CN109589980B - 一种复合材料催化剂的制备方法、及其产品和应用 - Google Patents

一种复合材料催化剂的制备方法、及其产品和应用 Download PDF

Info

Publication number
CN109589980B
CN109589980B CN201811269232.1A CN201811269232A CN109589980B CN 109589980 B CN109589980 B CN 109589980B CN 201811269232 A CN201811269232 A CN 201811269232A CN 109589980 B CN109589980 B CN 109589980B
Authority
CN
China
Prior art keywords
porous structure
catalyst
amorphous alloy
amorphous
hierarchical porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811269232.1A
Other languages
English (en)
Other versions
CN109589980A (zh
Inventor
柳林
张�诚
杨冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201811269232.1A priority Critical patent/CN109589980B/zh
Publication of CN109589980A publication Critical patent/CN109589980A/zh
Application granted granted Critical
Publication of CN109589980B publication Critical patent/CN109589980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合材料催化剂的制备方法、及其产品和应用,属于催化剂领域,方法包括:S1采用3D打印方式制备毫/微多孔结构非晶合金前驱体;S2采用化学或电化学工艺,通过腐蚀液对毫/微多孔结构非晶合金前驱体进行选择性腐蚀,在前驱体表面制备金属纳米多孔结构,获得分级多孔结构件;S3对分级多孔结构件执行表面改性以形成金属氧化物或者金属硫化物,从而提高分级多孔结构件的催化性能,采用下列方式中的一种或者多种执行表面改性。本发明还提供了如上方法制备获得的催化剂,该催化剂可以应用在污水处理和电催化领域。本发明方法简单易行,制备出的催化剂效果较好。

Description

一种复合材料催化剂的制备方法、及其产品和应用
技术领域
本发明属于多孔材料催化剂制备技术领域,具体涉及一种三维分级多孔金属基复合材料催化剂的制备方法及产品和应用。
背景技术
催化剂在现今化学工业中具有举足轻重的地位,开发能快速、高效、稳定的新型催化剂至关重要。
目前,常用的工业催化剂主要为纳米级粉体,这些粉体分散负载在具有巨大比表面积的载体上,如沸石、多孔碳、硅藻土、分子筛等上。在催化反应过程中,这些催化剂易于与载体脱落从而导致催化剂失活。此外,纳米粉体催化剂制备方法主要有:水热法、溶剂热法、化学气相沉积、溶胶-凝胶法等,这些过程批次得到催化剂量较少,且制备过程对环境有害,有时还需要使用特殊环境。
因此,有必要开发一种新型的催化剂以及催化剂的制备方法。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种复合材料催化剂的制备方法及其产品,其目的在于,采用非晶合金粉末结合3D打印技术,并采用去合金工艺和表面修饰工艺,制备出三维分级多孔金属及复合材料催化剂,采用本发明方法可以制备出毫/微-纳米分级多孔金属催化剂材料,基于这种特殊的分级结构,该催化剂可以表现出比单级多孔催化剂更优异的催化性能。
为实现上述目的,按照本发明的一个方面,提供了一种复合材料催化剂的制备方法,其包括如下步骤:
S1:采用3D打印方式制备毫/微多孔结构非晶合金前驱体;
S2:采用化学或电化学工艺,通过腐蚀液对毫/微多孔结构非晶合金前驱体进行选择性腐蚀,在前驱体表面制备金属纳米多孔结构,获得分级多孔结构件;
S3:对分级多孔结构件执行表面改性以形成金属氧化物或者金属硫化物,从而提高分级多孔结构件的催化性能,采用下列方式中的一种或者多种执行表面改性:
i.在氧气气氛下加热氧化;
ii.在碱液中阳极氧化;
iii.静电吸附纳米级氧化物;
iv.在多硫化物中硫化;
v.电化学沉积。
以上发明构思中,步骤S2也称为脱合金化技术,3D打印方式实质上也是采用选区激光熔化方式。
进一步的,步骤S1中,用于3D打印的粉末为非晶态粉末,非晶态粉末的粒径为10μm~60μm。
进一步的,所述非晶合金包括Zr基、Al基、Fe基、Ni基、Cu基、Au基、Mg基、Pd基、Pt基以及稀土基体系的非晶态合金。
进一步的,步骤S2中获得的分级多孔结构件为Cu、Ni、Ag、Au、Pt或Pd的金属材质分级多孔结构件,或者为
CuAg、PtNi、PtAg、PtFe、PtP、PtPd的合金材质的分级多孔结构件。
进一步的,在步骤S2和步骤S3之间还包括纳米多孔的孔径调控步骤,具体为,将分级多孔结构件置于真空退火炉中进行退火,通过控制退火温度和退火时间,调控纳米多孔结构的孔径。
按照本发明的第二个方面,还提供一种如上所述方法制备获得复合材料催化剂。
进一步的,所述催化剂整体孔径包括毫米级别孔径、微米级别孔径以及纳米级别孔径,所述纳米级别孔径位于催化剂整体轮廓的最外层。
按照本发明的第三个方面,还提供一种如上所述催化剂的应用。进一步的,其应用在污水处理和电催化领域。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
迄今为止,在世界范围内尚没有报道将选区激光熔化和脱合金化技术结合一起制备大尺寸三维分级多孔金属催化剂的方法。选区激光熔化3D打印技术将复杂的三维加工转变为简单的二维加工,大大降低了复杂构件的成形制造难度,从而十分便利制造各种复杂形状的合金构件。通过结构优化,这些形状复杂的结构具备较大的比表面积、合理的液体流动路径,从而有利于增加催化活性位点以及催化过程中的物质传输,促进催化性能的提高。
进一步的,采用在氧气气氛下加热氧化、在碱液中阳极氧化、静电吸附纳米级氧化物、在多硫化物中硫化或者电化学沉积的方式对分级多孔结构件执行表面改性以形成金属氧化物或者金属硫化物,能显著提高分级多孔结构件的催化性能,这是因为氧化物或硫化物修饰的纳米多孔铜能进一步增加比表面积,同时硫化物还能作为助催化剂有效地加快芬顿反应。
本发明方法制备的催化剂因具有大的比表面积、毫/微米级孔状结构,从而能够加速物质的传递,表现出极高的催化降解有机物的性能和良好的循环稳定性。本发明方法将制备的三维分级多孔金属催化剂可应用于有机物降解领域,但其应用领域不局限于该领域。
附图说明
图1a和图1b分别是本发明实施例中纯非晶合金粉末SEM以及XRD图。
图2是本发明实施例中毫/微多孔框架结构模型以及分级多孔金属催化剂制备过程示意图。
图3a和图3b是本发明实施例中获得的三维分级多孔金属催化剂的微观结构SEM图,其中,图3a放大倍数是50000倍,图3b放大倍数为10000倍。
图4a是本发明实施例中三维分级多孔催化剂降解甲基橙效率,图4b是本发明实施例中三维分级多孔催化剂与其它催化剂的对比。
图5是本发明实施例中三维分级多孔催化剂降解甲基橙的稳定性。
图6是本发明实施例中SLM成型的风扇状结构,并按本方法制备而得高效三维催化剂及其催化效果图,其中,图6a是3D打印成型的风扇结构,图6b是通过去合金化制备的风扇状催化剂,图6c是旋转风扇催化剂催化甲基橙降解过程的视频截图,图6d是催化降解反应完成之后的照片,图6e是用甲基橙溶液培养的绿豆照片,图6f是用甲基橙降解之后溶液培养的绿豆照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种复合材料催化剂的制备方法,其包括如下步骤:
S1:采用3D打印方式制备毫/微多孔结构非晶合金前驱体;
S2:采用化学或电化学工艺,通过腐蚀液对毫/微多孔结构非晶合金前驱体进行选择性腐蚀,在前驱体表面制备金属纳米多孔结构,获得分级多孔结构件;
S3:对分级多孔结构件执行表面改性以形成金属氧化物或者金属硫化物,从而提高分级多孔结构件的催化性能,采用下列方式中的一种或者多种执行表面改性:
i.在氧气气氛下加热氧化;
ii.在碱液中阳极氧化;
iii.静电吸附纳米级氧化物;
iv.在多硫化物中硫化;
v.电化学沉积。
在实际工程实践中,一种复合材料催化剂的制备方法具体包括如下步骤:
a.非晶合金多孔框架前驱体的成分设计
根据预制备多孔金属的种类合理设计非晶合金的成分。保证非晶合金前驱体中目标元素(一到两种)的总原子百分比在30%~70%之间;其他元素为活泼元素,其原子比例配置需要保证合金体系具有较大的非晶形成能力(临界尺寸>5mm)以及具有较大的激光吸收率。
b.非晶粉末的制备
根据非晶合金前驱体成分,将金属原料按原子百分百配料,采用真空感应熔炼获得成分均匀的母合金。
然后,采用气雾化方法得到球形度好的非晶合金粉末,选择合适粒径(10μm~60μm)的非晶合金粉末进行后续的3D打印成形。
c.三维多孔框架模型准备
根据需要,选择合适的三维多孔框架模型,采用三维设计软件设计出三维多孔框架实体图,并将其转化为STL格式导入选区激光熔化3D打印设备中。
d.基板安装及气氛保护
将合适的基板用螺丝或夹具固定在工作缸台面上,调节工作缸的相对位置,使得送粉棍与基板相切。
然后,将非晶粉末加入落粉斗中,将工作缸密闭抽真空至一定真空度后,充入高纯氩气对工作缸腔室进行气氛保护,保持氧含量100ppm以下。
e.毫/微多孔结构非晶合金前驱体的3D打印
选用合适的激光扫描工艺,包括激光功率、扫描速度、层间间距等,依据上一步设计的三维模型,在计算机控制下进行非晶粉末逐层打印,获得毫/微多孔结构非晶合金前驱体,待加工件冷却后取出。
f.脱合金化制备分级多孔催化剂
根据非晶合金的成分,合理配置腐蚀液的成分,采用化学或电化学的方法,选择合适的工艺参数(包括腐蚀时间、腐蚀温度、电位等),对毫/微多孔结构非晶合金前驱体进行选择性腐蚀,在前驱体表面获得金属纳米多孔结构。
g.金属纳米多孔结构的孔径调控
将经脱合金之后获得的分级多孔结构构件在真空退火炉中进行退火,通过控制退火温度和退火时间,调控纳米多孔结构的孔径。此步根据实际需求而定,非必须步骤。
h、纳米多孔金属的表面修饰
上述f、g步骤中得到的三维分级催化剂还可以进行表面改性形成金属/氧化物,或金属/硫化物等纳米结构,提高其催化性能;具体办法如下:i.在氧气气氛下加热氧化;ii.在碱液(如NaOH、NH3·H2O等)中阳极氧化;iii.静电吸附纳米级氧化物;iv.在多硫化物中硫化;v.电化学沉积。此步根据实际需求而定,非必须步骤。
下面结合附图和具体实施例对本发明作进一步说明。
利用选区激光熔化(SLM)制备毫/微多孔非晶合金框架结构,然后采用脱合金化方法在框架结构表面制备纳米多孔结构,获得三维分级多孔金属催化剂。具体步骤如下:
a.非晶合金前驱体的成分设计
本例是针对三维分级多孔结构的纳米金属Cu催化剂的制备。因此选择了Zr55Cu30Ni5Al10非晶体系。目标Cu元素的原子百分比位于30%~70%之间,且该体系具有很大的非晶形成能力,形成非晶结构的临界尺寸达30mm,适合SLM 3D打印成形。因此,选择该体系制备三维分级多孔金属Cu是合适的。当然,也可以根据应用需求,选择Al基、Ni基、Cu基、Au基、Mg基、Pd基、Pt基以及稀土基非晶合金体系,采用类似的方法获得相应的非晶多孔结构金属催化剂。
b.非晶合金粉末的制备
根据所选的非晶体系,将高纯金属原料根据原子比进行配比,采用感应真空熔炼获得成分均匀的母合金。然后采用气体雾化法得到相同成分的非晶粉末。将非晶粉末过筛,获得53μm以下的粉末,进行选区激光熔化3D对应。其SEM及XRD曲线如图1所示,图1a和图1b分别是本发明实施例中纯非晶合金粉末SEM以及XRD图,由图可知,非晶粉末呈良好的球形,证明其拥有良好的流动性,适合3D打印;XRD图谱中没有尖锐的晶化峰,说明粉末呈非晶态,内部成分均匀,适合3D打印成型非晶合金。
c.多孔结构非晶合金框架前驱体的几何设计
根据应用需求,合理地设计催化剂的宏观几何形状(可以通过计算机优化),然后利用Solidworks、3Ds max等软件绘制出三维CAD模型,并将其转换为STL格式文件,导入选区激光熔化快速成型设备控制系统中,采用加工软件读取。本例中选择了具有最大比表面积的栅格结构进行3D打印成形,如图2所示,图2是本发明实施例中毫/微多孔框架结构模型以及分级多孔金属催化剂制备过程示意图,由图可知,不同结构的比表面积不同,通过优化构件结构可以获得大比表面积,在此基础上脱合金化,可以进一步增加比表面积。图中右下方是脱合金化的示意图。
d.基板安装及气氛保护
将合适的基板用螺丝或夹具固定在工作缸台面上,调节工作缸的相对位置,使得送粉棍与基板相切。
然后,将非晶粉末加入落粉斗中,将工作缸密闭抽真空至一定真空度后,充入高纯氩气对工作缸腔室进行气氛保护,保持氧含量100ppm以下。本例中的基板是TC4钛合金基板。
e.激光加工
选用合适的激光扫描工艺,包括激光功率、扫描速度、层间间距等,依据上一步设计的三维模型,在计算机控制下进行非晶粉末逐层打印,获得毫/微多孔结构非晶合金前驱体,待加工件冷却后取出。本例中的激光功率为240W,扫描速率为1200mm/s,层间间距为60μm。
f.脱合金化制备纳米多孔结构
根据非晶合金前驱体的成分,合理选择腐蚀液的成分,采用化学或电化学的方法,在合适的工艺下(腐蚀时间、腐蚀温度、电位等),对多孔非晶合金前驱体进行选择性腐蚀。本例中是Zr55Cu30Ni5Al10非晶合金,Zr元素在HF溶液中易于腐蚀,因此选择的腐蚀液为HF和H2SO4的混合溶液;在腐蚀液中自由腐蚀,腐蚀时间为60h,腐蚀温度是35℃。
g.金属纳米多孔结构的孔径调控
将经脱合金之后获得的分级多孔结构构件在真空退火炉中进行退火,通过控制退火温度和退火时间,调控纳米多孔结构的孔径。
本例中,将脱合金化得到的三维分级多孔金属Cu在真空退火炉中,在400℃下保温两小时后得到。最后得到的纳米级多孔催化剂的微观形貌如图3所示,图3a和图3b是本发明实施例中获得的三维分级多孔金属催化剂的微观结构SEM图,其中,图3a放大倍数是50000倍,图3b放大倍数为10000倍,由图3可知,经过脱合金化之后,样品表面形成了纳米多孔结构,纳米孔径约在90nm左右,因此比表面积大大增加。
h.分级多孔催化剂对甲基橙的催化降解
为验证应用此方法获得的三维分级多孔催化剂的高催化性能,选取甲基橙为目标降解物质,使用类芬顿法降解该污染物。图4a是本发明实施例中三维分级多孔催化剂降解甲基橙效率,图4b是本发明实施例中三维分级多孔催化剂与其它催化剂的对比,由图可知,在pH为2,温度为45℃,初始双氧水浓度为6mM的条件下,该催化剂表现出了优异于传统Cu粉、Cu2+等类芬顿催化剂的性能。
图5是本发明实施例中三维分级多孔催化剂降解甲基橙的稳定性,由图可知,在使用5次之后,依旧能在20min之内降解约90%的甲基橙,该催化剂也表现出了优异的循环稳定性。
为了探索此法工业化的可能性,打印了一个风扇状的非晶合金用以模拟工业过程,并用此法制备为催化剂,与电机组装在一起,如图6。图6是本发明实施例中SLM成型的风扇状结构,并按本方法制备而得高效三维催化剂及其催化效果图,其中图6a是3D打印成型的风扇结构,图6b是通过去合金化制备的风扇状催化剂,图6c是旋转风扇催化剂催化甲基橙降解过程的视频截图,图6d是催化降解反应完成之后的照片,图6e是用甲基橙溶液培养的绿豆照片,图6f是用甲基橙降解之后溶液培养的绿豆照片。由此可知,该装置能很快降解甲基橙,大约需要8min甲基橙溶液就褪为无色。且用降解之后的溶液和原始甲基橙溶液培养绿豆,原始甲基橙溶液培养的绿豆却并不能发芽成长,而发现降解之后的溶液毒性大减,豆子长势良好。这说明了此法的确有工业化应用的潜能。
本发明中,选区激光熔化(Selective Laser Melting,SLM)3D打印技术给制造三维复杂结构的非晶合金构件提供了一种可能性。激光选区熔化采用了光纤激光器,能量密度高、光斑细小、成形精度高、冷却速度快等特点,特别适合于大尺寸非晶合金的制备及非晶合金构件的成形制造。同时该技术将复杂的三维加工转变为简单的二维加工,大大降低了复杂构件的成形制造难度。目前,关于采用选区激光熔化制备三维多孔非晶框架前驱体,并结合脱合金化技术制备分级多孔金属催化剂的方法暂无报道。
本发明中,非晶态合金作为一种新型合金材料,为脱合金化的母合金材料提供了重要的选择,这主要是由于非晶合金具有一系列的优点。首先,非晶态合金的成分均匀,且其成分区间比固溶体区间大,因此,均匀的纳米多孔结构很容易从非晶态前驱体中获得。其二,非晶态合金制备过程简单,成本低廉,且对环境友好。非晶合金制备能够使用现有钢铁工业的设备,工业化成本低。有研究表明,宏观的大孔/微孔能够有效促进催化反应过程中的物质传输。通过使用三维复杂结构前驱体进行脱合金化可以得到复合毫/微/纳分级多孔金属,使得催化剂效率最大化。
本发明中,脱合金化为制备高稳定性纳米多孔催化剂提供了新思路。通过在酸性或碱性溶液中对金属合金进行电化学/化学腐蚀,能够选择性地腐蚀掉活泼金属组元,从而得到惰性金属的三维纳米多孔结构。这些纳米多孔材料原位从母体材料中生长而出,与基底的结合力强,较负载型催化剂更稳定。通常,为得到均匀的纳米多孔金属,脱合金化母合金其成分应该均匀,多为固溶体,这样的要求限制了能够应用于脱合金化前驱体的前驱体的成分。
本发明方法制备获得复合材料催化剂,其整体孔径包括毫米级别孔径、微米级别孔径以及纳米级别孔径,所述纳米级别孔径位于催化剂整体轮廓的最外层。其可以应用在污水处理和电催化领域。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种复合材料催化剂的制备方法,其特征在于,其包括如下步骤:
S1:根据待制备分级多孔结构件的种类确定非晶合金成分,并保证非晶合金前驱体中目标元素的总原子百分比在30%~70%之间;将按上述要求配制好的非晶合金制备为非晶粉末,采用3D打印方式对非晶粉末进行逐层打印,获得毫/微多孔结构非晶合金前驱体;
所述非晶合金包括Zr基、Al基、Fe基、Ni基、Cu基、Au基、Mg基、Pd基、Pt基以及稀土基体系的非晶态合金;
S2:采用化学或电化学工艺,通过腐蚀液对毫/微多孔结构非晶合金前驱体进行选择性腐蚀,在前驱体表面制备金属纳米多孔结构,获得分级多孔结构件;
S3:对分级多孔结构件执行表面改性以形成金属氧化物或者金属硫化物,从而提高分级多孔结构件的催化性能,采用下列方式中的一种或者多种执行表面改性:
i.在氧气气氛下加热氧化;
ii.在碱液中阳极氧化;
iii.静电吸附纳米级氧化物;
iv.在多硫化物中硫化;
v.电化学沉积。
2.如权利要求1所述的一种复合材料催化剂的制备方法,其特征在于,步骤S1中,用于3D打印的粉末为非晶态粉末,非晶态粉末的粒径为10μm~60μm。
3.如权利要求2所述的一种复合材料催化剂的制备方法,其特征在于,
步骤S2中获得的分级多孔结构件为Cu、Ni、Ag、Au、Pt或Pd的金属材质分级多孔结构件,或者为CuAg、PtNi、PtAg、PtFe、PtP、PtPd的合金材质的分级多孔结构件。
4.如权利要求3所述的一种复合材料催化剂的制备方法,其特征在于,在步骤S2和步骤S3之间还包括纳米多孔的孔径调控步骤,具体为,
将分级多孔结构件置于真空退火炉中进行退火,通过控制退火温度和退火时间,调控纳米多孔结构的孔径。
5.如权利要求1-4之一所述方法制备获得复合材料催化剂。
6.如权利要求5所述的催化剂,其特征在于,其整体孔径包括毫米级别孔径、微米级别孔径以及纳米级别孔径,所述纳米级别孔径位于催化剂整体轮廓的最外层。
7.如权利要求5或6所述催化剂在污水处理和电催化领域的应用。
CN201811269232.1A 2018-10-29 2018-10-29 一种复合材料催化剂的制备方法、及其产品和应用 Active CN109589980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811269232.1A CN109589980B (zh) 2018-10-29 2018-10-29 一种复合材料催化剂的制备方法、及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811269232.1A CN109589980B (zh) 2018-10-29 2018-10-29 一种复合材料催化剂的制备方法、及其产品和应用

Publications (2)

Publication Number Publication Date
CN109589980A CN109589980A (zh) 2019-04-09
CN109589980B true CN109589980B (zh) 2020-12-18

Family

ID=65957843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811269232.1A Active CN109589980B (zh) 2018-10-29 2018-10-29 一种复合材料催化剂的制备方法、及其产品和应用

Country Status (1)

Country Link
CN (1) CN109589980B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512229A (zh) * 2019-09-17 2019-11-29 王选明 一种水电解用析氧电极的制备方法
CN110523986A (zh) * 2019-09-25 2019-12-03 华南理工大学 一种基于选区激光熔化成形大块体铁基非晶的方法
CN111250093B (zh) * 2020-03-11 2021-02-19 中国华能集团清洁能源技术研究院有限公司 一种3d打印整体式复合结构催化剂及其制备方法和应用
CN111229231B (zh) * 2020-03-11 2021-03-02 中国华能集团清洁能源技术研究院有限公司 一种3d打印整体式合金催化剂及其制备方法和应用
CN112589090B (zh) * 2020-11-06 2022-05-10 中国科学院金属研究所 一种单质态和氧化态共混的金属纳米粉末的制备方法
CN113264574B (zh) * 2021-04-22 2023-04-25 东莞理工学院 一种Ni-Fe/MoS2电极的制备方法及其降解氟苯尼考污染物中的应用
CN113290242A (zh) * 2021-04-26 2021-08-24 华中科技大学 一种微纳多孔功能器件、其增材制造方法和应用
CN114192148A (zh) * 2021-12-23 2022-03-18 华东理工大学 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117672A (zh) * 2014-07-31 2014-10-29 华中科技大学 一种制备/成形非晶合金及其复合材料的方法
CN105562036A (zh) * 2015-12-15 2016-05-11 同济大学 一种铁硫多相类芬顿催化剂的制备方法及应用
CN106944098A (zh) * 2017-03-27 2017-07-14 中国科学院福建物质结构研究所 碳材料负载铜钴双金属硫化物复合材料及其制法和在废水处理中的应用
CN107720930A (zh) * 2017-11-20 2018-02-23 华东理工大学 一种含硫化物的工业废水处理用试剂及其反应方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117672A (zh) * 2014-07-31 2014-10-29 华中科技大学 一种制备/成形非晶合金及其复合材料的方法
CN105562036A (zh) * 2015-12-15 2016-05-11 同济大学 一种铁硫多相类芬顿催化剂的制备方法及应用
CN106944098A (zh) * 2017-03-27 2017-07-14 中国科学院福建物质结构研究所 碳材料负载铜钴双金属硫化物复合材料及其制法和在废水处理中的应用
CN107720930A (zh) * 2017-11-20 2018-02-23 华东理工大学 一种含硫化物的工业废水处理用试剂及其反应方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Excellent degradation performance of 3D hierarchical nanoporous structures of copper towards organic pollutants;Chong Yang et al.;《J. Mater. Chem. A,》;20181001;第20993页,Preparation of 3D NP-Cu,图1 *

Also Published As

Publication number Publication date
CN109589980A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109589980B (zh) 一种复合材料催化剂的制备方法、及其产品和应用
Hu et al. Template strategies with MOFs
Ray et al. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
Li et al. Hierarchical photocatalysts
Ding et al. Morphology and phase controlled construction of Pt–Ni nanostructures for efficient electrocatalysis
Liu et al. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures
Zhang et al. Gas-phase cation exchange toward porous single-crystal CoO nanorods for catalytic hydrogen production
Liu et al. A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications
You et al. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications
Cheong et al. Shape control of platinum and palladium nanoparticles for catalysis
Wang et al. Understanding the enhanced catalytic activity of high entropy alloys: from theory to experiment
CN113290242A (zh) 一种微纳多孔功能器件、其增材制造方法和应用
CN103747870B (zh) 用热稳定金属合金纳米颗粒结构化的基材表面,制备其的方法及其特别是作为催化剂的用途
Yamauchi et al. Highly ordered mesostructured Ni particles prepared from lyotropic liquid crystals by electroless deposition: the effect of reducing agents on the ordering of mesostructure
WO2006093317A1 (ja) 固/液界面に形成された吸着ミセル膜を反応場として形成される単結晶質の貴金属超薄膜ナノ粒子及びその製造方法
Ruditskiy et al. Shape-controlled metal nanocrystals for catalytic applications
EP2760782A2 (en) Metal oxide nanorod arrays on monolithic substrates
CN110146531B (zh) 一种大尺寸双连续多孔泡沫铋及其制备方法
Liu et al. Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C 3 N 4 photocatalyst
JP2006045582A (ja) 白金ないし白金を含む貴金属からなるスポンジ状ナノ粒子及びその製造方法
Li et al. Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol
CN113770537B (zh) 纳秒激光辐照制备铁基非晶合金表面纳米结构的方法
Miao et al. General sacrificial template method for the synthesis of cadmium chalcogenide hollow structures
JPWO2017010492A1 (ja) 基材一体型ナノ結晶金属酸化物複合体含有触媒およびその製造方法ならびに触媒部品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant