CN109585531B - 抗总剂量效应的mos场效应管 - Google Patents

抗总剂量效应的mos场效应管 Download PDF

Info

Publication number
CN109585531B
CN109585531B CN201811440768.5A CN201811440768A CN109585531B CN 109585531 B CN109585531 B CN 109585531B CN 201811440768 A CN201811440768 A CN 201811440768A CN 109585531 B CN109585531 B CN 109585531B
Authority
CN
China
Prior art keywords
region
total dose
effect transistor
field effect
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811440768.5A
Other languages
English (en)
Other versions
CN109585531A (zh
Inventor
刘淼
康晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No47 Institute Of China Electronics Technology Group Corp
Original Assignee
No47 Institute Of China Electronics Technology Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No47 Institute Of China Electronics Technology Group Corp filed Critical No47 Institute Of China Electronics Technology Group Corp
Priority to CN201811440768.5A priority Critical patent/CN109585531B/zh
Publication of CN109585531A publication Critical patent/CN109585531A/zh
Application granted granted Critical
Publication of CN109585531B publication Critical patent/CN109585531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种抗总剂量效应的MOS场效应管,属于MOS场效应管的设计技术领域。该场效应管在源区和漏区的边缘使用多晶硅环绕源区和漏区两极,同时多晶硅覆盖有源区的边缘形成的蝴蝶柵形结构,因为P管不存在边缘寄生晶体管反型的问题,所以只对N管采用蝴蝶栅结构。该结构能够减少总剂量辐射下的MOS器件的SiO2中产生的辐射感生陷阱电荷和在Si/SiO2界面产生辐射感生界面态。从而减少MOS器件阈值电压漂移,防止沟道载流子迁移率降低,防止漏电流增加。该蝴蝶柵形结构能够完全消除辐射感生边缘寄生晶体管效应,并且与商用工艺相兼容,使用该方法设计的集成电路,能够在整体上具有抗总剂量效应的功能。

Description

抗总剂量效应的MOS场效应管
技术领域
本发明涉及MOS场效应管的设计技术领域,具体涉及一种抗总剂量效应的MOS场效应管。
背景技术
卫星、核辐射及其它长期工作在低剂量率的高能射线辐射条件下的 MOS器件,会因为辐射导致器件阈值电压漂移而失效,这就是总剂量效应。
从1962年美国和苏联在太平洋上空进行核爆炸试验致使当时一些卫星失效开始,人们逐渐重视辐射环境下电子器件的行为并进了详细的研究。本世纪六十年代,人们开始注意到低剂量率长时间辐射对卫星上的器件有很大影响。到70年代人们有了一定的初步共识,认为当辐射射线能量大于二氧化硅能带的禁带宽度时就可以产生总剂量效应。在辐射条件下射线的能量可以改变硅器件氧化层中的电荷,从而改变半导体器件表面的电场分布,改变晶体管的开启电压,同时还能改变半导体和绝缘体界面电荷状态,使之能随半导体表面能带电势变化而充电或放电,并且它还会对沿表面运动的载流子产生散射作用,使载流子迁移率下降,使场效应管性能变差,后来随着研究的深入,发现总剂量辐射对各种条件的随机性很大,集成电路在一定剂量的辐射源的电离辐射下,会在二氧化硅层产生大量的电子、空穴对,电子由于迁移率比较高,容易在电场的作用下移出二氧化硅层。而空穴会被二氧化硅层中的陷阱捕获,而永久的呆在二氧化硅层中。此外,总剂量效应还会增加N-氧化硅和硅的界面态,引发MOS器件失效。MOS场效应管是CMOS集成电路的基本单元,为了从根本上解决CMOS器件在长期的低剂量率的高能射线辐射条件下失效的问题,有必要研发抗总剂量效应的MOS场效应管。
发明内容
本发明的目的在于提供一种抗总剂量效应的MOS场效应管,用于保证整个集成电路系统在辐照条件下的可靠性和稳定性。
本发明所采用的技术方案如下:
一种抗总剂量效应的MOS场效应管,所述MOS场效应管包括源区、漏区、沟道区和栅区,所述源区、漏区和沟道区形成所述MOS场效应管的有源区;所述源区和漏区的边缘使用多晶硅环绕源区和漏区两极,同时多晶硅覆盖有源区的边缘,并在晶体管外环绕设置形成隔离区,隔离区的外边缘为闭合环形。
所述源区位于所述闭合环形多晶硅的内部。
所述漏区位于所述闭合环形多晶硅的内部。
所述闭合环形为矩形,且所述闭合环形部分的拐角均为圆角。
所述闭合环形内的多硅位于柵区两侧,形成蝴蝶柵形结构。
所述蝴蝶柵形结构的多晶硅包含有源区的距离为标准工艺数值。
所述蝴蝶柵形结构的多晶硅伸入有源区的距离为标准工艺数值
本发明中抗总剂量效应的MOS场效应管,在MOS场效应管的版图上采用特殊设计的蝴蝶柵形结构。总剂量效应表现为改变MOS器件的电特性,包括本征MOS器件和寄生MOS器件。不同工艺产生不同的寄生MOS器件结构,不同工艺产生不同的寄生MOS器件辐照特性。MOS器件失效机理是,总剂量条件下,产生自由电子一空穴对,由于浓度差原因,自由电子和空穴发生扩散运动,在电场作用下,自由电子和空穴发生漂移运动。在Si中,自由电子和空穴很快复合,但在氧化硅中,自由电子和空穴的迁移率差别很大,当迁移率大的自由电子离开氧化层后,在氧化层和界面陷阱中留下大量多余空穴正电荷,这些多余空穴正电荷能使轻掺杂的P型材料反型(例如N沟MOS管或者P阱中起隔离作用而形成的场氧管)。CMOS器件的总剂量失效原理是总剂量在Si02中产生感生陷阱,在Si/Si02界面产生感生界面态,导致MOS器件阈值电压Vt产生偏移,载流子迁移率μ降低,漏电流变大。对N型 MOSFET,总剂量在Si02中产生的正电荷使Vt向负电压方向偏移,在高的总剂量下,因为界面态电荷显负电性,与部分空间正电荷中和,恢复部分电压偏移。对于P型MOSFET,V向负电压方向偏移,但P型MOSFET是在负电压下工作,总剂量增强了PMOS的Vt。P型MOSFET 的阈值电压漂移远小于N型MOSFET,这是偏压不同引起的。PMOS 的最差偏压为栅极G、源极S和衬底B相对漏极D接VDD;而NMOS 管的最差偏压为栅极G相对源极S、衬底B和漏极D接VDD。总剂量在氧化层中产生电子一空穴对,在电场作用下,部分电子离开氧化层,部分电子和空穴中和;部分空穴也离开氧化层,部分空穴和电子复合,部分空穴被Si/Si02界面附近的空穴陷阱俘获,形成正空间电荷,因此,阈值电压Vt向负电压方向偏移。对NMOS器件,在极端偏压情况下, MOS器件导通,在电场作用下,空穴向Si/SiO2界面偏移,被界面附近的陷阱捕获;对PMOS器件,极端偏压情况下,MOS器件截止,因为没有电场,空穴停止运动,不会被界面附近的陷阱俘获,因此,PMOS 器件比NMOS器件抗总剂量能力强。
总剂量对MOSFET的作用主要是阈值电压Vt的偏移。以N沟道增强型MOSFET为例,公式为,
ΔVT=-eΔQot/Cox+eΔQit/Cox=ΔVot+ΔVit
式中ΔQot为总剂量在单位面积产生的空间电荷;ΔQit为总剂量产生的界面态电荷;ΔVot为正空间电荷对阈值电压Vt的影响;ΔVit为界面态电荷对阈值电压Vt的影响。如果总剂量在Si02中产生电子一空穴对;电子很快被复合或漂移出SiO2层,空穴则被Si/Si02界面俘获,在界面出现正空间电荷;
Qot=eNdoxF(E,ξ)FtD
式中,dox为氧化层厚度;N为1cm3的SiO2吸收1Gy(Si02)剂量产生的空穴密度(假定产生一个电子一空穴对的能量为17eV,每1Gy(Si02) 产生的空穴浓度为8.1X 1014cm-3);F(E,ξ)为与电场(E)和辐射粒子能量(ξ)相关的空穴产生率;D为辐射剂量((1Gy(Si02)),Ft为经验参数
同样,总剂量会在Si/Si02界面引入界面态,界面态的电荷ΔQit对阂值电压Vt的影响,可用下式表示。
ΔVit=ΔQit/Ccx=eΔNit/Ccx
式中,ΔNit为总剂量产生的单位面积界面态电荷数。界面态电荷产生与与氧化层厚度和辐射剂量关系式为
ΔNit=KdoxD2/3
式中,K为比例系数。100nm氧化层在正栅偏压下辐射到1X 104Gy 通常形成5X1011m2的界面态电荷,为此可以得到
Figure BDA0001884647000000051
式中,dox的单位为nm;D的单位为Gy。己经证明电场对界面态电荷的产生影响不大,可以忽略不计,由此得到ΔNit分量的表达式:
Figure BDA0001884647000000052
对于正偏压的N型MOSFET产生负的界面态电荷,表达式可以简化成:
Figure BDA0001884647000000053
综上所述总剂量下N型MOSFET总的阈值电压漂移为:
Figure BDA0001884647000000054
由于在高的剂量下,俘获达到饱和,Ft趋向于下降。上式表明,总剂量引起MOSFET阈值电压Vt的漂移ΔVT与氧化层厚度dor的平方成正比。因此,氧化层厚度的降低能够增强MOSFET的抗总剂量能力。
附图说明
图1为普通工艺MOS场效应管剖面图。
图2为本发明蝴蝶柵形结构多晶硅NMOS场效应管示意图。
图3为本发明NMOS场效应管逻辑图。
具体实施方式
普通工艺MOS场效应管的源区和漏区由非多晶硅覆盖的有源区注入形成,如图1普通工艺MOS场效应管剖面图所示。这种设计使硅栅在场氧化区和栅氧化区的边界区域产生了一个寄生场氧化MOSFET,因为场氧化层很厚,总剂量效应产生的电荷陷阱能使寄生场氧化MOSFET 中阈值电压产生偏移,在非工作状态下,在MOS场效应管的源区和漏区产生漏电流。在MOS场效应管的源区和漏区与PMOS场效应管的源区和漏区的N阱中也会产生氧化层漏电流。普通寄生场氧化MOSFET 不可能导通,因此普通工艺一般不考虑边缘寄生晶体管的漏电流问题。而且,普通商用生产线不采用抗总剂量加固的工艺,所以普通工艺MOS 场效应管的寄生晶体管对总剂量效应很敏感。因此,要想完成抗总剂量效应的目标,就要修改MOS场效应管的版图设计。采用的方法是把 NMOS场效应管采用蝴蝶柵结构,在场效应管源区和漏区间完全消除薄氧到厚氧的过渡区域。因为PMOS场效应管不存在边缘寄生晶体管反型的问题,所以只对NMOS场效应管采用蝴蝶柵结构,其逻辑图如图3 所示,G为栅端,D为漏端,S为源端,B为衬底端,T为隔离端。
蝴蝶柵型结构NMOS场效应管在绘制版图时,在NMOS的源区和漏区的边缘使用多晶硅环绕源区和漏区两极,同时覆盖有源区的边缘。如图2所示,蝴蝶柵型NMOS场效应管的有效宽长比不仅和W/L有关,而且与W2/L2有关。其有效的宽长比形成的寄生漏电流约为:W/Leff=W/L+N×W2/L2。其中N为多晶硅栅所包含的折角的总的数量(在蝴蝶柵型NMOS中N=4)。根据这种计算方法,计算的寄生漏电流比实际漏电流稍大,所以N的值可以根据实际情况进行调整。形成的蝴蝶栅形的多晶硅覆盖在源漏的有源区的边缘,将高剂量注入区与源漏区隔离。由于场区边缘的总剂量辐射产生的寄生漏电流会使场区的隔离失效,使用蝴蝶柵型抗总剂量加固版图结构可以使漏区与源区之间产生正常的工作电流,从而避免在有源区边缘产生鸟嘴效应,避免在多晶硅栅下的薄氧化层区域的硅表面产生反型,达到切断场区边缘的总剂量辐射时产生的寄生沟道与NMOS源漏区之间通路的目的。

Claims (4)

1.一种抗总剂量效应的MOS场效应管,其特征在于:所述MOS场效应管包括源区、漏区、沟道区和栅区,所述源区、漏区和沟道区形成所述MOS场效应管的有源区;所述源区和漏区的边缘采用多晶硅环绕源区和漏区两极,同时多晶硅覆盖有源区的边缘;
所述多晶硅覆盖有源区边缘后,在晶体管外环绕设置形成隔离区,隔离区的外边缘为闭合环形;所述闭合环形内的多晶硅形成蝴蝶栅形结构。
2.根据权利要求1所述的抗总剂量效应的MOS场效应管,其特征在于:所述源区位于所述闭合环形多晶硅的内部。
3.根据权利要求1所述的抗总剂量效应的MOS场效应管,其特征在于:所述漏区位于所述闭合环形多晶硅的内部。
4.根据权利要求1所述的抗总剂量效应的MOS场效应管,其特征在于:所述闭合环形为矩形,且所述闭合环形的四个角均为圆角。
CN201811440768.5A 2018-11-29 2018-11-29 抗总剂量效应的mos场效应管 Active CN109585531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811440768.5A CN109585531B (zh) 2018-11-29 2018-11-29 抗总剂量效应的mos场效应管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811440768.5A CN109585531B (zh) 2018-11-29 2018-11-29 抗总剂量效应的mos场效应管

Publications (2)

Publication Number Publication Date
CN109585531A CN109585531A (zh) 2019-04-05
CN109585531B true CN109585531B (zh) 2022-03-15

Family

ID=65925077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811440768.5A Active CN109585531B (zh) 2018-11-29 2018-11-29 抗总剂量效应的mos场效应管

Country Status (1)

Country Link
CN (1) CN109585531B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111008506B (zh) * 2019-11-30 2023-04-07 中国科学院新疆理化技术研究所 一种基于阈值电压类型匹配的6-t存储单元抗总剂量加固方法
CN113161422B (zh) * 2021-05-19 2022-11-04 电子科技大学 低辐射漏电的高压ldmos器件结构
CN114093947B (zh) * 2021-10-26 2023-09-12 北京工业大学 一种基于ldmos器件内栅电荷补偿的抗总剂量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8902372A (nl) * 1989-09-21 1991-04-16 Imec Inter Uni Micro Electr Werkwijze voor het vervaardigen van een veldeffecttransistor en halfgeleiderelement.
CN102412303A (zh) * 2011-11-03 2012-04-11 中国电子科技集团公司第五十八研究所 一种抗总剂量辐射效应的大头条形栅mos管版图加固结构
CN102412304A (zh) * 2011-11-03 2012-04-11 中国电子科技集团公司第五十八研究所 一种抗总剂量辐射效应的倒比例或小比例nmos管版图结构
CN108447901A (zh) * 2018-02-28 2018-08-24 西安微电子技术研究所 一种抗总剂量辐射pnp晶体管结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8902372A (nl) * 1989-09-21 1991-04-16 Imec Inter Uni Micro Electr Werkwijze voor het vervaardigen van een veldeffecttransistor en halfgeleiderelement.
CN102412303A (zh) * 2011-11-03 2012-04-11 中国电子科技集团公司第五十八研究所 一种抗总剂量辐射效应的大头条形栅mos管版图加固结构
CN102412304A (zh) * 2011-11-03 2012-04-11 中国电子科技集团公司第五十八研究所 一种抗总剂量辐射效应的倒比例或小比例nmos管版图结构
CN108447901A (zh) * 2018-02-28 2018-08-24 西安微电子技术研究所 一种抗总剂量辐射pnp晶体管结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
亚微米CMOS集成电路抗总剂量辐射版图设计;李若飞,蒋明曦;《微处理机》;20101231(第6期);第15-16页 *

Also Published As

Publication number Publication date
CN109585531A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US8252642B2 (en) Fabrication methods for radiation hardened isolation structures
Snoeys et al. A new NMOS layout structure for radiation tolerance
US7821075B2 (en) CMOS device with zero soft error rate
CN109585531B (zh) 抗总剂量效应的mos场效应管
US7804138B2 (en) Buried guard ring and radiation hardened isolation structures and fabrication methods
Schwank et al. Radiation effects in MOS oxides
US5293052A (en) SOT CMOS device having differentially doped body extension for providing improved backside leakage channel stop
US20110291191A1 (en) MOS Structure with Suppressed SOI Floating Body Effect and Manufacturing Method thereof
CN113594256A (zh) 一种高压抗单粒子辐照的psoi ldmos器件结构
Bala et al. Total ionization dose (TID) effects on 2D MOS devices
EP0091256B1 (en) Cmos device
JP2001284540A (ja) 半導体装置およびその製造方法
JPH0265254A (ja) 半導体装置
JP3348782B2 (ja) 半導体装置の製造方法
JPH08293610A (ja) 半導体装置およびその製造方法
Cham et al. A study of the trench surface inversion problem in the trench CMOS technology
Manchanda et al. A high-performance directly insertable self-aligned ultra-rad-hard and enhanced isolation field-oxide technology for gigahertz silicon NMOS/CMOS VLSI
Ohno et al. Total-dose effects of gamma-ray irradiation on CMOS/SIMOX devices
Oh et al. The effect of body contact arrangement on thin SOI MOSFET characteristics
CN116190353A (zh) 一种衬底加固的源区边缘p型重掺杂抗辐照nmos晶体管结构
CN116487369A (zh) 一种衬底加固的源区边缘P型重掺杂抗辐照NMOS FinFET结构
Alles Radiation hardening by process
Manchanda et al. A high-performance directly insertable self-aligned ultra-radiation-hard and enhanced isolation field-oxide technology for gigahertz Si-CMOS VLSI
Li et al. Fabrication of improved FD SOIMOSFETs for suppressing edge effect
JPS60260144A (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant