CN109598084A - 一种传动轴花键全齿面磨削残余应力的模拟方法 - Google Patents

一种传动轴花键全齿面磨削残余应力的模拟方法 Download PDF

Info

Publication number
CN109598084A
CN109598084A CN201811549073.0A CN201811549073A CN109598084A CN 109598084 A CN109598084 A CN 109598084A CN 201811549073 A CN201811549073 A CN 201811549073A CN 109598084 A CN109598084 A CN 109598084A
Authority
CN
China
Prior art keywords
grinding
tooth
residual stress
flank
spline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811549073.0A
Other languages
English (en)
Inventor
王延忠
陈燕燕
张炜
李菲
王成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201811549073.0A priority Critical patent/CN109598084A/zh
Publication of CN109598084A publication Critical patent/CN109598084A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

本发明为一种传动轴花键全齿面磨削残余应力的模拟方法,包括:1.准备通用磨削的残余应力分析或测试结果;2.对于花键齿表层每个有限元网格单元建立局部磨削坐标系;3.根据花键齿上局部磨削坐标系与花键全局坐标系之间的坐标变换关系,将分析或测试得到的单点通用磨削残余应力转换到花键全局坐标系上表达;4.遍历所有齿面网格单元,进行以上坐标系变换操作,最终得到全齿面的残余应力分布。本发明能以简单通用磨削试验测试与有限元仿真结合的途径替代花键零件磨削试验和测试过程,得到比完整零件试验测试更细致清晰的齿面残余应力分布结果,同时大大减少样件的数量、缩短试验周期,降低经济成本和时间成本。

Description

一种传动轴花键全齿面磨削残余应力的模拟方法
技术领域
本发明属于高性能长寿命传动领域,具体涉及一种传动轴花键齿面磨削残余应力分析方法。
背景技术
传动轴是重载车辆传动系统中不可或缺的关键元件,其使用性能对整个传动装置的功能实现和可靠性都起着至关重要的作用。随着未来车辆向着种类、功能多样化的方向发展,对其高机动性和高功率密度的需求更为明确,必然导致车辆传动轴的结构更为紧凑、重量更轻、转速显著提高,且运行条件更为恶劣,振动冲击载荷大幅增加。以上外部工况的日益严苛造成传动轴的内、外激励愈加复杂,振动条件越来越恶劣,发生疲劳断裂的现象越来越多。单纯依靠增大零部件的结构尺寸来增大安全系数的方法已无法满足设计要求,也不符合新发展形势的需求。必须从设计与加工工艺相结合的角度开展传动轴的动态力学精细化分析,从全生命周期内了解传动轴工作条件下的应力分布及其变化情况,才能从根本上了解传动轴失效的原因和机制。分析加工过程残余应力对花键端工作应力分布和变化的影响机制,也能反过来对工艺参数进行优化,找出解决传动轴疲劳断裂问题的有效方法。
传动轴的加工过程不可避免地会在被加工表面形成残余应力。在投入使用后,轴上的应力分布必然是加工残余应力与工况加载形成的应力耦合作用的结果。当前进行复杂结构零件应力分析的有效途径是有限元分析方法,可以直观地得到零件复杂几何结构和细节的应力分布及与加载工况相关的变化云图,有效帮助设计分析人员快速找到零件危险截面并给出优化和解决对策。但如果需要将加工过程形成的残余应力考虑在内,作为零件应力分析的初始条件,关键在于将加工表面得到的有限的残余应力试验测试数据点作为标准数据,映射到传动轴有限元网格模型的所有对应表面单元上。而残余应力是一个张量,其位姿由加工方向矢量决定。对于花键齿面这类空间复杂几何曲面来说,其上每个节点处的加工方向有可能各不相同,目前还没有现成的分析模块或者即有的解决途径来实现残余应力在加工表面上的映射。
发明内容
本发明的目的在于:基于即有的有限加工表面残余应力测试结果或者单点加工残余应力仿真结果,模拟整个花键齿面加工形成的残余应力分布情况,为后续花键轴考虑加工残余应力影响的加载分析提供技术支持和先期基础。
本发明提出了一种传动轴花键全齿面磨削残余应力的模拟方法。以磨削加工为例,本发明提出的方法包括:
步骤S1:准备通用磨削的残余应力分析或测试结果。
步骤S2:根据齿面实际磨削加工的形式,确定传动轴花键齿面上任意一点处在磨削过程中被磨削的方向矢量v′gr(即磨削过程中砂轮上正在参与磨削的砂粒与被加工表面间的相对运动速度矢量),并结合该点齿面法矢n′gr建立花键磨削加工的局部坐标系Σ′gr{O′gr;x′gr,y′gr,z′gr}。
步骤S3:遵照xgr与x′gr重合,ygr与y′gr重合,zgr与z′gr重合的规则,对于花键齿上任意一点,将通用磨削分析得到的残余应力张量结果Φgr通过坐标变换原理转换到花键全局坐标系Σg下表达,最终得到全齿面单元节点的残余应力张量。
进一步地,所述步骤S1中,通用磨削的残余应力张量表达的正交坐标系Σgr{Ogr;xgr,ygr,zgr}应当由与磨削方向矢量vgr和工件被加工表面法矢ngr决定,如图2。
进一步地,所述步骤S2中所建立的花键磨削加工的局部正交坐标系Σ′gr,令其原点O′gr与被磨削点A重合,x′gr轴与磨削方向v′gr一致,z′gr轴与被磨削表面过A点的切平面法矢n′gr重合,并指向齿面外侧,y′gr轴可由x′gr和z′gr的方向确定。
进一步地,定义传动轴花键齿网格模型建立所在的全局坐标系为Σg{Og;xg,yg,zg},且所述步骤S2中局部坐标系Σ′gr各坐标轴x′gr、y′gr和z′gr在全局坐标系中分别表达为(l1,m1,n1),(l2,m2,n2)和(l3,m3,n3)。则局部坐标系Σ′gr中任意点坐标P′gr向花键齿坐标系Σg下的转换关系有:
Pg=T-1Pgr(T-1)T (1)
其中:为坐标转换矩阵。
进一步地,所述步骤S3中,若遵照xgr与x′gr重合,ygr与y′gr重合,zgr与z′gr重合的规则,则花键齿面任意点处磨削残余应力张量Φg与Φgr之间的坐标变换表达式为:
Φg=T-1Φgr(T-1)T (2)
本发明的有益效果:
(1)本发明提供一种计算方法,将简单平面磨削试验后样件单点检测得到的残余应力测试数据或者通用磨削仿真分析得到的单点数据值按照磨削方向一致的原则,通过坐标变换的方式一一映射到传动轴花键齿面上,最终得到全齿面的磨削残余应力分布。与通过真实花键磨削试验并检测齿面多点残余应力来推测残余应力场的方法相比,本发明提供的方法由于可以计算花键齿面任意点的残余应力值,有利于得到更为精确细致的结果。
(2)对于需要通过调整磨削参数来获得最优的花键齿面残余应力分布的应用需求,本文提供的方法不需要进行花键样件的加工制备,能够大大减少试验-测试的时间和经济成本。
(3)本文提出的计算方法可以同样推广应用至其他如齿轮、叶轮叶片等具有空间复杂曲面结构的零件磨削甚至其他加工方式产生的残余应力分布分析过程。
附图说明
图1为本发明的分析方法流程图;
图2为通用磨削分析得到的参与应力张量向花键齿面映射过程中的坐标系变换关系。
具体实施方式
下面结合附图对本发明方法的实施方式做详细说明。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。下面将参考附图并结合实施例来详细说明本发明。
本发明实施例以传动轴上一个花键齿为对象,将已有的简单磨削工艺仿真分析得到的磨削残余应力张量映射到整个花键齿面节点上,实现基于简单局部范围磨削分析结果向大范围空间曲面的磨削残余应力模拟。实例包括以下步骤:
(1)建立通用磨削坐标系Σgr{Ogr;xgr,ygr,zgr}。在被磨削平面上,以砂轮磨粒与被加工表面的相对运动方向作为xgr轴,以垂直于磨削平面的方向为zgr轴,进而确定ygr轴。对于仿真或测试得到的残余应力结果张量Φgr,将其在坐标系Σgr中表达。
(2)在花键齿网格模型上定义表层单元集合Set_Ele_surf。
(3)对于单元集合Set_Ele_surf中的第i个单元(Ai点),将Φgr通过坐标变换的方法映射到该单元上,:
(3.1)依照实际磨削工况,确定磨削该单元i所在位置时的磨削方向矢量,即砂轮磨粒在该点相对被加工表面的运动方向矢量v′gr(i);
(3.2)建立齿面上过Ai点的切平面γ,以磨削方向v′gr(i)为x′gr(i)轴,并定义γ上与x′gr(i)垂直的方向为y′gr(i)轴,过Ai点与γ垂直的方向为z′gr(i)轴,形成齿面的磨削坐标系∑′gr(i);
(3.3)假设仿真或测试得到的残余应力结果张量Φgr在花键齿坐标系中表达为Φg,则可按照转换关系Φg=T-1Φgr(T-1)T将Φgr表达为Φg
综上,通过以上流程,循环遍历单元集合Set_Ele_surf中所有单元,可以实现通用磨削分析得到的单点残余应力结果向传动轴花键齿面的映射,得到全齿面的残余应力分布结果。本发明提出的方法是进行后续花键真实工作应力分析,并考察残余应力分布对花键强度影响的关键基础。
本发明未详细阐述部分属于本领域公知技术。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (4)

1.一种传动轴花键全齿面磨削残余应力的模拟方法,其特征在于:该方法包括如下步骤:
步骤S1:准备通用磨削的残余应力分析或测试结果。
步骤S2:根据齿面实际磨削加工的形式,确定传动轴花键齿面上任意一点处在磨削过程中被磨削的方向矢量v′gr(即磨削过程中砂轮上正在参与磨削的砂粒与被加工表面间的相对运动速度矢量),并结合该点齿面法矢n′gr建立花键磨削加工的局部坐标系Σ′gr{O′gr;x′gr,y′gr,z′gr}。
步骤S3:遵照xgr与x′gr重合,ygr与y′gr重合,zgr与z′gr重合的规则,对于花键齿上任意一点,将通用磨削分析得到的残余应力张量结果Φgr通过坐标变换原理转换到花键全局坐标系Σg{Og;xg,yg,zg}下表达,最终得到全齿面单元节点的残余应力张量。
2.根据权利要求1所述的一种传动轴花键全齿面磨削残余应力的模拟方法,其特征在于:所述步骤S1中,通用磨削的残余应力张量表达的正交坐标系Σgr{Ogr;xgr,ygr,zgr}应当由与磨削方向矢量vgr和工件被加工表面法矢ngr决定。
3.根据权利要求1所述的一种传动轴花键全齿面磨削残余应力的模拟方法,其特征在于:所述步骤S2中所建立的花键磨削加工的局部正交坐标系Σ′gr,令其原点O′gr与被磨削点A重合,x′gr轴与磨削方向v′gr一致,z′gr轴与被磨削表面过A点的切平面法矢n′gr方向一致,并指向齿面外侧,y′gr轴可由x′gr和z′gr的方向确定。
4.根据权利要求1所述的一种传动轴花键全齿面磨削残余应力的模拟方法,其特征在于:所述步骤S3中,若遵照xgr与x′gr重合,ygr与y′gr重合,zgr与z′gr重合的规则,则花键齿面任意点处磨削残余应力张量Φg与Φgr之间的坐标变换表达式为:
Фg=T-1Фgr(T-1)T
其中:为坐标转换矩阵;(l1,m1,n1),(l2,m2,n2)和(l3,m3,n3)为局部坐标系Σ′gr的坐标轴x′gr、y′gr和z′gr在全局坐标系Σg中的表达。
CN201811549073.0A 2018-12-18 2018-12-18 一种传动轴花键全齿面磨削残余应力的模拟方法 Pending CN109598084A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811549073.0A CN109598084A (zh) 2018-12-18 2018-12-18 一种传动轴花键全齿面磨削残余应力的模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811549073.0A CN109598084A (zh) 2018-12-18 2018-12-18 一种传动轴花键全齿面磨削残余应力的模拟方法

Publications (1)

Publication Number Publication Date
CN109598084A true CN109598084A (zh) 2019-04-09

Family

ID=65963020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811549073.0A Pending CN109598084A (zh) 2018-12-18 2018-12-18 一种传动轴花键全齿面磨削残余应力的模拟方法

Country Status (1)

Country Link
CN (1) CN109598084A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560259A (zh) * 2020-12-11 2021-03-26 北京航空航天大学 一种基于弹塑性碰撞的传动轴喷丸表面残余应力快速预测方法
CN114638057A (zh) * 2021-12-20 2022-06-17 重庆大学 一种基于abaqus二次开发的花键磨损与疲劳寿命仿真方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108304657A (zh) * 2018-02-02 2018-07-20 重庆大学 基于有限元的机床关重件残余应力多工序连续建模仿真方法
CN108304687A (zh) * 2018-04-26 2018-07-20 大连理工大学 一种预测薄壁复杂曲面回转件车削加工变形的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108304657A (zh) * 2018-02-02 2018-07-20 重庆大学 基于有限元的机床关重件残余应力多工序连续建模仿真方法
CN108304687A (zh) * 2018-04-26 2018-07-20 大连理工大学 一种预测薄壁复杂曲面回转件车削加工变形的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AFAZOV S M等: "Mathematical modeling and implementation of residual stress mapping from microscale to macroscale finite element models", 《JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING》 *
RATCHEV S M等: "Mathematical modelling and integration of micro-scale residual stresses into axisymmetric FE models of Ti6Al4V alloy in turning", 《CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY》 *
何玉辉等: "超声振动平面磨削的表面残余应力数值模拟", 《现代制造工程》 *
原园等: "齿轮啮合过程中安定状态残余应力的数值方法研究", 《工程力学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560259A (zh) * 2020-12-11 2021-03-26 北京航空航天大学 一种基于弹塑性碰撞的传动轴喷丸表面残余应力快速预测方法
CN114638057A (zh) * 2021-12-20 2022-06-17 重庆大学 一种基于abaqus二次开发的花键磨损与疲劳寿命仿真方法
CN114638057B (zh) * 2021-12-20 2024-02-06 重庆大学 一种基于abaqus二次开发的花键磨损与疲劳寿命仿真方法

Similar Documents

Publication Publication Date Title
CN107145663B (zh) 车轮多目标优化设计方法
CN109598084A (zh) 一种传动轴花键全齿面磨削残余应力的模拟方法
Löhner A 2nd generation parallel advancing front grid generator
CN112052522B (zh) 一种基于疲劳强度的船体结构优化简化计算方法
Hou et al. Study on mechanical properties of carbon fiber honeycomb curved sandwich structure and its application in engine hood
Lockard et al. Aeroacoustic analysis of a simplified landing gear
CN106202693A (zh) 一种基于参数化建模的加筋壁板结构抗振动疲劳优化方法
CN107368660B (zh) 一种预测周期性点阵材料屈服面的分析方法
CN104317996A (zh) 一种飞机重心设计与评估方法
Merle et al. An adjoint-based aerodynamic shape optimization strategy for trimmed aircraft with active engines
CN109063401B (zh) 采用等效静态位移实现结构接触力优化的方法
Suzuki et al. Studies on the optimization of stern hull form based on a potential flow solver
Krist et al. Kestrel Results at Liftoff Conditions for a Space Launch System Configuration in Proximity to the Launch Tower
Onishi et al. Use of the immersed boundary method within the building cube method and its application to real vehicle cad data
Bhadra et al. Aeroelastic optimization of a helicopter rotor using orthogonal array-based metamodels
CN108614922B (zh) 一种基于应力杂交化后处理的板壳边缘效应的计算方法
Patnaik et al. Determination of camber and leaf span of a parabolic leaf spring for optimized stress and displacement using artificial neural networks
CN110046375A (zh) 一种颗粒增强钛基复合材料高速磨削温度预测方法
Amiraux Numerical simulation and validation of helicopter blade-vortex interaction using coupled CFD/CSD and three levels of aerodynamic modeling
Wissink et al. Application of 3D Strand Solver to Rotorcraft Hover
Shaw et al. Study of dimple effect on aerodynamic drag characteristics of a car
Zhang et al. Numerical investigation on the transmission loss of skin panels based on the intelligent pso-cga algorithm
CN106407600B (zh) 一种基于流-固耦合及代理模型的入水仿真分析方法
Yang et al. Overlapping grid technique for numerical simulation of a fast-cruising catamaran fitted with active T-foils
Dubois et al. Numerical modelling of the hydrodynamic performance of sinusoidally pitching hydrofoils

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190409

WD01 Invention patent application deemed withdrawn after publication