 陕西科技大学 一种钴掺杂二硫化钒微米片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399494A (zh) * 2014-12-10 2015-03-11 吉林大学 一种碳包覆硫化钴材料、制备方法及其在水裂解产氢方面的应用
CN105810941A (zh) * 2016-04-29 2016-07-27 陕西科技大学 一种纳米短棒自组装四硫化三钒微米球的制备方法及应用
CN108837838A (zh) * 2018-05-09 2018-11-20 陕西科技大学 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399494A (zh) * 2014-12-10 2015-03-11 吉林大学 一种碳包覆硫化钴材料、制备方法及其在水裂解产氢方面的应用
CN105810941A (zh) * 2016-04-29 2016-07-27 陕西科技大学 一种纳米短棒自组装四硫化三钒微米球的制备方法及应用
CN108837838A (zh) * 2018-05-09 2018-11-20 陕西科技大学 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939699A (zh) * 2019-04-16 2019-06-28 湘潭大学 一种钼掺杂二硫化钒微米花材料及其制备方法和应用
CN109939699B (zh) * 2019-04-16 2022-04-05 湘潭大学 一种钼掺杂二硫化钒微米花材料及其制备方法和应用
CN111203254A (zh) * 2020-01-13 2020-05-29 陕西科技大学 一种Co-N高活性物种修饰的硫化钒产氢电催化剂及其制备方法和应用
CN111203254B (zh) * 2020-01-13 2023-01-31 陕西科技大学 一种Co-N高活性物种修饰的硫化钒产氢电催化剂及其制备方法和应用
CN113193198A (zh) * 2021-04-30 2021-07-30 陕西科技大学 一种钴掺杂二硫化钒微米片及其制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution
CN106076377B (zh) 一种磷掺杂的硫化钴镍/碳纳米管-碳纳米纤维复合材料及其制备方法
CN105140535B (zh) 硫化钴/氮硫共掺杂碳空心球复合材料及其制备方法
Bansal et al. Combustion synthesis of Sm0. 5Sr0. 5CoO3− x and La0. 6Sr0. 4CoO3− x nanopowders for solid oxide fuel cell cathodes
Hu et al. Facile syntheses of cerium-based CeMO 3 (M= Co, Ni, Cu) perovskite nanomaterials for high-performance supercapacitor electrodes
CN109280934A (zh) 一种碳包覆的氮化钒电催化剂、制备方法及应用
Wang et al. Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries
CN109603857A (zh) 一种钴掺杂的硫化钒电催化剂的制备及应用
CN106876729B (zh) 有序介孔碳生长碳纳米管催化剂的制备及催化剂和应用
Wang et al. Notable hydrogen production on La x Ca1− x CoO3 perovskites via two-step thermochemical water splitting
CN110813361B (zh) 磷掺杂氧化钴铁氮掺杂碳纳米纤维复合材料及其制备方法与应用
Yang et al. Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting
CN108842167A (zh) 一种类似于珊瑚状NiSe@NC的制备方法及其用途
CN114042468B (zh) 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
CN109706479B (zh) 一种片状v3s4的制备及其电催化性能的应用
CN102060331A (zh) 一种溶剂热法生长MnS纳米结构的方法
Sithole et al. Synthesis and characterization of Ce0. 6Sr0. 4Fe0. 8Co0. 2O3–δ perovskite material: Potential cathode material for low temperature SOFCs
Shang et al. A novel wet-chemistry method for the synthesis of multicomponent nanoparticles: A case study of BaCe0. 7Zr0. 1Y0. 1Yb0. 1O3− δ
CN113668008B (zh) 一种二硫化钼/钴碳纳米管电催化剂及其制备方法和应用
Wu et al. In situ growth of copper-iron bimetallic nanoparticles in A-site deficient Sr2Fe1. 5Mo0. 5O6-δ as an active anode material for solid oxide fuel cells
Wang et al. Sol–gel derived La0. 6Sr0. 4CoO3 nanoparticles, nanotubes, nanowires and thin films
Fu et al. Phosphorus/sulfur co-doped heterogeneous NiCoPxSy nanoarrays boosting overall water splitting
CN107651656B (zh) 一种Ni2P4O12纳米颗粒材料及其制备方法和应用
Qian et al. Solution-based synthesis of NiSb nanoparticles for electrochemical activity in hydrogen evolution reaction
CN110270351A (zh) 一种高镍含量的碱性水电解用镍黄铁矿相镍钴硫化物电催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190412

RJ01 Rejection of invention patent application after publication